MODULUS OF A BOUNDARY COMPONENT

MARTIN JURCHESCU

§1. PRELIMINARIES AND SUMMARY

1.1 Preliminary definitions. Let R be an open Riemann surface,
and let {G,} (»=1,2, --.) be an infinite sequence of subregions of R
such that :

(a) the relative boundary of each G, is compact,

) G, > G, and

© NG, =0.

{Gn}n i;s said to define a boundary component y of R in the sense of
Kerékjart6 [6] and Stoilow [16]. Here two sequences of subregions {G,}
and {G,] are considered to be equivalent and to define the same 7y if
each region G, includes a region G,. That this is a proper equivalence
relation follows immediately.

Let y be a boundary component of R, and let S be a subregion of R.
If there exists a defining sequence {G,} of y with G, =S, for some n,,
we call S a neighborhood of y. Throughout this paper we shall consider
only neighborhoods S of 7 such that the relative boundary of S is a closed
analytic Jordan curve 7,.

By an exhaustion of R, we mean an infinite sequence {E,} (n =
1,2, -.-) of subregions of R as follows (see [16]):

(1) each R, is compact relative to R and the relative boundary /3,
of R, consists of a finite number of closed analytic Jordan curves f3,,,

(2) R,C R,

3) UR,=R, and

(4) each connected component S,; of R — R, is non-compact (rela-
tive to R) and its boundary consists of a single curve f,;.

Each set B — R, is said to be a boundary neighborhood of R. It is
easy to see that, for any boundary component y of R, there exists a
single connected component S,; which is a neighborhood of 7.

A property is said to be a boundary property (respectively a r-pro-
perty) if the following is true. If a Riemann surface R has the property
then every Riemann surface R’ which admits a conformal mapping from
a boundary neighborhood of R’ (a neighborhood of 7/, where 7’ is a boundary
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component of R') onto a boundary neighborhood of R (a neighborhood
of 7) has the property.

Let # be a harmonic function on a subregion S of R. We shall
denote by # the conjugate harmonic function of » and by D(u; S) the
Dirichlet integral of u over S.

1.2. Capacity of a boundary component. Let 7 be a boundary com-
ponent of an open Riemann surface R, P, a point of R, and K,: |z]| <1
a fixed parametric disc on R with z = 0 corresponding to P,. Let {R,}
be an exhaustion of R with P, € R, and let r, denote the curve fS,;
which separates v from P,. This means that 7, separates a neighborhood
of 7 from P,.

We consider the class {¢}, of single-valued functions on R which
satisfy the following conditions:

(1.1) each ¢ is harmonic on R — P, and has the form

t =log [z]| + A(?)

in K,, where A is harmonic and %(0) = 0.

(1.2) S di = 27 and S dt=0, for all n,
Yn Bni#kyn
where 7, and B,; are described in the positive sense with respect to R,.
We further consider the corresponding class {t},, on R,, and we
denote by ¢, the function of this class with ¢, =k, on 7, and ¢, = k.
on P.; # 1., Where k, and k,; are real numbers.

The following theorem due to Sario is proved in [14] (see also Savage
[15]). Let ¢ e {t},, and let

1(t) = lim l,g tdi .
2r Jen

THEOREM 1. The sequence of functions {t,} is compact. Let t, denote
o limit function of {t,}. Then we have the following conclusions :

(1.3) ty € {t}y and, for any t, min I(¢) = I(t,) .
(1.4) I(t) = I(ty) + Dt — ty; B) .
(1.5) kp < kp.. and I(ty) = limk, = k, .

By (1.4), for k, < o, the minimizing function ¢, is unique. ¢, is called
the capacity function of R for r, and the quantity ¢, = ¢ is called the
capacity of y (with respect to K,). Let 2 =az + ---,a + 0, be a new
local parameter in the neighborhood of P, and let ¢’, denote the capaci-
ty of r with respect to this local parameter. It follows, from the de-
finition of the capacity, that
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(1.6) ¢, = laldy.

Hence, the condition ¢, = 0 is independent of the local parameter
which is used in the neighborhood of P,. Using Green’s formula, it is
easy to see that this condition is also independent of P,. A boundary
component y is called weak if it has a capacity ¢, = 0. The class of
Riemann surfaces for which all y are weak is denoted by C,. The
boundary of a Riemann surface R belonging to C, is called absolutely
disconnected [14, 15].

1.3. Summary. Let R be an open Riemann surface, y a boundary
component of R, S a neighborhood of y, and 7, the relative boundary of
S. The present paper deals with a conformal invariant of S which is
denoted by #(S; 7. 1) (or, simply, for fixed S, by g,) and is called the
modulus of S for r, and 7 (the modulus of 7).

