
ON THE NUMBER OF BI-COLORED GRAPHS

FRANK HARARY

1. Introduction. This is an extension of papers [2,3,4] whose
notation and terminology will be used. The main result is a formula-
tion of the generating function or counting polynomial of bicolored graphs,
obtained by the enumeration methods of Pόlya [6]. A modification of
the method yields the number of balanced signed graphs, solving a pro-
blem proposed in [5]. In the process of enumerating bicolored graphs,
we consider two binary operations on permutation groups called '' car-
tesian product" and "exponentiation" which are abstractly but not
permutationally equivalent to the direct product and Pόlya's " Gruppen-
kranz " [6], respectively.

A graph consists of a finite set of points together with a prescribed
subset of the collection of all lines, i.e., unordered pairs of distinct
points. Two points are adjacent if there is a line joining them. A graph
is k-chromatic1 if each of the points can be assigned one of k given
colors so that any two adjacent points have different colors. A graph
is fc-colored if it is ^-chromatic and its points are colored so that all k
colors are used. More precisely, a λ -colored graph is a pair ((?,/) where
G is a graph and / is a function from the set of points of G onto the
set of numbers 1,2, , k such that if a and b are adjacent points, then
f(μ) Φf(h). Two graphs are isomorphic if there exists a one-to-one
adjacency preserving transformation between their sets of points. Two
^-colored graphs are chromaticallg isomorphic if there is a color preserv-
ing isomorphism between them. Thus (G^fJ is chromatically isomor-
phic with (G2,f2) if there is an isomorphism θ: G1-^G2 and a permuta-
tion ω: {1, , k) ~* {1, ., k) such that ω(f1(a)) =/2(0(α)) for every
point α in G1( Let g^l be the number of chromatically nonisomorphic
fc-colored graphs with p points and q lines, and let the corresponding
generating function be

ί>(P-D/2

( l ) g(Ά%)= Σ gf>q

<Z = 0

We first derive the number of bicolored graphs, k — 2, and then
discuss the formula for k — 3. The problem remains open for k > 2.
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This work was supported by a grant from the National Science Foundation. The author
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1 This definition is different from that of Dirac [1]. According to Dirac, a graph has
chromatic number k if it is ^-chromatic but not (& —1)-chromatic as defined here.
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In precisely the form in which we require it, Pόlya's enumeration
theorem is reviewed briefly in §2 of [2]. Therefore, we shall not repeat
here the definitions leading up to it, but shall only restate the theorem
itself.

POLYA'S THEOREM. The configuration counting series F(x) is obtained
by substituting the figure counting series φ(x) into the cycle index Z(Γ) of
the configuration group Γ. Symbolically,

(2) F(x) = Z(Γ,φ(x)).

This theorem reduces the problem of finding the configuration count-
ing series to the determination of the figure counting series and the
cycle index of the configuration group.

2 Bicolored graphs the cartesian product of permutation groups*
Let Kn be the complete graph of n points, in which any two points are
adjacent. Let Kmn be the bicolored graph whose m + n points are
alf a2, , am, blf b2, , bn and whose mn lines are all those of the form

Clearly if a graph is ^-colored then its point set is partitioned into
k disjoint non-empty subsets such that no two points in the same subset
are adjacent. Hence a bicolored graph with p points is a " line-sub-
graph " (as in [3]) or a spanning subgraph2 of a graph Kmn for which
m + n = p. Let gmn>p be the number of chromatically nonisomorphic
spanning subgraphs of Kmn having q lines, and let

ran

( 3 ) Qmn(%) = ΣΣ

Then

(4) g,m(χ)= Σ flU«),

where the sum is taken over all m and n such that m + n = p. There-
fore in order to obtain a formula for the counting polynomial (4), it is
sufficient to find that for (3). In this section, we find gmn{x) for the
case mΦn using the " cartesian product" of two permutation groups.
In the next section we see that this combinatorial technique is not valid
for m — n and formulate gnn(x) in terms of the " exponentiation " of
the appropriate two permutation groups.

By Theorem 1 of [3], the counting polynomial gmn{%) for the

2 A spanning subgraph of a graph G is one whose set of points coincides with that
of G,
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number of spanning subgraphs of Kmn is obtained by substituting
1 + x into the cycle index of the line-group3 of Kmn:

(5) gU^^ZiΓ^K^l + x).

