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H. KENYON AND A. P. MORSE

1. Introduction. A relation is a set of ordered pairs. If R is a
relation then it helps our intuition to sometimes think that y comes after
x if and only if {x, y) e R. With this in mind we search among relations
for directing mechanisms among which are to be not only those familiar
ones considered by Moore-Smith, but enough more to handle1 topological
convergence.

We agree that

dmn R = domain R = Ex [(a?, y) e R for some y]

= the set of points x such that (x, y) e R for

some y,

and that

rng R — range R — Ey [(a?, y) e R for some x] .

Now suppose

Γ= Eα(0 £ x < oo)

and

ω = the set of non-negative integers.

Also suppose

R, =- Ex, y(0 ^ x ^ y < oo)

and

R2 = E#, 2/(a? e ω and 0 ^ a ; ^ 2 / < oo),

so t h a t (x, y) e Rτ if and only ifO<x^y<oD and (a?, y) 6 i22 if and

only if x e ω and 0 ^ x <̂  ?/ < oo.

Clearly

rng i?2 = r n g R1^= Γ

but on the other hand

dmn R.λ — ωΦ dmn Rλ — Γ ,

Nevertheless, iϋ2 and i^ are intuitively equivalent directing mechanisms.
Now suppose :
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I = Έt(O ^ t ^ 1)

Γ = The set of functions on I to Γ

ωf = The set of functions on 7 to ω

R[ = Ex, y[x 6 Γ' and y e Γf and #(£) ^ ?/(£) whenever ί e / ] ;

jRa = E#, y[x e ω' and y e Γ' and ατ(ί) ^ ?/(£) whenever ί e l ] .

Very much as before

dmn R'2 = ω' Φ dmn i?ί = Γ',

but nevertheless #2 and R[ are intuitively equivalent directing mecha-
nisms.

Let us look more closely at R2, R2 is clearly transitive. That is,
{x, z) e R2 whenever (x, y) and (y, z) both belong to R2. In other words,
if y comes after x and z comes after y, then z comes after x. More-
over if x e dmn R'2 and y e dmn R2 then there is a 2 e dmn R2 which
comes after both x and y. That is, corresponding to each x e dmn #2
and each y e dmn R2 there is a z e dmn i?2 for which

(#, 2) 6 i?2 and (i/, 2) 6 i?2

We are thus led to

1.1 DEFINITION. R is a direction if and only if iϋ is such a non-
vacuous transitive relation that corresponding to each x e dmn R and
each y e dmn ϋ? there is a 2 e dmn i? for which

(#, z)eR and (?/, z)eR .

Evidently the directing mechanisms of Moore-Smith are directions,
but it turns out that even directions are not topologically adequate.1

If R is a direction then clearly for each x e dmn R and each y e dmn R
there is a z e dmn R such that anything which comes after z also
comes after x and after y. We are now on the right track.

1.2 DEFINITION. R is a nm if and only if R is such a non-vacuous
relation that corresponding to each x e dmn R and each ι/ e dmn R there
is a z e dmn iϋ for which

(x, t) e R and (y, t) e R

whenever t is such t h a t (z, t) e R.
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From 1.1 and 1.2 follows

1.3 THEOREM. Every direction is a run.

As we shall indicate, runs are topologically adequate. For that mat-
ter, so are the filter-bases of Cartan, the nets of Kelley, and the syntaxes
of McShane. But among these we do not find such an old friend as the
Moore-Smith direction Rλ.

It is a curious fact that one can come across situations in which the
effect of a direction cannot be duplicated by a filter-base.2 Suppose

R3 = Eα, b[a c b and 6 is a finite set] .

Clearly, Rό is a direction. Moreover, it is a direction which has been put
to use in defining unordered summation. However, no filter-base can do
the work of R3, since in many set theories the family of all finite super-
sets of a given finite set is a class incapable of belonging to anything.3

The runs which first come to mind are directions. However, some
runs are very unlike the directions they generalize. The domain of a
run is merely an indexing set of sign-posts which seem to say, " Beyond
here is far enough." It may be that many things follow such a sign,
post yet no sign-post at all is among them. To savor some possibilities
along this line let us examine briefly two more runs.