In §2 harmonic functions % on S with # = 0 on 7, and satisfying
conditions (2.3) are considered, and a theorem is proved which establishes
the existence of a minimizing function u, = u(z; S; r,, r) for the Dirichlet
integral D(u; S). The modulus is defined by setting g, = D(uy; S). The
notion of a parabolic boundary component is defined by the condition
¢y = o, and a theorem is proved which shows the equivalence of para-
bolicity and weakness.

In §3 measurable conformal metrics are considered. An important
minimal property of the conformal metric p, = |grad u,| corresponding
to a result of Wolontis [17] and Strebel [18] is proved, which connects
py with the extremal length of a certain family of curves on S. As an
application, a characterization of a parabolic boundary component is
obtained in terms of conformal metrics. Another characterization of
a parabolic boundary component is given by means of the divergence of
a modular series >, (E,; 7,-1, Tn)- The sufficient part of this theorem
implies the modular criterion of Savage [15]. A theorem shows the
equivalence of perimeter in Ahlfors and Beurling’s sense and capacity
in Sario’s sense.

Section 4 deals with the class M, of Riemann surfaces for which
all 7 are parabolic in the case of a finite genus. The conformal mapping
properties of u, and ¢, are discussed, and, for planar Riemann surfaces,
the equalities Osy; = M, = Oy, [1, 14] are proved. Finally a theorem is
proved which shows the connection between M, and the class of Riemann
surfaces for which the continuation is topologically unique, or which do
not possess essential continuations.

§2. HArMONIC FUNCTIONS AND MODULUS

2.1. Moduli of a compact subregion. Let S, denote a relatively
compact subregion of a Riemann surface B. We assume that the boundary
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of S, is a set r,U«,, where 7, is a closed analytic Jordan curve and «,
consists of a finite number of closed analytic Jordan curves a,, ---, @y
(k =1). We assign to each ay(? =1, ---, k) as positive orientation the
positive sense with respect to S; and to 7, the sense for which 7, and
«, are homologous.

If w is a harmonic function on S, then we denote the conjugate

period of u around «, by p,(w). This is defined by the integral S du,
where «'y; is any closed Jordan curve on S, such that «, and a":bt are
homologous. If % is harmonic on S, U a, then clearly p(u) =\ du.
The period vector (p,(u), ---, p:(x)) will be denoted by »(u). ot

LEMMA 1. There is a harmonic function wuy = w(z; Sy; 7o, ko) 00 S,
satisfying the following conditions:

@) uy,=0on r, and w, = py = const. on ay(t =1, «--+, k),
() pluy =(1,0,---,0).

(€) 0 < uyz) < pmy on S, and on the boundary curves ty, -+, dy, .

Proof. Denote the harmonic measure of «, with respect to S, by
,;, and consider the function

@.1) u@) = 3 mo?)

where g, are arbitrary real numbers. Clearly, this function is harmonic
on S, =S8, U7 Ua, Setting a;; = p;(w;), we obtain

k
pi(u) = Sw du = jZ @ysHt5 -
0% =
We assert that this linear mapping of the k-dimensional cartesian space
into itself is one-to-one. In fact, from Green’s formula
13

D(u) = D(u; S, = i

=1

k
S ud = >, ppi(u) ,
@y, =

we see that the condition p,(u) = 0, for all 4, implies D(u) = 0, that is
u = 0 (since u = 0 on 7,) and consequently g, = 0, for all 4, which proves
our assertion. Hence we deduce in particular that the above linear
mapping is onto, i.e., for any p, there is a function v = > ¢;w;(2) such
that p(u) = p. Let u, denote the function (1.1) corresponding to p, =
1,0, ---,0). This is clearly the unique bounded harmonic function on
S, satisfying (a) and (Db).

Now denote the maximum and the minimum of %, on the boundary
of S, by M, and m, respectively. From the maximum principle, we have
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my < uy(z) < M, on S,. It follows that ou,/on <0 on each boundary
curve 7(M,) on which uyz) = M,. Here 8/on denotes the derivative in
the direction of the interior normal. Since u, is not constant and ou,/on
is continuous, there exists a subarc of 7(M,) on which ou,/o0n < 0 and
therefore

| dao=:——g O 1 gz) > 0,
v (M0)

Yo o

where y(M,) is described in the positive sense with respect to S,. This
and condition (b) implies that y(M,) coincides necessarily with «, whence
M, = p, and this maximum is attained only on «,. Similarly, it can be
proved that m, = 0 and that this minimum is attained only on 7, This
completes the proof of Lemma 1.