We note that this equation can also be obtained from the main re-
sult, equation (5), of [4]. For the subgraphs of Kmn correspond to the
different supergraphs of the union Km U Kn of two complete graphs on
disjoint point sets. The derivation of Z(Γj(Kmn)) f° r the case m φ n is
parallel to and algebraically simpler than that of Z(ΓΎ(K^)), which ap-
pears in §3 of [2]. Throughout the rest of this section we assume
m Φ n.

The line group of Kmn may be described as an appropriately for-
mulated product of the symmetric groups Sm and Sw. This product can
be generally defined for any two permutation groups in the following
way. Let A and B be any two permutation groups with object sets
X and F, degrees d and e and orders m and n respectively. The car-
tesian product A x B of these two permutation groups has degree de
and order mn. Its object set is the cartesian product of X and Y and
each of its permutations (a, β) is the cartesian product of permutations
a and β from A and B defined by (a, β)(x, y) = (ax, βy). As an abst-
ract group, the cartesian product is isomorphic to the direct product
AB, but they are not permutationally equivalent. For the degree of
the direct product is d + e since the group AB has X u Y as its object
set.

There is a precise method for finding the cycle index of a cartesian
product in terms of the cycle indices of the two permutation groups.
We first illustrate the method by finding Z^^K^)). The line group of
Kz3 is the cartesian product of S, and S3 which is a permutation group
of degree 6 and order 12, written ΓΊ(KΛ3) = S, x S3. Let αα, a, be the
indeterminates occurring in Z(S2) and blybIf b3 be those in Z(S Λ) so that

Z(S2) = \ (at + a,) and Z(SS) - \ (6? + 36A + 263) .

Then we write4

Z(Γτ(K2,)) = Z(S2 x S3) = Z(8t) x Z(S3)

? + 3(Xi x bj).z + 2a\ x bό + at x b[ + 3α2 x 6 ^ + 2α2 x δ3) ,

3 The line group Γχ(G) of a graph G is the collection of all permutations on the set
of lines of G consistent with the automorphism group Γ (G) of G; see [3].

4 By the following formulas we mean that the cartesian product of two permutation
groups can be extended to the cartesian product of their cycle indices in the indicated
manner.
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and give each of these six terms in Table 1, in which cλ to c6 denote
the indeterminates in Z{Γλ{K^).

Table 1

Term of Z(S2

 χ S3) a\ γ.b\ a\ x b\b2 a2 x 63 α 2 x 63 α 2 x b\b2 a2 x 63

Term of c\c\ c\ c\ cl c3

We illustrate Table 1 for the term a2 x b&λ. Let the 2-cycle (pλp2) stand
for at and the 1-cycle and 2-cycle (q1)(q2q3) for bλh2. The admissible lines
of Kx are only those of the form ptq3. The pair p1q1 is transformed
into p2qu and then back again to give the cycle of length 2 in the corre-
sponding permutation of /\(iΓ23) of the form (p^p^t). Similarly the
transpositions {pτq2 p2qd) and (pλq3 p2q2) are factors of this element of Γ^K^).
Altogether there are three transpositions, so the corresponding term of
ZCΛCiQ) is d

In general, we have

( 6 ) α îcφ . . . a^m x δ/iδ^ δ̂ » = Π (aχΛ x Hβ)

and

( 7 ) i bjβ - **>β*<* »

where cZ(α, /9) and m(α, β) are the greatest common divisor and least
common multiple.

The cycle index of Sp is

8 Z(8P) = - V Σ T j-.ΓT^-1—Γ^T Λ i l * * ^p ! co l J i^ i ! p ^ ^ p !

where the sum is taken over all partitions (j) = (jlf j2, , jp) of p such
that

Ui + 2j2 + + pi, = p .

The last four equations together with

(9)

provide a formula for ^mn(^) when m Φ n.
We use Table 1 to illustrate equation (9) by finding gjix). Here

) = }o (el + 3cld + 2cl + 4cl + 2c6) ,

so that
g2S(x) = 1 + x + Zx% + Sx3 + 3a;1 + af + xe .
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The bicolored graphs with two points of one color and three points of
the other color which correspond to the coefficients in the preceding
counting polynomial are shown in Figure 1.

• : < <

Fig. 1.

3» Bicolored graphs; exponentiation of permutation groups* We
now turn to the enumeration of bicolored graphs for the case m = n.
As in the preceding section, we again have equation (5) holding for this
special case:

gnn(x) = Z(ΓiKnn), 1 + x).