Assume T topologizes S and that p e S and check intuitively that

Eβ, x[p 6 β e T and x e β]

is a run which converges to p in the topology T.
Next assume p metrizes S and p e S and check intuitively that

Er, x [0 < r < oo and p(x, p) <| r]

is a run which converges to p in the metric p.
It must be admitted that filter-bases are less intricate than runs.

Moreover, filter-bases handle theoretical limits with less emphasis on
inessentials than any other method known to us. What disturbs us and
others about filter-bases is that in many specific situations, such as limit
by refinement, the filter-bases do not correspond vividly enough to the
limiting concept one pictures. Perhaps it is for this reason that direc-
tions, though inadequate, are still very much with us. We feel that
runs retain the virtues of directions and at the same time remove their
inadequacies.

2 A filter-base is a non-empty family of non-empty sets such that the intersection of
any two of them includes a third.

3 In this present paper we have in mind a set theory similar to that employed by J.L.
Kelley, General Topology, pp. 250 ff. New York, 1953.
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2 Some definitions.

2.1 DEFINITIONS.

1. ~B — The complement of B
2. <rF=Έx(x e β for some β e F)
3. πF = E#(a? e β for every β e F)

2.2 REMARK. Thus cr.F is the union and πF the intersection of all
members of F. If A is the set whose sole member is x, then <?A = # =
7z\A. We assume the integer 0 and the empty set are the same and
notice that σθ = 0 and πθ — the universe.

With vertical and horizontal sections in mind we make the following
definitions.

2.3 DEFINITIONS.

1. vsRx = Έy[(x,y) e R\.
2. hs Ry = Ex[(x, y) e K\.

When R is a run then we sometimes think :

y € vsRx if and only if y comes after x

x e hsRy if and only if x comes before y.

There is no magical significance, as often in analytic geometry, at-
tached to the letters used. Thus we sometimes think :

x e vs Rδ if and only if x comes after δ

or even

x 6 vs Ry if and only if x comes after y.

2.4 DEFINITIONS.

1. *RA — Έy [(a?, y) e R for some x e A]
2. *RA = Έx[{x, y) e R for some y e A]

2.5 DEFINITION, inv R = inverse R = E#, ?/ [(?/, x) e R\.

2.6 DEFINITION. R: S =ΈX,Z[There is a j/ such that (x, y) e Sand
(y, z) € Λ.]

A function is the same as its graph and is hence a special kind of
relation. If / and g are functions, then / : g is that function A such
that h(x) = f(g(x)) for each a?.

2.7 DEFINITION, ret AB = rectangle AB = Ex, y(x e A and yeB).
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3* A few properties of relations*

3.1 THEOREM. // R is a relation and f is a function, then :

1. *J?(A U B) = JRA U
2. A c B implies *RA c
3. *R(A Π B) c *iM Π
4. *i2A =
5. γ(4n
6. *f*fA = A n r n g /
7. *J2+ΛA ID A n dmnΛ.

3.2 THEOREM. // R and S are relations and f is a function, then :
1. vs (R : S)x — *R vs Sx for each x
2. S Π , S A c *S((*SB) Π A)
3. ίn#/A = */((*/B)n4)

4. S ί l */A ^ 0 implies (*fB) ί lA^O.

4# Properties of runs.

4.1 THEOREM. R is a run if and only if R is such a non-vacuous
relation that for each x and y in the domain of R there exists a zin the
domain of R for which vs Rz c vs Rx Π vs Ry.

Accordingly if some vertical section of R is a set belonging to the
universe,3 then the vertical sections form a filter-base theoretically as
useful as R itself. Only in the peripheral situation that every vertical
section of R is a class incapable of belonging to anything are runs more
effective than filter-bases. However, runs do operate on an essentially
different and, we feel, more convenient level.

The passage from a filter-base W to a run R can always be success-
fully accomplished by putting R — Έβ, x(x e β 6 W).

4.2 DEFINITIONS.

1. R runs in A if and only if R is a run and rng R a A.
2. R is eventually in A if and only if R is a run and vs

Rx c A for some x e dmn R.
3. R is frequently in A if and only if R is a run and vs

Rx Π AφO for each a? e άmnR.