LEMMA 2. The function u, gives the minimum of D(u),
min D(u) = D(u,) ,

in the class of all harmonic functions w on S, with u = 0 on 7, and p(u) =
1,0,-.--,0).

Proof. Clearly, the function u, belongs to the class of admissible
functions and, by Green’s formula,

K
D(u,) = 1_2_:1. HuDi(Uy) = prg < o .

Let u be any admissible function with D(u) < o. Setting u — u, = 4,
we have

D(u) = D(uy) + D(h) + 2D(uy, 1) ,

where D(uy, ) = D(uy, k; S,) is the mixed Dirichlet integral of w, and 4

over S,. We shall show that D(u,, 2) = 0. If » is harmonic on S, then
Green’s formula gives immediately

M%M=S%%=ﬁmmwzo
MO =1

since, for all 4, p(h) = p;(u) — p;(u,) = 0. If the above assumption is not
true, we consider the open set S(e) = S, — U¥., E(¢), where ¢ is a positive
number, sufficiently small, and E,,(¢) is the set (of points of S, for which)
Poi — € = uy(2) = oy, + €. The boundary of Sy(e) consists only of level
lines of u,. On the other hand each level line c(y): uy(z) = ¢ (0 < 2 < pyy,
P FE Py, =1, .-+, k) is a dividing cycle on S, (that is, ¢(#) is homologous
with a sum of «) and therefore y )dﬁ: 0. Hence, Green’s formula
gives again D(u,, 2; Sy(¢)) = 0 and, as ¢ — 0, D(uy, ) = 0. We conclude
finally that
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(2.2) D(u) = D(u,) + D(u — ) ,

which proves our lemma.

The uniqueness of the minimizing function #, is an immediate con-
sequence of (2.2). For, if D(u) = D(u,), we conclude from (2.2) that
D(uw — w,) = 0, that is u = u,, since v — u, =0 on 7,.

The function u, = u(z; S; 7, @) Will be called the extremal function
of S, for 7, and «y. The quantity g, = D(u,) will be called the modulus
of S, for 7, and «, and denoted generally by #(S;; 7o, &)-

2.2. Modulus of a boundary component. Let us consider a boundary
component 7 of an open Riemann surface R, and let S be a given
neighborhood of 7. Let 7, be the relative boundary of S (see 1.1). An
exhaustion of S is a sequence {S,} (n =1,2, ---) of subregions of R
such that: (1) S, is a relatively compact subregion of K and the relative
boundary of S, is a set 7, U «,, where 7, N «, =0 and «, consists of
a finite number of closed analytic Jordan curves «,;, (2) S, C S,.1, (3)

US’ =S, and (4) each connected component of S — S, is non-compact

and its relative boundary consists of a single «,;. We assign to each
a,; a8 positive orientation the positive sense with respect to S, and to
7, the sense for which y, and «, are homologous.

Let 7, be the curve «,; which separates y from y, and let {n}, be
the class of all harmonic functions » on S with « =0 on 7, and

2.3) Sydﬁzl andS dii =0,

“’ni*yn

for all n. It is easy to see, using Green’s formula, that conditions (2.3)
are independent of the particular exhaustion which is used.

THEOREM 2. In {u}, there exists a function u, with the property
min D(u; S) = D(uy; S) .
Moreover, for any u,
2.4) D(u; S) = D(uy; S) + D(u — uy; S) .

Proof. Denote by u, the extremal function of S, for 7, and 7,, and

put p, = D(p,; S,) = value of u, on 7,;#, is the modulus of S, for 7,
and 7,.

Since the restriction of u,., to S, satisfies the condition of Lemma
2 (where S, is replaced by S, and «, by 7,), we have

= D(un; Sn) é D(un+1; Sn) é D(un+1; Sn+1) = /ln+1 .

Similarly, we see that g, < p,, where g, is the greatest lower bound of
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D(u; S) for u in {u},. Thus, lim p, exists and we have

n—>o00

hm Ha é Py
For a fixed N, let s be the bounded harmonic function on S, with
s=0on 7, and s = d on a,, where d is a constant value determined by
ds = 1. From Green’s formula S U, ds — sdu,) = 0 and the boundary

N N
behavior of u, and s, we obtain

o

S u,ds = d ,
‘N

for all » = N, whence min,yu, < d. It follows from Harnack’s principle
that the sequence {u,} is compact. A subsequence, say again {u,},
converges, uniformly on each Sy, to a function «.. Obviously this funec-
tion belongs to {u},, so that

ty = D(uy; S) .