However, it is not true that Γ^Knn) = Sκ x SM since Sn x Sn is a proper
subgroup of Γ^Knn). The remaining (n\f permutations in Γ^Knn) are
obtained on interchanging the two colors in accordance with the defini-
tion of chromatic isomorphism.

Fig. 2.

For example, all the (chromatically nonisomorphic) bicolored graphs for
m — n = 2 are shown in Figure 2, so that g22(x) = 1 + x + 2x* + x> + x\
However, the formulas in the preceding section give

Z(S2 x S2,1 + x) = 1 + x + 3x2 + x3 + x*,

since the permutations in S2 x S2 distinguish between the two bicolored
graphs in Figure 3, in which the color assigned to each point is in-
dicated by one of the integers 1 or 2.

With the appropriate definition of group exponentiation, we will
express Γ^Knn) as Sn raised to the power S2. We first review the
definition of the " composition " of two permutation groups (the " Grup-
penkranz " of Pόlya [6]). Let A and B be any two permutation groups
as in the preceding section. Then using the notation of Pόlya [6] the
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composition A[B] of A with B has object set X x Y (as for the car-
tesian product). However, it is more convenient to regard the object
set here as a d by e matrix M = (xi3). Then the elements of A [B] are
the permutations of the entries of M constructed as follows. First
permute the rows of M in accordance with an element of A. Then
permute the column indices in each row separately using one element

of B for each row, repetitions permitted. Hence the degree of A [B]
is de and the order is mnd.

The exponentiation BA of A with B is that permutation group whose
object set is Yx

y the collection of all functions from X into Y, and whose
elements are constructed as follows. It is assumed that the objects
xXi xi9 •••, xd m X are indexed. First permute the objects in X in ac-
cordance with an element a of A. Then for each object x1 in X,
permute the e objects of Y into which it can be mapped, using a per-
mutation βi from B. More precisely each selection of a e A and
βiy fc"*,!5^ B (not necessarily distinct) determines a permutation of
Yx which takes the function / into the function / * defined by:

/*(α?f) = βifiaxt) for all x.t e X; i = 1, 2, . , d .

It can easily be shown that distinct selections of a, βu •••, βa lead to
distinct permutations of Yx and that these permutations form a group.

The degree of BA is ed and the order is mnd. It follows at once
from their constructions that the group BA and A[B] are isomorphic as
abstract groups. But they are not equivalent as permutation groups
since they have different degrees.

With this definition of exponentiation, it follows at once that the
line group of Knn is given by

(10) Γ^Knn) = Sg» .

Before calculating the cycle index of Sfj*, we illustrate for n = 2 and 3.
Since S?a = S2[SJ = D4, the dihedral group of degree 4 and order 8, its
cycle index in terms of the indeterminates cu c2, c3, c4 is given by

Z(D4) = A(cί + 3c2, + 2c\c2 + 2c,) .
o

The correct polynomial g22(x) which verifies Figure 2 follows at once from
this cycle index.
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For n — 3, let the object set of Γλ(KZ3) be denoted:

X = {11', 12', 13', 21', 22', 23', 31', 32', 33'} .

Then Γλ{Kπ) — Spa contains the (3!)2 permutations in S3 x S3 and also the
(3!)2 permutations obtained from these on multiplying each of them, by
the following reflection p which interchanges primed and unprimed digits
in the objects in X:

P = (11') (22') (330 (12' 21') (23' 32') (31' 13') .

Symbolically, we write

Λ ( i Q = 8f* = (S3 x S3) U P(S, x S3) .

Then

Z(S3 x S3) = - 1 -- (c? + 6c& + 8cS + 9dcJ + 12c3c6) ,

and a straightforward calculation gives (using not quite proper notation
since cycle index is defined for groups rather than cosets) :

3 x S3)) - -/o* - (6cK + 1&V5Ϊ + 12c3c6) .

Combining these, we have

1 + 24c3c6) ,

from which one readily calculates using (10) and (5),

g33(x) = 1 + x + 2x2 + Ax" + 5xι + 5x" + AxQ + 2x7 + xs + x9 .