4.3 THEOREMS.

1. If R runs in A then R is eventually in A.
2. If R is eventually in A, then R is frequently in A.

4.4 DEFINITIONS.

1. S is a subrun of R if and only if S is a run, R is a run,
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and for each x e dmn R there exists such a y e dmn S that
vs Sy c vs ito.

2. .R runs the same as S if and only if R is a subrun of S
and S is a subrun of R.

We agree that S is a cowm of i2 if and only if there exists such an
A that R is frequently in A and S = R Π Ex, y(y e A).

If £ is a corun of R then S is a subrun of i2. However coruns are
often inadequate in that S may be a subrun of R and yet no corun of
R will run the same as S.

4.5 THEOREMS.

1. If R is a run, then R is a subrun of R.
2. If R" is a subrun of R and R' is a subrun of R, then R"

is a subrun of R.
3. If R is frequently in A and S — R Π E#, y(y e A), then S is a

subrun of R, dmn S = dmn R, and vs Sx = A Π vs Rx for
each x.

4. If R! is a subrun of R and R is eventually in A, then Rf is
eventually in A.

4.6 THEOREMS.

1. If S is a relation and R is frequently in dmn S, then S: R
is a run, dmn (S : R) — dmn R, and vs(£ : R)x — %S vs Rx for
each x.

2. If S is a relation and R is a run, then R is frequently in
dmn S if and only if dmn (S : R) = dmn R.

3. // S is a relation, R' is a subrun of R, and R is frequently
in dmn S, then S : R is a subrun of S : R.

4. If S is a relation and R is eventually in dmn S, then R is a
subrun of (inv S): (S : R).

5. If f is a function and R is eventually in rng /, then
f: (inv / ) : R runs the same as R.

4.7 DEFINITIONS.

1. merger RS = the set of points of the form ((x, y), z), where
x, y and z are such that R and S are runs, (x, z) e R, and
(y, z) e s.

2. R merges with S if and only if R and S are such runs that
vs Rx Π vs Sy φ 0 whenever x e dmn R and y e dmn S.

4.8 THEOREMS.

1. If R and S are runs and V = merger RS, then V is a relation,
dmn V c ret dmn R dmn S, and vs V(x, y) — vs Rx Π vs Sy
whenever (x, y) e dmn V.

2. If R merges with S and V— merger RS, then dmn V —
ret dmn R dmn S, and V is a subrun of both R and S.
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3. If W is a subrun of both R and S, then R and S merge and
W is a subrun of merger RS.

4.9 THEOREM. If f is a function, R is frequently in dmn /, and W
is a subrun of f: R, then there exists such a subrun V of R that W runs
the same asf: V.

Proof. Let V = (inv/): W, let V = merger V'R, and let W =f: V.

Use 4.6.1 to see that

dmn (/: R) — dmn R and dmn F — dmn W.

We complete the proof in three parts by showing that W and W
are subruns of each other.

Part 1. F merges with R, V is a subrun of V and R, W is a run,
and dmn W' = dmn V = ret dmn W dmn R.

Proof. Let x e dmn W and y e dmn R. Since W is a subrun of
f:Rwe have

0 φ vs Wx Π vs(/: R)y = vs Wx Π *fvsRy.

Hence, using 3.2.4, 3.2.1, and 3.1.4, we find that

0 Φ (*/vs Wx) ΓΊ vs Ry = vs Fa? Π vs ify.

Use of 4.6.1 and 4.8.2 completes the proof.

Part 2. I F is a subrun of W.

Proof. Use Part 1, 4.6.3, and 4.6.5 to see that W = / : V is a sub-
run of/: F = / : (inv / ) : W, which runs the same as W.

Part 3. W is a subrun of W.

Proof. Let x e dmn W and y e dmn R. Select #' e dmn TF so
that vs Wx' c vs(/: R)yf and select #" e dmn W so that vs Wx" c
vs TF# Π vs Wx'.
Then

vs W r CZYSWX Π vs(/: #)# = vs Wx Π

which in accordance with 3.2.3 equals

*/((*/ vs Wx) n vsify) = */[vs((inv/): W)x Π vsRy]

= */vs F(α, 2/) = vs W\xy y).