On the other hand, the lower semicontinuity of the Dirichlet integral
gives

D(uy; S) < lim D(u,,; S,) = lim g, .
From the three preceding inequalites we conclude that
D(uy; 8) = lim pt, =

which proves the first assertion of Theorem 2.

Let us now prove equality (2.4), for any « in {u#},. This is evident
if D(u;S) = o. Suppose D(u;S) < o, and put v — u, = k. For any
real number ¢, u, + ¢k € {u},y, and therefore

D(uy + ch) = D(uy) + 2¢D(uy, k) + €D(h) = D(uy) .

Since D(u, + eh) < oo, this is possible only if D(uy, #) = 0, so that, as
e =1, we obtain (2.4).

As in Lemma 2, the uniqueness of the minimizing function %, in
the case g, < « is an immediate consequence of (2.4).

The function u, will be called the extremal function of S for y, and
7 and denoted generally by u(z; S; 7, 7). The conformal invariant p. =
D(uy,, S) will be called the modulus of S for r, and r or, simply, for
fixed S, the modulus of y. It will be denoted generally by u(S; 7, 7).

2.3. Parabolic boundary components. Let 7 be a boundary com-
ponent of an open Riemann surface R. Consider any two neighborhoods
S and S of 7, and denote by 7, and 7/, the relative boundaries of S and
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S’ respectively. Set u(z;S;7,,7) = uy, u(®; S 570, 7) =u'y, (S; 70, 7) =
tyy (S5 70 1) = My

LEMMA 8. The moduli py and p, are simultancously finite or infinite.

Proof. Suppose first S c &', and let {S’,} be an exhaustion of S'.
The regions S, =S N S, give, for n sufficiently large, an exhaustion of S.
Set w(z; 70 7n) = Uy W& S 05 70 Tn) = Way (S0 Tor Tn) = My 1S 03 70y Ta) =
# e
From Green’s formula

[, i, — wdit) =0,
Uy
it follows
Wo— Vo= g w'di, .
10}
Hence, as n — o, we obtain

Wy — ty = S wydiy .
Yo
This proves our lemma in the particular case S c §'.

Let us now consider the general case, and construct a third neigh-
borhood S” of 7 such that S”  c SN S. Let 7”, denote the relative
boundary of S”, and put #(S”; 71", v) = #”y. As before, p, and 4", are
simultaneously finite or infinite. The same is valid for gy and p”, and
consequently for g, and gy, which completes the proof of Lemma 3.

A boundary component y of R is called parabolic if gy, = o and
hyperbolic if py < oo. From Lemma 3, this condition is independent of
the neighborhood S which is used, i.e. the parabolicity of a 7 is a -
property of R. The class of all Riemann surfaces for which all boundary
components are parabolic will be denoted by M,. The property R € M,
(or R¢ M,) is a boundary property of R.

Consider now the ecapacity funection ¢, of B for r with respect to
a fixed parametric disc |z| = 1. Let 1 denote a positive number which
is sufficiently small such that the level line ¢(2): ¢,(2) = loga is a closed
Jordan curve and the set ¢,(z) < logi is compact. The set S(2): ,(2) > logl
is then a neighborhood of y. Put wu(z; S(2); ¢(2), 1) = uy.r, #(SQA); ¢(2), 1) =
Hy,xe

LEMMA 4. If 2 satisfies the above conditions, then

(2.5) ty(z) — log 4 = 2nuy,(2) ,
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and
(2.6) k-y - 10g’2 = 27T/1y,)\ .

Proof. Consider an exhaustion {R,} of R as in 2.1. The regions
S.(2) =R, A S(2) give, for n sufficiently large, an exhaustion of S(2). Set
u(z, Sn(x)y c()‘)y Tn) = Unp,ay /I(Sn()\), C(Z)v Tn) = M n» . — 277““/,)\ = hy t, — 27Tum.- =

h,, where t, is the function on R, defined in 1.2. From Green’s for-
mula, we have

Dt S,(2) = SB hodh, —g hdl = — g i,

c(N)

since A, = const. on 5,; and S dh, =0, for all 8,,. Hence, by the lower
Bni

semicontinuity of the Dirichlet integral,

D; SO)) < —S wdh =0,

since » = const. = log A on ¢(2) and S ()dﬁ = 0. We conclude that A =
c(A

log 4, which proves (2.5).
Now apply Green’s formula on S,(2) to u,, and ¢,. We obtain

kn — 271'/—17,”)\ = S tndﬂ/n,)\ ’
c(A\)
whence, as n — o,
ky — 2mpy, = S ) )t/dﬁw\ =log 4,
c(A
which completes the proof of Lemma 4.

