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§1. PRELIMINARIES AND SUMMARY

1.1 Preliminary definitions. Let R be an open Riemann surface,
and let {Gn} (n — 1, 2, •) be an infinite sequence of subregions of R
such t h a t :

(a) the relative boundary of each Gn is compact,
(b) Gn z> Gn+1, and

(c) nGn = o.
W - l

{Gn} is said to define a boundary component γ of R in the sense of
Kerekjartό [6] and Stoilow [16]. Here two sequences of subregions {Gn}
and {G'n) are considered to be equivalent and to define the same γ if
each region Gn includes a region G'm. That this is a proper equivalence
relation follows immediately.

Let r be a boundary component of R, and let S be a subregion of R.
If there exists a defining sequence {Gn} of γ with Gnΰ = S, for some n0,
we call S SL neighborhood of γ. Throughout this paper we shall consider
only neighborhoods S of γ such that the relative boundary of £ is a closed
analytic Jordan curve γQm

By an exhaustion of i?, we mean an infinite sequence {Rn} (n —
1,2, •••) of subregions of R as follows (see [16]):

(1) each Rn is compact relative to R and the relative boundary βn

of Rn consists of a finite number of closed analytic Jordan curves βnt,
(2) RnaRn+1,

(3) u Rn = R, and

(4) each connected component Sni of R — Rn is non-compact (rela-
tive to R) and its boundary consists of a single curve βni.

Each set R — Rn is said to be a boundary neighborhood of i2. It is
easy to see that, for any boundary component γ of R, there exists a
single connected component Snί which is a neighborhood of γ.

A property is said to be a boundary property (respectively a γ-pro-
perty) if the following is true. If a Riemann surface R has the property
then every Riemann surface R which admits a conformal mapping from
a boundary neighborhood of R (a neighborhood of γ', where f is a boundary
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component of Rf) onto a boundary neighborhood of R (a neighborhood
of γ) has the property.

Let u be a harmonic function on a subregion S of R. We shall
denote by ΰ the conjugate harmonic function of u and by D(u S) the
Dirichlet integral of u over £.

1.2. Capacity of a boundary component. Let γ be a boundary com-
ponent of an open Riemann surface R, P o a point of R, and ifz: | z | ^ 1
a fixed parametric disc on R with 2? = 0 corresponding to Po. Let {Rn}
be an exhaustion of R with Po 6 Rlf and let rw denote the curve βni

which separates γ from Po. This means that γn separates a neighborhood
of γ from Po.

We consider the class {t}y of single-valued functions on R which
satisfy the following conditions:
(1.1) each t is harmonic on R — Po and has the form

ί = log M + λ(*)

in Kzf where h is harmonic and h(0) — 0.

(1.2) \ di = 2π and ( dί = 0 , for all n ,
J Ίn J βni^yn

where rw and j8ni are described in the positive sense with respect to Rn.
We further consider the corresponding class {t}yn on Rn, and we

denote by tn the function of this class with tn = kn on γn and tn = fewi

on j8n4 ^ r«» where kn and A:wi are real numbers.
The following theorem due to Sario is proved in [14] (see also Savage

[15]). Let t e {t}y, and let

I(t) = lim ί [ tdt .
2π Jβn

THEOREM 1. The sequence of functions {tn} is compact. Let ty denote
a limit function of {tn}. Then we have the following conclusions :

(1.3) ty 6 {t}y and, for any t, min I(t) = I(ty) .

(1.4) I(t) = I(ty) + D(t-ty;R).

(1.5) kn ^ kn+1 and I(ty) = lim kn = ky.

By (1.4), for ky < oo, the minimizing function ί7 is unique. ty is called
the capacity function of i2 for γ, and the quantity cy = e~ky is called the
capacity of 7- (with respect to Kz). Let ^ = az + , a Φ 0, be a new
local parameter in the neighborhood of Po, and let c'Ί denote the capaci-
ty of γ with respect to this local parameter. It follows, from the de-
finition of the capacity, that
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(1.6) cy=\a\c'y .

Hence, the condition cΫ = 0 is independent of the local parameter
which is used in the neighborhood of Po. Using Green's formula, it is
easy to see that this condition is also independent of Po. A boundary
component γ is called weak if it has a capacity cy = 0. The class of
Riemann surfaces for which all γ are weak is denoted by Cy. The
boundary of a Riemann surface R belonging to Cy is called absolutely
disconnected [14, 15].

1.3. Summary. Let R be an open Riemann surface, γ a boundary
component of R, S a neighborhood of γ, and γQ the relative boundary of
S. The present paper deals with a conformal invariant of S which is
denoted by μ(S;γQiγ) (or, simply, for fixed S, by μΊ) and is called the
modulus of S for γ0 and γ (the modulus of γ).