In view of Part 1 the proof is complete.
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4.10. REMARK. Theorems 4.6.1, 4.6.3, and 4.9 show us that under
any properly chosen function /, a run R is mapped into a run S = / : R,
subruns of R are mapped into subruns of S, and any subrun of S runs
the same as the map of some subrun of R.

4.11 DEFINITION, indexrun R = Έx, y[R is a run, x e dmn R,
y € dmn R, and vs Ry c vs Rx\.

4.12 THEOREM. / / R is a run and D = indexrun R, then D is a
direction, dmn D = rng D = dmn iϋ, (a?, x) e D whenever x e dmn Z), αraZ
i2 = 72: D.

4.13 REMARK. According to Theorem 4.12, every run is the com-
position of a relation with a reflexive direction. In fact, every run runs
the same as the composition of a function with a reflexive direction. Sup-
pose R is a run and D is the set of pairs of the form ((x, y), (x\ yf)),
where x, y, xf, and yf are such that (x, y) e R, (x\ y') e R, and vs Rxr c
vs Rx. Let / be such a function that f(x, y) = y whenever (x, y) e dmn
D. It is easy to check that D is a reflexive direction and that R runs
the same as / : D.

In this connection it should be remarked that if (/, D) is a net in
the sense of Kelley (op. cit.) then f:D is a corresponding run. The
above construction gives a method for passing from a run back to a cor-
responding net.

4.14 DEFINITIONS.

1. R is a full run if and only if R is a run which runs the
same as all of its subruns.

2. R is fillable if and only if there exists a full subrun of R.

4.15 THEOREMS.

1. If R is a full run and R is frequently in A, then R is
eventually in A.

Proof. Note that R is a subrun of R Π Ex, y{y e A).
2. R is a full run if and only if for every A, R is either

eventually in A or eventually in ~A.
3. If R is a full run, f is a function, and R is frequently in

dmn /, then f: R is a full run.

Proof. Use 2.
4. If S is a full run which merges with R, then S is a subrun

ofR.

4.16 DEFINITIONS.
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1. N is R nested if and only if R is a relation and either
or y — x(x, y) e R U inv R whenever x and y are in iV.

2. N is nested if and only if either α c β or /5 c α whenever
a and β are in N.

4.17 DEFINITIONS.

1. F is R capped if and only if R is a relation and correspond-
ing to each R nested subfamily N of F there is a 2 e F
such that (#, z) e R whenever x e N.

2. F is capped if and only if corresponding to each nested
subfamily N oί F there is r € .F such that &N c r

We have found quite useful the following inductive variants of Zorn's

4.18 LEMMAS.

1. If R is transitive and F is R capped, and if corresponding to
each x e F~ K there is a y e F for which (x, y) e R <^ inv R
then F Π KφO.

2. If F is capped and if each member of F~ K is a proper
subset of some member of F, then F Π K Φ 0.

4.19 REMARK. In accordance with the terminology used by Kelley
(op. cit.), we agree that a set is a class which is small enough to belong
to the universe.

4.20 THEOREMS.

1. If R is a full run, then R is eventually in some set.

Outline of proof. Otherwise according to 4.15.2 R is eventually in
r^A whenever A is a set. Advantage may be taken of this fact to con-
struct by transfinite induction two classes B and C for which B ft C = 0,
R is frequently in B, and R is frequently in C. In view of 4.15.1 this
is impossible.

2. R is fillable if and only if R is frequently in some set.

Proof. If R is fillable it is easy to check with the help of 1. that
R is frequently in some set. We now assume that R is frequently in
some set A and show that R is fillable.

We agree that sng x is the family whose sole member is x, and that
G n Π H = Er [r = a n β f or some a e G and β e H].

Let B = Eα [a c A and R is frequently in a], let F = ETF[T7 is a
filter-base and W c B], and let K — E IF [for each a a A there exists a
β e W for which either βaaoγβc:A~a. I f i V i s a nested sub-
family of F then : if N = 0 then σN = 0 c sng A e F; if N Φ 0, then
<r N c σ N 6 F. Accordingly F is capped.
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Now suppose W e F ^> K, and select such a set a that β ΓΪ CCBB

and β ~ a Φ 0 whenever β e W. Let W = "^ U (W Π Π sng α) and
check that W e F and that W is a proper subfamily of W. According
to 4.18.2 we conclude that F Π KΦ 0 and select V e F Π K, so that F
is a filter base, ϋ? is frequently in every member of V, and for each a a A
there exists such a β e V that β a a or /? c A ~ α.