THEOREM 3. A boundary component v of R is parabolic if and only
of it has a vanishing capacity.

Proof. This is evident from Lemmas 3 and 4.

COROLLARY. M, = C..

§3 MoDULUS AND CONFORMAL METRICS

3.1. Definitions. Consider a non-negative function p(z) which is
defined on each parametric disc K,:|z] <1 of a subregion S of R and
satisfies

o) = @) %
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at corresponding points 2,2 of any two overlapping K, and K,.. We
say that p is a conformal metric on S. We define the p-length of any
cycle ¢ (finite set of closed Jordan curves) on S by the lower Darboux
integral (see [4])

ip; c) = SCP(Z)ldzl .

A conformal metric p is said to be measurable on S if its restrie-
tion to any parametric disc is measurable in Lebesgue’s sense. If p is
a measurable conformal metric on S, we define the p-area of S by the
Lebesgue integral

A ) = | pds.

where o, is the Lebesgue measure on K,. A measurable conformal metric
p defined on S is said to be A-bounded on S if A(p;S) < < .

3.2. Extremal conformal metrics. Consider first the relatively com-
pact subregion S, of 2.1. We prove the following

LEMMA 5. The conformal metric p, = |gradu,| gives the minimum of
A(p; Sy,

(3.1) min A(p; S,) = A(pe; So)

in the class of all conformal metrics satisfying I (p; ¢) = 1, for all dividing
cycles ¢ on S, which separate oy from 7,.
Moreover, for any admissible p,

(3.2) Ap; Sy) = A(po; So) + A(p — £35Sy -

Proof. Clearly the conformal metric p, satisfies the condition of the
lemma, and A(py; Sy) = D(uy; S;) = pq < . Let p be any admissible
conformal metric on S; with A(p; S,) < oo.

We evaluate the integral

[, @@,
So
Take w, = u, + 4, for the local parameter on S, so that pyw,) = 1.

Denote the level line uyz) = ¢ (0 < ¢ < py; see Lemma 1) by c(p).
From Fubini’s theorem,

|, re@ir, = " an| otwaz, .
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Here the integral S ) )p(wo)dﬁo exists almost everywhere, for ¢ on the
ol

closed interval [0, #,]. But c(p) is, for any p # g, a dividing cycle on
S, which separates «, from 7, and therefore, almost everywhere,

[ ewdi = @iz peldz1
c(w) c(u) c(u)
From the two preceding relations it follows that

|, ez, =
0
Now put p = p, + (p — p) in A(p; S,); we obtain
Ap; So) = po + Ap — po5 Sy) + ZSS ppodo — 2ty
0

and, from the preceding inequality, we conclude finally that

A(p; So) = to + Ae — po; S)

which proves our lemma.

Clearly the admissible conformal metric which minimizes A(p; S,) is
unique. For, if A(p;S,) = A(py; Sy) = py < ©, we deduce from (3.2)
that A(p — p,; S;) = 0, i.e. p = p, almost everywhere on S,.

Now let y be a boundary of R, and let S be a given neighborhood
of r. Let {p}, denote that class of all measurable conformal metrics
defined on S which satisfy the condition

(3.3) Up;e)z1,

for all dividing cycles ¢ which separate y from 7, If u € {u},, then
obviously |gradu|e {p},. This is valid, in particular, for the conformal
metric py = |gradu,|. The p,rarea of S is A(py; S) = D(uy; S) = py.

THEOREM 4. In {p}, the conformal metric p, = |graduy| gives the
minimum of A(p; S):
(3.4) min A(e; 8) = A(py; S) .
Moreover, for any p,
(3.5) A(p; S) = Apy; S) + Alp — py; S) .

Proof. If A(p; S) = o, (3.5) is evident. Assume now that there
exists in {p}, a conformal metric p which is A-bounded.

Set |gradu,| = p, (see 2.2). Since A(p;S) = A(p; S,), we conclude
from Lemma 5 that
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A(P; S) g Hn + A(P - pann)

As n— o, Fatou’s Lemma gives immediately

Ap; S) =z pv + liminf A(p — p,; Sp) = oy + Alp — p4; S)

which proves (3.5) and the theorem.

As in Lemma 5, the uniqueness of the minimizing conformal metric
py in the case g, < o is an immediate consequence of (3.5).

By Theorem 4, the quantity 1, = g, is equal to the extremal length
of the family of all dividing cycles ¢ on S separating v from 7, ([1], [5]).