In §2 harmonic functions u on S with u = 0 on γ0 and satisfying
conditions (2.3) are considered, and a theorem is proved which establishes
the existence of a minimizing function uy = u(z; S; γQ, ΐ) for the Dirichlet
integral D(u; S). The modulus is defined by setting μy = D(uy; S). The
notion of a parabolic boundary component is defined by the condition
μΊ = CXD , and a theorem is proved which shows the equivalence of para-
bolicity and weakness.

In §3 measurable conformal metrics are considered. An important
minimal property of the conformal metric py = | grad uΊ \ corresponding
to a result of Wolontis [17] and Strebel [18] is proved, which connects
μΊ with the extremal length of a certain family of curves on S. As an
application, a characterization of a parabolic boundary component is
obtained in terms of conformal metrics. Another characterization of
a parabolic boundary component is given by means of the divergence of
a modular series Σi"(^») ϊn-u 7n)> The sufficient part of this theorem
implies the modular criterion of Savage [15]. A theorem shows the
equivalence of perimeter in Ahlfors and Beurling's sense and capacity
in Sario's sense.

Section 4 deals with the class My of Riemann surfaces for which
all r are parabolic in the case of a finite genus. The conformal mapping
properties of uΊ and ty are discussed, and, for planar Riemann surfaces,
the equalities OSB — My = OSD [1, 14] are proved. Finally a theorem is
proved which shows the connection between My and the class of Riemann
surfaces for which the continuation is topologically unique, or which do
not possess essential continuations.

§2. HARMONIC FUNCTIONS AND MODULUS

2.1. Moduli of a compact subregion. Let So denote a relatively
compact subregion of a Riemann surface R. We assume that the boundary
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of So is a set γ0 U aQ, where γ0 is a closed analytic Jordan curve and a0

consists of a finite number of closed analytic Jordan curves α01, , aok

(k ^> 1). We assign to each aQί(i — 1, •••, k) as positive orientation the
positive sense with respect to SQ and to γ0 the sense for which γQ and
a0 are homologous.

If u is a harmonic function on So then we denote the conjugate

period of u around aoi by Pι(u). This is defined by the integral I dΰ,

where <x'oi is any closed Jordan curve on So such that aQi and α'oί are

homologous. If u is harmonic on So U aQi then clearly p^u) = I dΰ.

The period vector {p^u), •••,?>*(%)) will be denoted by p(^)

LEMMA 1. T/zere is a harmonic function uQ — u(z; SQ) γQf kQ1) on SQ

satisfying the following conditions:

(a) u0 — 0 on γQ and u0 = μQi — const, on aQi(i = 1, , &) ,

(b) p(u o) = ( l , O > . . . , O ) .

(c) 0 < uo(z) < μ01 on So and on the boundary curves am , aQJ6 .

Proof. Denote the harmonic measure of aQί with respect to SQ by
ωif and consider the function

(2.1) u(z) = Σ W . W ,
i = l

where //4 are arbitrary real numbers. Clearly, this function is harmonic

on So = SQ U ΓO U oίQ. Setting atj — v^ω^), we obtain

du = Σ

We assert that this linear mapping of the fc-dimensional cartesian space
into itself is one-to-one. In fact, from Green's formula

D{μ) = D(u;SQ=Σx[ udu =

we see that the condition pέ(%) = 0, for all i, implies D(u) = 0, that is
u Ξ= 0 (since % = 0on fo) and consequently ^ t = 0, for all i, which proves
our assertion. Hence we deduce in particular that the above linear
mapping is onto, i.e., for any p, there is a function u = ΣΛiωi(z) such
that p(u) = p. Let u0 denote the function (1.1) corresponding to p0 =
(1,0, « ,0). This is clearly the unique bounded harmonic function on
So satisfying (a) and (b).

Now denote the maximum and the minimum of u0 on the boundary
of So by MQ and m0 respectively. From the maximum principle, we have
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mQ < uQ(z) < MQ on So. It follows that dujdn ^ 0 on each boundary
curve ϊ(MQ) on which uo(z) — MQ. Here djdn denotes the derivative in
the direction of the interior normal. Since uQ is not constant and duo/dn
is continuous, there exists a subarc of r(Λf0) on which duoldn < 0 and
therefore

f dΰ
o
=-[

dn

where τ(M0) is described in the positive sense with respect to SQ. This
and condition (b) implies that γ(MQ) coincides necessarily with aQ1, whence
Mo = μQ1 and this maximum is attained only on aQ1. Similarly, it can be
proved that m0 = 0 and that this minimum is attained only on γQ This
completes the proof of Lemma 1.

LEMMA 2. The function uQ gives the minimum of D{u),

min D(u) = D(uQ) ,

in the class of all harmonic functions u on So with u = 0 on γ0 and p(u) —
(1,0, . . . , 0 ) .