Let & = E/3, a? [# 6 j9 6 V] and notice that S is a full run which
merges with R. According to 4.15.4, S is a full subrun of R. This
completes the proof.

4.19 REMARK. The run R3 is not fillable.

5 Topological convergence.

5.1 DEFINITIONS.

1. R clusters about p in the topology T if and only if T is a
topology, p e <rT, and i? is frequently in every T neighbor-
hood of p.

2. R converges to p in the topology T if and only if T is a
topology, p 6 σT, and i? is eventually in every T neighbor-
hood of p.

3. R converges in the topology T if and only if there exists
such a point p that R converges to p in the topology T.

4. nhbdrun pT = the neighborhood run of p in the topology
T = E/9, χ[T is a topology, p e β e 2\ and x e β].

5. nhbdrun' pT — E/9, #[T is a topology, p e β e T,x e β, and

5.2 REMARK. If Γ is a topology, A c σϊ7, and ?? is a point in the
Γ closure of A, then E/9, x(p e β e T and a? € /3 Π A) runs in A and con-
verges to p in the topology Γ. It is possible that no run which runs in
A and converges to p in the topology T can also be a direction. This
can be seen by making use of the topology defined in Problem E on page
77 of Kelley (op. cit.).

5.3 THEOREMS.

1. R clusters about p in the topology T if and only if R merges
with nhbdrun pT.

2. R converges to p in the topology T if and only if R is a
subrun of nhbdrun pT.

As an application of the foregoing we offer the following characteri-
zations of compactness.

5.4 THEOREM. Each of the following is a necessary and sufficient
condition that a topology T be compact.
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1. Whenever R runs in σ T, then for some point p, R clusters
about p in the topology T.

2. Whenever R runs in <?T, then there exists such a subrun Rr

of R that R! converges in the topology T.
3. Whenever R is a full run which runs in &T, then R con-

verges in the topology T.

5.5 REMARK. The Tychonoff theorem,* which assures us that the
topological product of compact topologies is compact, we will now prove
following a well-known pattern. Suppose T is the product topology5 in
question and that R is a full run which runs in σT. Considering any
coordinate, let P be the usual projection which maps o T into the cor-
responding coordinate space. According to 4.15.3 and 5.4.3, P:R is a
full run which converges in the topology of the coordinate space. Conse-
quently R converges coordinatewise and hence converges in the topology5

T.

6* Limits.

6.1 DEFINITIONS.

1. far RxP if and only if R is eventually in ΈxP.
In 1. above we allow " P" to be replaced by an arbitrary formula

such as, for example,

"[y<x<x2]".

2. f(x) tends to p in the topology T as x runs along R if and
only if T is a topology, p e σT, and far Rx(f(x) e β) when-
ever β is a T neighborhood of p.

3. f(x) tends uniquely to p in the topology T as x runs along
R if and only if for every q(p = q if and only if f(x) tends
to q in the topology T as x runs along R).

4. lmt TxRf{x) = the limit in the topology T as x runs along
R of f(x) — πΈp [f(x) tends uniquely to p in the topology
T as x runs along jβ].β

Thus if f(x) tends uniquely to p in the topology T as x runs along
R we know that lmt TxRf(x) = p.

6.2 THEOREM. // T is a topology, p e σT, f is a function, and R
is eventually in the domain of f, then

1. f(x) tends to p in the topology T as x runs along R if and
only if f: R converges to p in the topology T and

2. lmt TxRf(x) = p if and only if f:R converges to p in the

4 See Kelley (op. cit.) p. 143.
5 See Kelley (op. cit.) pp. 88-92,
6 See Remark 2.2.
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topology T, and q = p for every q such that f:R converges
to q in the topology T.

Very elementary but of considerable use is the

6.3 THEOREM. // far Rx(u(x) = v{x)) then lmt TxRu{x) =

lmt TxRv{x).