3.3. Parabolic boundary components. We return to the condition
p#y = o studied in 2.2.

THEOREM 5. A boundary component v of R is parabolic if and only
of, for any neighborhood S of 7 and for any A-bounded conformal metric
p on S, there exists a dividing cycle separating v from 7y, with an arbit-
rarily small p-length.

Proof. If py < oo, the conformal metric p, is A-bounded and satis-
fies I(p;¢) = 1, for all dividing cycles separating 7 from y,. Conversely,
if there is an A-bounded conformal metric p on S satisfying i(¢; c) =¢ >0,
for all dividing cycles ¢ separating 7y from 7, the conformal metric
p* = (1/¢)p is A-bounded and belongs to {p}y. Therefore, by Theorem 4,
Py < 0.

THEOREM 6. Suppose R is imbedded in a larger Riemann surface R*.
If a boundary component v of R or a part of 7 realized on R* contains
a continuum 1™, then v 18 hyperbolic.

Proof. Let K*:|z*¥| <1 denote a parametric disc on R* for which
K* N y* contains a continuum, say again 7*. Since r* is a boundary
continuum of R, there exists a disc B, K* N R. In K*let Q = aba'd’
be a rectangle such that its side a is completely interior to R, and its
opposite sides b, b have common points with 7*.

Set R — R,=S. We define a conformal metric p, on S by setting
p(¥) =1 o0on QNS and p, = 0 otherwise. Clearly p, is A-bounded and
satisfies I(o); ¢) = I, > 0, where [, is the length of a in K* and c is any
dividing cycle separating y from 7, Hence, by Theorem 5, r is not
parabolic.

Let S be a given neighborhood of a boundary component y of R, and
let {S,} be an exhaustion of S asin 2.2. Let E, denote the connected
component of S, — S,_, whose boundary includes 7,-, and 7,. We as-
sert that
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(3.6) S5 70 7) = gll/l(En; Tn-1s Tn) -

In fact, since the restriction of p, to E, is admissible in Lemma 5 (where
S, is replaced by E,, 7, and «, by 7,-; and 7, respectively), we conclude

o

that A(py; Ey) = p(Eu; Tn-1y 72).  Therefore, u(S;7,7) = > Apy; E,) =

S\ En; Ta-sy 72), Which proves (3.6).
n=1
Similarly, it may be proved that

(3.7 S5 70, 7) = (Ey; 70, 71) + (S5 14, 7)

where S*, is the connected component of S — S, whose relative boundary
is 7.

THEOREM 7. A boundary component y of R is parabolic if and only
of there exists an exhaustion of S for which

(3.8) glp(En; Tn-1y Tu) = .

Proof. By (3.6), the condition (3.8) is sufficient for the parabolicity
of 7.

Conversely, assume that y is parabolic, and let {S,} be a given
exhaustion of S. Since

}t{m (S 7oy Tn) = (S5 70, 7) =

we can choose n, = 1 such that x(S,;7,7,) =1. Let S*, denote the

connected component of S —gnl whose relative boundary is Tn,» S,
is a neighborhood of y. Since 7y is parabolic, we have

N (S, 05 Ty ¥a) = 1S5 Ty 1) = 2,

where S*, , =S*, N S,. Therefore, we can choose n, > n, such that
#(S* s n; Tny,Tny) = 1. Continuing this procedure, we obtain an exhaustion
{S,,k} (k=1,2,..-) of S, which satisfies condition (3.8). Thus Theorem
7 is established.

3.4. Perimeter and capacity. Let |z] < r, be a fixed parametric
disc on R, and let S(r) denote the complement of the disc |z|<r (0<r <
r,) with respect to B. Set x(S(r); |2] =7,7) = py,,. By (3.7), for ' <,

T
’r, + lu’)',r

1
o =-=-1o
Hy, o g
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or

—2npy .. — logr < —2zp,, — logr .

Therefore,

7y = lim L g-uy,s
r—>0 7

exists. According to Ahlfors and Beurling [1], we call =, perimeter of
r with respect to the fixed parametric dics |z| < 7. Let 2 = () =
az + +--,a # 0, be a new local parameter in the neighborhood of the
point P, € R corresponding to z = 0, and let n’, denote the perimeter of
7 with respect to the parametric dise |2'| < 7/,. Set |z| = and |7 |=1".
For corresponding r and ' by 2 = 2(z), we have

lajrl —¢) =7 < lalr(l +¢),

where ¢, is a positive function of » and ¢, — 0, as »— 0. It follows,
from the conformal invariance and the monotony of modulus, that

(3.9) = la| 7y .

We now prove the following.