Proof Clearly, the function uQ belongs to the class of admissible
functions and, by Green's formula,

k

D(uQ) — Σ PoiPi(uo) — μ*ι < °° .

Let u be any admissible function with D(u) < oo. Setting u — uQ = h,
we have

D(u) - D(u0) + D(h) + 2D(uQ, h) ,

where D(u0, h) = D(u0, h So) is the mixed Dirichlet integral of u0 and h

over So. We shall show that D(uQ, h) = 0. lΐ u is harmonic on SQ then

Green's formula gives immediately

C _ fc
D(uQ, h) = I uodh = Σ A)t Vi(h) = 0

since, for all i, p4(A) = ^(^) — 2?i(%0) = 0. If the above assumption is not
true, we consider the open set SQ(ε) — So — U Li EQi(e), where ε is a positive
number, sufficiently small, and Ea(ε) is the set (of points of SQ for which)
μQi — e ^ ^o(̂ ) ^ μQί + ε. The boundary of >S0(ε) consists only of level
lines of uQ. On the other hand each level line c(μ): uo(z) = μ (0 < ^ < μ01,
/i ^ ^ 0 O ί = 1, . . . , k) is a dividing cycle on So (that is, c(/̂ ) is homologous

with a sum of aQi) and therefore \ dh = 0. Hence, Green's formula
Jc(μ)

gives again JD(^0, /̂  ^(ε)) — 0 and, as ε -> 0, D(Wo, A) = 0. We conclude
finally that
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(2.2) D(u) = D(u0) + D(u - u0) ,

which proves our lemma.
The uniqueness of the minimizing function u0 is an immediate con-

sequence of (2.2). For, if D(u) = D(u0), we conclude from (2.2) that
D(u — u0) = 0, that is u = u0, since u — u0 — 0 on γ0.

The function u0 = w(#; £ ; TO, α01) will be called the extremal function
of SQ for 7Ό and α01. The quantity //01 = Z)(^o) will be called the modulus
of £0 for To and α01 and denoted generally by μ(SQ; γQ9 aQ1).

2.2. Modulus of a boundary component. Let us consider a boundary
component γ of an open Riemann surface R, and let £ be a given
neighborhood of γ. Let γ0 be the relative boundary of S (see 1.1). An
exhaustion of S is a sequence {Sn} (n = 1, 2, •••) of subregions of i?
such that : (1) Sn is a relatively compact subregion of R and the relative
boundary of Sn is a set γ0 U <*w, where Γo Π <Λ;W = 0 and an consists of
a finite number of closed analytic Jordan curves ani, (2) Sn c Sn+1, (3)

\J Sn = S, and (4) each connected component of S — Sn is non-compact
n+l

and its relative boundary consists of a single α n ί . We assign to each
ani as positive orientation the positive sense with respect to Sn and to
γQ the sense for which γQ and an are homologous.

Let γn be the curve ani which separates γ from γQ, and let {n}y be
the class of all harmonic functions u on S with w = 0 on γ0 and

(2.3) ( dΰ = 1 and ( dS = 0 ,

for all ?z. It is easy to see, using Green's formula, that conditions (2.3)
are independent of the particular exhaustion which is used.

THEOREM 2. In {u}y there exists a function uy with the property

min D(u;S) = D(uy; S) .

Moreover, for any u,

(2.4) D(u; S) = D{uy; S) + D(u - uy; S) .

Proof. Denote by un the extremal function of Sn for γ0 and γn9 and
put μn = D(μn Sn) — value of un on γn μn is the modulus of Sn for γ0

and rn-
Since the restriction of un+1 to Sn satisfies the condition of Lemma

2 (where So is replaced by Sn and α01 by γn), we have

^ n = D(un;Sn) ^ D(un+ι;Sn) ^ D(un+1; Sn+1) = /^n+1 .

Similarly, we see that ^ n ^ / γ̂, where />ίv is the greatest lower bound of
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D(u;S) for u in {u}y. Thus, limμw exists and we have

lim μn ^ μΊ .

For a fixed N, let s be the bounded harmonic function on SN with
s = 0 on TO and s = d on α^, where d is a constant value determined by

I ds = 1. From Green's formula \ unds — sdΰn) = 0 and the boundary

behavior of un and s, we obtain

I unds = d ,

for all n ^ N, whence mmΛNun ^ eZ. It follows from Harnack's principle
that the sequence {un} is compact. A subsequence, say again {un}f

converges, uniformly on each SNi to a function u- . Obviously this func-
tion belongs to {u}y, so that

μΊ ^ D(uy S) .

On the other hand, the lower semicontinuity of the Dirichlet integral
gives

D(uy S) ^ lim D(un Sn) = lim ^ .