6.4 REMARK. AS examples of specialized limit notations in which
either the run or the topology or both are suppressed, we give the fol-
lowing definitions. We agree that Jf is the usual topology for the ex-
tended real number system, and that

& — Em, n[m e ω and m 5g n e ω]t

6.5 DEFINITIONS.

1. lnt Tnu(n) = lmt ^~n&u(n)
2. lm x R f(x) = lmt ^~x R f(x)
3. lm x R f(x) = lmt J7~t indexrun R (sup x e (vs Rt) f{x))
4. ]mxRf(x) = lmt ^~t indexrun R (inf x e (vs Rt) f{x))
5. lim x a f(x) = lm a;(nhbdrunr a^~) f(x)
6. lin n n(n) = lnt

6.6 REMARK. In 6.5.1 we have a limit notation for ordinary
sequences. If u is a sequence, T is a topology, and p e σ-ϊ7, then
lnt Γ w w(w) = p if and only if p is the unique point such that u : &
converges to p in the topology T.

We give a few more simple but useful theorems.

6.7 THEOREMS.

1. If δ e dmn R and if far Rx {f(x ^ f(y)} whenever y e vs Rδ,

then — oo <^\mxR f(x) = sup # e vs iϋ<5 /(#) ^ oo.

2. Ifδe dmn Λ α^d i/ /αr i2^{/(^) <: /(?/)} whenever y e vs i25,

— oo <̂  lm a? J? /(^) = inf x e vs Rδ f(x) ^ oo.

From 1. and 2. we infer 3. and 4. below. These results are generali-
zations of the fact that non-decreasing and non-increasing functions have
limits.

3. // far Ry far Rx{f(x) ^f(y)} then

— oo <̂  lm x Rf(x) ^ oo.

4. // far Ry far Rx{f(x) ^ f(y)} then

— oo <: lm x Rf(x) ^ oo,
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6.8 THEOREM. // R is a run and — oo <£ a ^ oo, then

\mxRa = a .

6.9 THEOREM. If A = lmxRu(x) and B = \mxRv(x), then :
1. i / - c o ^ Λ + 5 ^ c x 3 , έ^en 1m x R{u(x) + v(α)} = A + B
2. i / — o o ^ A ^ ^ o o , ί^β^ lm xR{u(x) v(a?)} = A B.

In connection with 6.9 above and 6.10 below it is understood that
oo — oo, 0 oo, and 1/0 are not real numbers.

6.10 THEOREM. If A — \mxRu(x) and — co <ς I/A <£ oo, £&β?z

lma?JB{l/%(a?)} = I/A.

From 4.15.3 and 5.4.3 we infer

6.11 THEOREM. // Rf is a full subrun of R and far

Rx(— oo <ς %(a ) ^ oo), then :

— oo ^ lm x R u(x) ^ lm x R! u(x) ^ lm x R u(x) ^ oo .

If R is fillable, then Theorem 6.11 furnishes us with a generalized
limit which, since it is expressed as an actual limit, automatically enjoys
the properties found in Theorems 6.8, 6.9, and 6.10. In the event u is
bounded, it does not at first glance seem too unreasonable to hope that
a similar generalized limit could be arrived at by some Hahn-Banach
technique. We, however, are inclined to think this impossible.7

We close with an application of limits to integration which expresses
the Lebesgue integral as a genuine limit of Riemann-like sums.

6.12 REMARK. Suppose that ^f is Lebesgue measure and Sβ =
E P [P is a countable disjointed family of non-empty jSf measurable
subsets of the unit interval for which o-P — the unit interval]. We
agree that Q is a refinement of P if and only if every member of Q is
included in some member of P, and agree that ξ is a selector function
if and only if ξ(β) e β whenever β e dmn ξ. Let

R± — EP, ξ[P 6 Sβ and ξ is a selector function whose
domain is a member of 3̂ and a refinement of P ] .

We now have the

THEOREM. [f(x) dx = lm ξ R, Σ β e dmn ξ{f(ξ (β))-£f
Jo

7 See R. P. Agnew and A. P. Morse, Extensions of linear functionals with applica-
tions to limits, integrals, measures, and densities, Ann. Math. Stat. 39, no. 1, January.
1938. Notice especially the first two lines on page 24.
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whenever f is a finite-value Jίf measurable function defined on the unit
interval.

We think it noteworthy that R± runs in the selector functions.
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