THEOREM 8. If the perimeter n, and the capacity c, are defined with
respect to the same parametric disc |z| < 1y, then my = cy.

Proof. From (1.6) and (3.9), it is sufficient to prove the required
equality for a particular parametric disc of the point P,. We choose
this parametrie dise, say again |z| =, such that ¢,=log 2| on |z]| <7,
Then, by (2.6), we conclude immediately that

.1
my = lim — e" ¥\ = ¢7*y = ¢y,
A-0

which proves our theorem.

COROLLARY. If P, denote the class of Riemann surfaces defined by
wy = 0, for all 7, then Py = ¢y = M,.

§4. RIEMANN SURFACES OF FINITE GENUS

4.1. Planar subregions. Let 7 be a boundary component of an open
Riemann surface R, and suppose that 7 is hyperbolic and possesses
a neighborhood S which is planar.

Set, as usually, u(z; S; 70, 7) = %y, #(S; 70, 7) = 4, and consider the
function w = F', (2) defined by
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(4.1) F\(2) = exp 2n(uy(2) + iut(2))

Consider an exhaustion {S,} of S as in 2.2. Since S is planar, the
homology group HY(S) is generated from the boundary curves «,; of
Sun=1,2,---), and we conclude by (2.3) that F), is single-valued. We
now prove the following [7]:

THEOREM 9. The function w = F\(z) maps the region S univalently
onto the annulus

AMy 1< lw] < ey

slit along a set of circular arcs around the origin. Here the boundary
circumferences |w| =1 and |w|e*™ correspond to 1, and 1 respectively.
The total area of the slits vanishes.

Proof. We define the function w = Fy(z) on S, by
F(2) = exp 2n(u,(2) + 1u(z)),

where u, = u(z;S,; 7., 7.). As before, we see that F), is single-valued,
for all n.

The function w = F,(2) gives a one-to-one conformal mapping of
S, onto the covering surface S, ., = (S,, w = F,(2)). By the definition of
Un, |Fn(2)| assumes constant values on the boundary curves of S, and
satisfies on S,:

1 < |Fu2)] < ¢ .

It follows that S,, is an unlimited covering surface of the annulus
Ao,#n slit along a finite number of circular arcs. On the other hand,
evaluate the p,area of S,,, where

1 _ 1

_ d
po(w) = o

dw

lw] 2z

logw | .

Since, for w = Fi(2),
1| d dw
W(2) = du, = - |2 = Beloa
pa(?) = |gradu.(z)| o ‘ i logw. po(w)l iz |

we obtain

A(Po; Sn,w) = A(Pn, Sn) = HMu .

This is equal to the p,- area of the annulus Ay, . It follows that the
covering surface S,, consists necessarily of a single sheet, that is the
function F), is univalent. Since F, — F, uniformly on each S, F) is
also univalent.



806 MARTIN JURCHESCU

Let us now consider the image S, = F,(2). Denote the connected
components of the boundary of S, which correspond to 7, and y by 73,
and 7, respectively. Clearly 79, is the circumference |w| = 1. Further,
since g, < p, for all n, S, is included in the annulus 4,, . As before,
the p,area of S, is

Alpy; Su) = A(py; S) = 1y,

since

ol2) = poaw) ) %;i (w = Fy2) .

This is equal to the p,-area of the annulus 4,,. Accordingly, the com-
plements of S, with respect to AMy has a (logarithmic and Euclidian)
vanishing area.

Assume finally that the set A4,, — S, possesses a connected com-
ponent 7*, which is not a point or a circular arc around the origin.
Construct two circumferences |[w|=1r, ¢# =1, 2;r<r, <r,< ™) hav-
ing common points with 7*,, and consider a point w, in the annulus
r < |w| <r,. Let K. be the disc |w — w,| <e. Obviously, for ¢ suf-
ficiently small, the conformal metric p., defined by p. =0 on K. and
pe(w) = p(w) on S, — K., satisfies the condition (3.3), for all dividing
cycles ¢ on S, separating 7, from 7%. This contradicts Theorem 4, since
A(pe; S,) < A(po; Sy) = ¢.. Therefore, the continuum r*, does not exist.
In particular, 7, coincides with |w| = ¢™v. Theorem 9 is completely
proved.

4.2. Planar Riemann surfaces. Suppose now that R itself is planar.
Let |21 <1 be a fixed parametric disc on R, y a hyperbolic boundary
component of R, and ¢, > 0 the capacity of r with respect to |z] < 1.
Consider the function w = T',(z) defined by

T\(z) = cyexp(tv(z) + ?'t—y(z)) .
By Lemma 4 and Theorem 9, we have the following [14]:

THEOREM 10. The function w = T(z) is univalent and single-valued
on R and maps R onto the unit circle slit along a set of circular arcs of
vanishing total area. The boundary component v is mapped into the unit
circumference.