From the three preceding inequalites we conclude that

D(uy S) = lim μn = μΊ ,

which proves the first assertion of Theorem 2.
Let us now prove equality (2.4), for any u in {u}y. This is evident

if D(u S) — co. Suppose D(^ S) < oo, and put u — uy = h. For any
real number ε, uy + eh e {u}y, and therefore

J9(^7 + εΛ) = D(uy) + 2εZ}( γ̂, Λ) + ε2D(h) ^ D(%y) .

Since D(uγ + eh) < oo, this is possible only if D(%v, h) = 0, so that, as
ε = 1, we obtain (2.4).

As in Lemma 2, the uniqueness of the minimizing function nΊ in
the case μ, < oo is an immediate consequence of (2.4).

The function uy will be called the extremal function of S for f0 and
γ and denoted generally by u(z; S; γQ, γ). The conformal invariant μ, —
D(uγ,S) will be called the modulus of S for r0 and γ or, simply, for
fixed S, the modulus of ?\ It will be denoted generally by μ(S;γ{],γ).

2.3. Parabolic boundary components. Let γ be a boundary com-
ponent of an open Riemann surface R. Consider any two neighborhoods
5 and Sf of r, and denote by γ0 and y\ the relative boundaries of S and
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S' respectively. Set u(z S; γ0, γ) = uy, u(z S' fQ9 γ) = u'Ύ, μ(S; γ0, γ) =

' rΌ, r) = ^Ύ

LEMMA 3. 7%0 moduli μΊ and μ'Ί are simultaneously finite or infinite.

Proof. Suppose first S c S', and let {S'n} be an exhaustion of S'.
The regions Sn = S Π £>'„ give, for w sufficiently large, an exhaustion of S.
Set u(z 7Ό, r«) = un, u(z Sf

n f0, γn) = ^ r

w, ^(Sw r0, rn) = /"», μ(S'n rΌ» Γn) =

From Green's formula

I (u'ndΰn - wwcZw'w) = 0

it follows

μ'n - μn = I %'»d%«.

Hence, as w —> oo, we obtain

This proves our lemma in the particular case S a S\
Let us now consider the general case, and construct a third neigh-

borhood S" of γ such that S" c S Π Sr. Let r"0 denote the relative
boundary of S", and put μ(S" r"o, r) = μ"v As before, ^ γ and μ"Ί are
simultaneously finite or infinite. The same is valid for μ'y and μ"Ί and
consequently for μΊ and /irγ, which completes the proof of Lemma 3.

A boundary component γ of R is called parabolic if μΊ = oo and
hyperbolic if μγ < oo. From Lemma 3, this condition is independent of
the neighborhood S which is used, i.e. the parabolicity of a r is a r-
property of R. The class of all Riemann surfaces for which all boundary
components are parabolic will be denoted by My. The property R e My

(or R $ My) is a boundary property of R.
Consider now the capacity function ty of R for γ with respect to

a fixed parametric disc | s | <£ 1. Let λ denote a positive number which
is sufficiently small such that the level line c(λ): ty(z) = logΛ is a closed
Jordan curve and the set tΊ(z) <̂  logΛ is compact. The set S(λ): tΊ(z) > logΛ
is then a neighborhood of γ. Put u(z S(λ) c(λ), γ) = %Yiλ, μ(S(/l) c(^), r) =

LEMMA 4. /f λ satisfies the above conditions, then

(2.5) ty(z) - lOg λ =
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and

(2.6) ky - \θgλ = 2πμyΛ .

Proof. Consider an exhaustion {Rn} of R as in 2.1. The regions
Sn(λ) = Rn Λ S(λ) give, for w sufficiently large, an exhaustion of S(λ). Set
u{z Sn(Λ) c(λ), γn) = %Wιλ, μ(Sn(Λ) c(λ), γn) = / ,̂λ, ί, - 2τmγ,λ = h,tn- 2πunπ =
&n, where ίw is the function on i2ro defined in 1.2. From Green's for-
mula, we have

D(K Sn(t)) = \ hndhn — I hndh = — I hndhn ,
)βn Jc(λ) JcCλ)

since An = const, on βni and \ dAn = 0, for all βni. Hence, by the lower

semicontinuity of the Dirichlet integral,

c(λ)

since h — const. — log λ on c(λ) and \ dh = 0. We conclude that & Ξ=
Jc(λ)

log/ί, which proves (2.5).
Now apply Green's formula on Sn(λ) to unΛ and tn. We obtain

fcn - 2πμnΛ = I ίndSnlλ ,
JcCλ)

w h e n c e , a s n -> oo,

fcγ — 27Γ/iγ)λ = I tΫdUytλ = log Λ ,
Jc(λ)

which completes the proof of Lemma 4.

THEOREM 3. A boundary component γ of R is parabolic if and only
if it has a vanishing capacity.

Proof. This is evident from Lemmas 3 and 4.

COROLLARY. My = C .

§3 MODULUS AND CONFORMAL METRICS

3.1. Definitions. Consider a non-negative function p(z) which is
defined on each parametric disc Kz\ \z\ ̂  1 of a subregion S of R and
satisfies

dz
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at corresponding points z, zr of any two overlapping Kz and Kz,. We
say that p is a conformal metric on S. We define the ^-length of any
cycle c (finite set of closed Jordan curves) on S by the lower Darboux
integral (see [4])

KP C) = I p(z)\dz\.

A conformal metric p is said to be measurable on S if its restric-
tion to any parametric disc is measurable in Lebesgue's sense. If p is
a measurable conformal metric on S, we define the p-area of S by the
Lebesgue integral

A(p;S)=\ P\z)dσz,

where σz is the Lebesgue measure on Kz. A measurable conformal metric
p defined on S is said to be A-bounded on S if A(p S) < oo .

3.2. Extremal conformal metrics. Consider first the relatively com-
pact subregion So of 2.1. We prove the following

LEMMA 5. The conformal metric p0 = |gradwo| gives the minimum of
A(P;S0),

(3.1) mm A(p; So) = A(po;So) ,

in the class of all conformal metrics satisfying I (p c) I> 1, for all dividing
cycles c on SQ which separate a01 from γQ.

Moreover, for any admissible p,

(3.2) A(p SQ) > A(Po SQ) + A{P - Po So) .

Proof. Clearly the conformal metric p0 satisfies the condition of the
lemma, and A(p0; So) = D(uQ; SQ) = μQ1 < oo. Let p be any admissible
conformal metric on Sϋ with A(p So) < oo.

We evaluate the integral

Take wQ = u0 + iΰ0 for the local parameter on So, so that pQ(w0) = 1.
Denote the level line uQ(z) = μ (0 ̂  μ ^ //01; see Lemma 1) by
From Fubini's theorem,

I p{z)plz)dσz = Γ 0 1 φ 1 p{wQ)du o .
J S 0 JO JcCμ)
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Here the integral \ p(wo)duQ exists almost everywhere, for μ on the

closed interval [0, μ01]. But c(μ) is, for any μ φ μoi, a dividing cycle on
So which separates a01 from γ0 and therefore, almost everywhere,

f P(wQ)dU0 = \ p(z) \ d z \ ^ \ P(z) \ d z \ ^ l
Jc(μ) Jc(μ) JcQ/J

From the two preceding relations it follows that

1 P(z)po(z)dσ-β ^ An .

Now put p = p0 + (p — Po) in A(p So) we obtain

A(p; So) = μ01 + A(p - po; So) + 21 ppodσ - 2//01

and, from the preceding inequality, we conclude finally that

A(p So) ^ ^ 0 1 + A(p - po; So) ,

which proves our lemma.

Clearly the admissible conf ormal metric which minimizes A(p SQ) is
unique. For, if A(p; So) = A(p0; So) = μQ1 < c», we deduce from (3.2)
that A(/? — pQ; SQ) = 0, i.e. p = p0 almost everywhere on SO.

Now let γ be a boundary of R, and let S be a given neighborhood
of γ. Let {joj γ denote that class of all measurable conf ormal metrics
defined on S which satisfy the condition

(3.3) l ( P ; c ) ^ l ,

for all dividing cycles c which separate γ from rυ. If it e {u}Ίy then
obviously |gradw|e {p}y. This is valid, in particular, for the conf ormal
metric pΊ = [grad^l. The pγ-area of S is A(py; S) = D(^ γ ; S) — /iY.

THEOREM 4. In {p}y the con formal metric py — |grad%| gives the
minimum of A(p; S):

(3.4)

Moreover, for any p,

(3.5) A(p S) ^ A(Py S) + A(P - Py S) .

Proof. If A(/>;S)= oo, (3.5) is evident. Assume now that there
exists in {p}y SL conf ormal metric p which is Λ-bounded.

Set |grad^w | = pn (see 2.2). Since A(p; S) ^ A(p; Sn), we conclude
from Lemma 5 that
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As n-+ oo, Fatou's Lemma gives immediately

A(p; S)^μy + lim inf A(p - Pn; Sn) ^ μΊ + A ^ - ^ S) ,

which proves (3.5) and the theorem.
As in Lemma 5, the uniqueness of the minimizing conformal metric

py in the case μi < oo is an immediate consequence of (3.5).
By Theorem 4, the quantity λΊ = μf1 is equal to the extremal length

of the family of all dividing cycles c on S separating γ from γ0 ([1], [5]).