Let SB (SD) be the class of univalent single-valued analytic funec-
tions having a bounded modulus (a finite Dirichlet integral), and let
Og5(Osp) be the class of Riemann surfaces with no functions belonging
to SB(SD).

THEOREM 11. [1, 14] For planar Riemann surfaces,



MODULUS OF A BOUNDARY COMPONENT 807

(4.2) OSB == M-y - OSB .

Proof. Assume first that the planar surface R possesses a hyperbolic
boundary component y. Then, the function 7', of Theorem 10 obviously
belongs to the class SB and SD.

Conversely, suppose that there exists on R a function w = T(z)
which belongs to the class SB or SD. In both cases, the image R, =
T(R) has a finite Euclidian area. Let K.:|w — w,| < ¢ be a dise which
is completely included in R,. Denote by 7, the connected component of
the boundary of R, which separates w =0 from w = o or contains w = o,
The conformal metric p(w) = 1/27¢ is clearly A-boundary on R, — K.
and satisfies condition (8.3), for all dividing cycles on R, — K. which
separate 7, from |w — w,| =¢. We conclude that the boundary com-
ponent 7 of R which corresponds to 7, is hyperbolic.

4.3. Riemann surfaces of finite genus. A continuation of a Riemann
surface R is defined by (1) another Riemann surface R’ and (2) a one-
to-one conformal mapping T:R— R, T(R)C R, [2,4,8,9,11,12]. If
R’ is a compact Riemann surface, the continuation is called compact. If
R' — T(R) contains interior points, the continuation is called essential
[9, 12].

Let R be a Riemann surface of finite genus. We say that the con-
tinuation of R is topologically unique if, for any two compact continua-
tions T,: R—> R, (v=1,2) of R, there exists a topological mapping
h*,=R,> R, h*,(R.) = R, with A*, T(R) = h,,, where h, = T,T,7".
If, in addition, %*,, is always a conformal mapping, the continuation of
R is said to be conformally unique.

Let O,, denote the class of Riemann surfaces with no non-constant
single-valued analytic functions having a finite Dirichlet integral. It is
well known that the continuation of a Riemann surface R of finite genus
is conformally unique if and only if Re O, [1, 8,12]. We now prove
the following

THEOREM 12. For Riemann surfaces of finite genus, the following
conditions are equivalent:

(1) Re M,

(2) The continuation of R is topologically unique.

(8) R does not possess an essential continuation.

Proof. (1)—>(2). If Re M, and T,: R— R, (+=1,2) are compact
continuations of R, then, by Theorem 6, the sets 8, = R, — T\,(R) are
totally disconnected. Set T,7."' = h,. We define a topological mapping
h*, of R, onto R, as follows. First, set A*y(P,) = hu(P,), for any
P, e T(R). Now let P, e 3. Since 5, is totally disconnected, there is
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a fundamental sequence {U,} of neighborhoods of P, such that the open
sets V,=U, N T(R) are connected. Set E(P,)= Nhy(Va.). Clearly this
is a closed and connected set. On the other hand, E(P,) C j, and, since
B, is totally disconnected E(P,) contains a single point P,. Set A*(P) =
P,. 1t is easy to see that Z*, is a topological mapping between R'; and
R,

(2) > (3). If R possesses an essential continuation T,: R~ R';, we
may construct in an evident manner another compact continuation
T,:R— R, of R such that R, and R/, have different genera.

(83) > (1). Assume that R¢ M., i.e. R possesses some boundary
component 7 which is hyperbolic. Let S be a neighborhood of y. We
have ¢, < . By Theorem 9, there is a one-to-one conformal mapping
of S into the finite annulus 1 < |w| < e**v. Let K, denote the set |w| > 1.
Clearly the Riemann surface R’ = (R — S) U K,, defines an essential con-
tinuation of R, and therefore (3) — (1). Thus, Theorem 12 is established

COROLLARY 1. For Riemann surfaces of finite genus, we have
0,,C M,.

Note that by a theorem of Ahlfors and Beurling [1] this inclusion
is strict.

COROLLARY 2. Let Re M, — O, and of finite genus. Then there
ewist two compact continuations T,: R—> R, (v =1, 2) of R such that the
corresponding topogical mapping hi is not a conformal mapping.

In particular, we conclude from Corollary 2 that there exist Pom-
peiu functions which are univalent (see [3], [10], and [16]).
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