3.3. Parabolic boundary components. We return to the condition
μΊ = oo studied in 2.2.

THEOREM 5. A boundary component γ of R is parabolic if and only
if, for any neighborhood S of γ and for any A-bounded conformal metric
p on S, there exists a dividing cycle separating γ from γ0 with an arbit-
rarily small p-length.

Proof. If μΊ < oo, the conformal metric pΫ is A-bounded and satis-
fies l(p; c) ;> 1, for all dividing cycles separating γ from γ0. Conversely,
if there is an A-bounded conformal metric p on S satisfying l(p c) ̂  ε > 0,
for all dividing cycles c separating γ from γ0, the conformal metric
JO* = (l/ε)/> is A-bounded and belongs to {p}y. Therefore, by Theorem 4,
μΊ < oo.

THEOREM 6. Suppose R is imbedded in a larger Riemann surface i2*.
// a boundary component γ of R or a part of γ realized on R* contains
a continuum 7**, then γ is hyperbolic.

Proof. Let i£* : |z*| ^ 1 denote a parametric disc on R* for which

J5L* Π r* contains a continuum, say again 7-*. Since 7-* is a boundary

continuum of R, there exists a disc iϋ0 c K* Π iϋ. In if* let Q = αδα'δ'

be a rectangle such that its side a is completely interior to Ro and its

opposite sides b, V have common points with 7-*.

Set R — RQ = S. We define a conformal metric p0 on S by setting
pQ(z*) — 1 on Q Π S and #, = 0 otherwise. Clearly p0 is A-bounded and
satisfies l(pQ; c)^lQ> 0, where lQ is the length of a in if* and c is any
dividing cycle separating γ from TV Hence, by Theorem 5, γ is not
parabolic.

Let S be a given neighborhood of a boundary component 7- of R, and
let {Sw} be an exhaustion of S as in 2.2. Let En denote the connected
component of Sn — Sn^ whose boundary includes γn^ and γn. We as-
sert that
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(3.6) μ(S; γ0, γ) ^ Σ/"(#»; r»-i, r») .

In fact, since the restriction of pΊ to Z£w is admissible in Lemma 5 (where
So is replaced by En, γQ and a01 by τ-w_i and γn respectively), we conclude

CO

that A(py; En) ^ μ(En; γn-i, Tn) Therefore, μ(S; γQ, ϊ) ̂  Σ A(py; En) ^
w = i

oo

wϊΓw-i>Γw)» which proves (3.6).

Similarly, it may be proved that

(3.7) μ(S; TO, r) ^ M^i; r0, n) + μ(S\; γlf r),

where S\ is the connected component of S — S1 whose relative boundary

is ri.

THEOREM 7. A boundary component γ of R is parabolic if and only
if there exists an exhaustion of S for which

(3.8) ΣΛ;r,-i,r.)= °° .
W = l

Proof. By (3.6), the condition (3.8) is sufficient for the parabolicity
of γ.

Conversely, assume that γ is parabolic, and let {Sn} be a given
exhaustion of S. Since

lim μ(£n; γQ, γn) =

we can choose nL ^ 1 such that ;"(£„; TΌ> ϊn) ^ l Let AS*WI denote the

connected component of S — Sni whose relative boundary is γni. S*ni

is a neighborhood of γ. Since γ is parabolic, we have

lim μ(S\ n; γn, γn) = μ(S\; γnχJ r) = °° ,
W-» oo

where S*Ui>n — S*ni Π Sw. Therefore, we can choose n2 > nt such that
*ni,n2\ ϊnvϊn) ^ 1- Continuing this procedure, we obtain an exhaustion

({SnJ (k — 1, 2, •) of S, which satisfies condition (3.8). Thus Theorem
7 is established.

3.4. Perimeter and capacity. Let \z\ fg r0 be a fixed parametric
disc on JR, and let S(r) denote the complement of the disc | z \ ̂  r (0 < r ̂
r0) with respect to R. Set ^(S(r) \z\ = r, r) = ^v,r. By (3.7), for r ' < r,
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or

— 2πμy>r, — l o g r ' ^ —2πμyir — logr .

Therefore,

πy = lim — β-^v.r
r->0 7*

exists. According to Ahlfors and Beurling [1], we call πy perimeter of
γ with respect to the fixed parametric dies \z\ ̂  r0. Let s' = λ(z) —
az + , α Φ 0, be a new local parameter in the neighborhood of the
point Poe R corresponding to 2 = 0, and let πy denote the perimeter of
γ with respect to the parametric disc \z'\ ̂  r'o. Set \z\ = r and \z>\ — rr.
For corresponding r and r' by ^ = /ί(^), we have

where er is a positive function of r and εr -> 0, as r -» 0. It follows,
from the conformal in variance and the monotony of modulus, that

(3.9) πy =\a\π'y .

We now prove the following.

THEOREM 8. // the perimeter πy and the capacity cr are defined with
respect to the same parametric disc \z\ :£ rQ, then πy — cy.

Proof. From (1.6) and (3.9), it is sufficient to prove the required
equality for a particular parametric disc of the point Po. We choose
this parametric disc, say again \z\>,r09 such that ty = \og\z\ on | ^ | ^ r 0 .
Then, by (2.6), we conclude immediately that

πy = l i m — β"27ίμv»λ = β"fcv = cy ,

which proves our theorem.

COROLLARY. If Py denote the class of Riemann surfaces defined by
πΊ — 0, for all γf then Py = cy = My.

§ 4. RIEMANN SURFACES OF FINITE GENUS

4.1. Planar subregions. Let γ be a boundary component of an open
Riemann surface R, and suppose that γ is hyperbolic and possesses
a neighborhood S which is planar.

Set, as usually, u(z; S; γύ, γ) — uy, μ(S; γQ, γ) — μy, and consider the
function w = Fy (z) defined by
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(4.1) Fy(z) = exp 2π(uy(z) + iuy(z))

Consider an exhaustion {Sn} of £ as in 2.2. Since S is planar, the
homology group H^S) is generated from the boundary curves ani of
Sn(n = 1, 2, •), and we conclude by (2.3) that Fy is single-valued. We
now prove the following [7]:

THEOREM 9. The function w = Fy(z) maps the region S univalently
onto the annulus

slit along a set of circular arcs around the origin. Here the boundary
circumferences \w\ = 1 and \w\e2icιλy correspond to γ0 and γ respectively.
The total area of the slits vanishes.

Proof. We define the function w = Fn(z) on Sn by

Fn(z) = exp 2π{un(z) + iu(z)),

where un — u(z; Sn; γϋJ γn). As before, we see that Fn is single-valued,
for all n.

The function w — Fn(z) gives a one-to-one conformal mapping of
Sn onto the covering surface Sn,w = (Sn9w = Fn(z)). By the definition of
un> \Fn(z)\ assumes constant values on the boundary curves of Sn and
satisfies on Sn:

It follows that SntW is an unlimited covering surface of the annulus
AQφ slit along a finite number of circular arcs. On the other hand,
evaluate the ^-area of SnιW, where

2π\w\ 2π
-— logw
dw

Since, for w = Fn(z),

pn(z) = \gradun(z)\ = —- -— logw
dz dz

we obtain

; Sn>w) = A(pn; Sn) =

This is equal to the pQ- area of the annulus AQ^ . It follows that the
covering surface Sn>w consists necessarily of a single sheet, that is the
function Fn is univalent. Since Fn ~> FΊ uniformly on each SN, FΊ is
also univalent.
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Let us now consider the image Sw — Fy{z). Denote the connected
components of the boundary of Sw which correspond to γQ and γ by γ°w

and γw respectively. Clearly fw is the circumference \w\ = 1. Further,
since μn ^ μy, for all n, Sw is included in the annulus 4>,μv As before,
the iO0-area of Sw is

A(p0; Sw) = A(py; S) = μy ,

since

(w =

This is equal to the ^-area of the annulus AQifJ.r Accordingly, the com-
plements of Sw with respect to A0>fl has a (logarithmic and Euclidian)
vanishing area.

Assume finally that the set A0>μy — Sw possesses a connected com-
ponent γ*w which is not a point or a circular arc around the origin.
Construct two circumferences \w\ = rt (i = 1, 2; r < rτ < r2 < e27ίμγ) hav-
ing common points with γ*w, and consider a point w0 in the annulus
rx<\w\ < r2. Let Kζ be the disc \w — wo\ ^ ε. Obviously, for ε suf-
ficiently small, the conformal metric pi9 defined by p9 — 0 on Ks and
^e^) = pQ(w) on *SW — ifε, satisfies the condition (3.3), for all dividing
cycles c on Sw separating γw from γ°w. This contradicts Theorem 4, since
A(ps Sw) < A(/o0; Sw) — μ . Therefore, the continuum r*w does not exist.
In particular, γw coincides with \w\ = β27ίμγ. Theorem 9 is completely
proved.

4.2. Planar Riemann surfaces. Suppose now that R itself is planar.
Let \z\ ^ 1 be a fixed parametric disc on R, γ a hyperbolic boundary
component of R, and cγ > 0 the capacity of γ with respect to \z\ ^ 1.
Consider the function w = Ty(z) defined by

Ty(z) = cy exp(ty(z) + ity(z)) .

By Lemma 4 and Theorem 9, we have the following [14]:

THEOREM 10. The function w — Ty(z) is univalent and single-valued
on R and maps R onto the unit circle slit along a set of circular arcs of
vanishing total area. The boundary component γ is mapped into the unit
circumference.

Let SB (SD) be the class of univalent single-valued analytic func-
tions having a bounded modulus (a finite Dirichlet integral), and let
OSB(OSD) be the class of Riemann surfaces with no functions belonging
to SB(SD).

THEOREM 11. [1, 14] For planar Riemann surfaces,
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(4.2) OSB - My = OSB .

Proof. Assume first that the planar surface R possesses a hyperbolic
boundary component γ. Then, the function Ty of Theorem 10 obviously
belongs to the class SB and SD.

Conversely, suppose that there exists on R a function w = T(z)
which belongs to the class SB or SD. In both cases, the image Rw =
T(R) has a finite Euclidian area. Let Ks: \w — wo\ <£ s be a disc which
is completely included in Rw. Denote by γw the connected component of
the boundary of Rw which separates w = 0 from w — co or contains w — oo,
The conformal metric p{w) = l/2πε is clearly A-boundary on Rw — i£ε

and satisfies condition (3.3), for all dividing cycles on Rw — KB which
separate γw from \w — wQ\ = s. We conclude that the boundary com-
ponent f of R which corresponds to γw is hyperbolic.

4.3. Riematm surfaces of finite genus. A continuation of a Riemann
surface i2 is defined by (1) another Riemann surface Rr and (2) a one-
to-one conformal mapping T:R-> R\ T(R) c R\ [2, 4, 8, 9, 11, 12]. If
R! is a compact Riemann surface, the continuation is called compact. If
Rf — T(R) contains interior points, the continuation is called essential
[9, 12].

Let R be a Riemann surface of finite genus. We say that the con-
tinuation of R is topologically unique if, for any two compact continua-
tions Tv: R-> R\(v — 1, 2) of R, there exists a topological mapping
h\ = JBΊ -» R\z, h\(R\) = B'a, with ft*12 Γ^Λ) = Λ12, where h12 = T2T{~\
If, in addition, λ*12 is always a conformal mapping, the continuation of
R is said to be conformally unique.

Let O p̂ denote the class of Riemann surfaces with no non-constant
single-valued analytic functions having a finite Dirichlet integral. It is
well known that the continuation of a Riemann surface R of finite genus
is conformally unique if and only if R e OAD [1, 8, 12]. We now prove
the following

THEOREM 12. For Riemann surfaces of finite genus, the following
conditions are equivalent:

(1) Re MΊ

(2) The continuation of R is topologically unique.
(3) R does not possess an essential continuation.

Proof. (1) -+ (2). If Re My and TV:R~± R\ (v = 1,2) are compact
continuations of R, then, by Theorem 6, the sets βv = R\ — TV{R) are
totally disconnected. Set T2T{-τ = h12. We define a topological mapping
Λ*12 of R\ onto Rr

2 as follows. First, set A*la(Pi) = hviPλ), for any
P x e T^i?). Now let Px 6 /?!. Since βλ is totally disconnected, there is



808 MARTIN JURCHESCU

a fundamental sequence {Un} of neighborhoods of Px such that the open
sets Vn = Un Π TL(R) are connected. Set E ^ ) = n«M~F»). Clearly this
is a closed and connected set. On the other hand, E(P1) c β2 and, since
& is totally disconnected E(Pτ) contains a single point P2. Set h*n(P^) =
P,. It is easy to see that h% is a topological mapping between R\ and
# , .

(2)-»(3). If R possesses an essential continuation Tτ: R-+ R\, we
may construct in an evident manner another compact continuation
T2: R -> JSr

2 of i? such that R\ and i2'2 have different genera.
(3) ~»(1). Assume that R 0 Λf-, i.e. R possesses some boundary

component γ which is hyperbolic. Let S be a neighborhood of γ. We
have μΫ < oo. By Theorem 9, there is a one-to-one conformal mapping
of S> into the finite annulus 1< \w\ < e2πμy. Let Kw denote the set \w\ > 1.
Clearly the Riemann surface R! = (R — S) U Kw defines an essential con-
tinuation of jβ, and therefore (3) -» (1). Thus, Theorem 12 is established

COROLLARY 1. For Riemann surfaces of finite genus, we have
OAD C My.

Note that by a theorem of Ahlfors and Beurling [1] this inclusion
is strict.

COROLLARY 2. Let R e My — OAD and of finite genus. Then there
exist two compact continuations Tv: R-+ R\ (v ~ 1, 2) of R such that the
corresponding topogical mapping h% is not a conf or mal mapping.

In particular, we conclude from Corollary 2 that there exist Pom-
peiu functions which are univalent (see [3], [10], and [16]).
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