We now proceed to obtain a closed formula for Z(S%?), thereby com-
pleting the explicit solution of the enumeration of bicolored graphs. The
process of finding this cycle index is also analogous to the calculation of
of ZiΓ^Kp)) which appears in §3 of [2]. Clearly, the automorphism
group of Knn is S2[SW]. For the complement K'nn consists of two disjoint
copies of Kn. By a result in Pόlya [6], the cycle index of the composi-
tion of two permutation groups is the composition of their cycle indices.
For example,

+ {a\

But we require here the cycle index of the line group of Knn. There
is a one-to-one correspondence between the terms of the cycle indices
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and ^(S2[SW]) with the same integral coefficients. Analogous to the
terms in the above illustration of ^(S2[S3]), let us write

(Π) Z(SlSn]) = h(Z(Sn)Y + Z(Sn(2))] .
Δ

Thus Z(SW(2)) is obtained from Z(Sn) on replacing each indeterminate /fc

by / „ .
The term of Z(Sg») corresponding to the first term of the right hand

member of equation (11) is Z(Sn x Sn). For bicolored graphs with m Φ n,
this is the result of the preceding section. The term of Z(S%2) corre-
sponding to the term Z(Sn(2)) of (11) is derived as follows. Let the
general term of Z(Sn(2)) be given by

(12) flift—f*.

This term (12) occurs in the cycle index of the point group of Knn.
We require the corresponding term in the cycle index of the line group
obtained by calculating the induced permutation on pairs of points from
two disjoint sets. Let the letters c* be the indeterminates in the cycle
index Z(8&). There are two contributions to Z(S§a) arising from (12):
those from each of the n factors fh separately, and those from pairs of

factors fj

2r f^s, r Φ s.

The contribution to the cycle index due to each factor in (12) is

It is convenient to express the contribution of fj* separately for k even

and k odd:

I (^kk/'zy%k y k even

fit -

Similarly, the contribution from pairs is given by

r < s ,f r f s + c r s
J 2r J 28 2m(r,s) '

where m{r, s) and d(r, s) are the least common multiple and greatest
common divisior respectively.

Collecting these observations, we find

*ή - hz(Sn x SJ + ZΓi, where
Li
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Z> = A. Σ nl c « v ^ ( | * ) π (
7l\ (J) ΣlkJkJkl Λ even 2fc A; odd

This formula for Z(S|a) together with equations (10) and (5) give the
number of bicolored graphs for m — n. For n — 3, this expression for
Z' specializes to that for Z(p(S3 x S3)) in the above example.

The only other known cycle index of the exponentiation of two
permutation groups also involves complex combinatorial calculations and
is worked out in Slepian [8]. Consider the counting polynomial bn(x) =
ΣfinmX™, where bnm is the number of symmetry types of boolean func-
tions of n variables having m nonzero terms when written in disjunctive
normal form. Pόlya [7] showed that

K{x) = Z(Qn, 1 + x ) ,

where Qn is the automorphism group of the %-cube. It is easily seen
that Qn — Sj?» and in fact Pόlya [7, footnote 7] comments that Qn and
Sn[S2] are isomorphic as abstract groups. Slepian [8] completed the
enumeration problem for bn(x) by providing a calculus for an explicit
formulation of Z(Sfn)f although using different terminology and notation.

It would be interesting to solve the general problem of obtaining
an expression for Z(BA) in terms of Z(A) and Z(B). This would be
analogous to equations (6) and (7) which give Z(A x B) in terms of
Z(A) and Z(B).

To summarize, the counting polynomial gmn(x) for bicolored graphs

is given by

(Z(Sm x Sn, 1 + x) when m φ n

t g i , 1 + x) when m = n .

4 k*colored graphs* We illustrate the general problem for k = 3.
Here we have, analogous to equations (3), (4) and (5), and with similar
notation:

(4') gf{*)= Σ flw(«),

(5') gmnt{x) = Z(ΓiKmnt\ 1 + x ) .

Thus Kmnt is the complete tricolored graph with m + n + t points

Vu Pz>' * * $ Pmf Qu $2, '•*, Qn, rlf r2, " ,rt and all mn + nt + tm lines of the
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form ptqjf qjTkf and rkpt. Similarly gmnt>q is the number of spanning sub-
graphs of Kmnt having q lines, etc. We distinguish between three cases:
(a) m,n,t distinct, (b)m = nΦt, and (c) m = n = t. These are illustrated
in Figures 4 (a), (b), and (c).

Fig. 4.

Only in case (a) have we obtained an algorithm for Z(Γ ίJζ.mn$) in
closed form. The result analogous to (9), derived in same manner, is
as follows. Let aλ to am, bL to bn, and cλ to ct be the indeterminates in
Z(Sm), Z(Sn), and Z(St) respectively. Let the indeterminates in (Γ^JS^))
be du dif . Let A, B, and C denote arbitrary terms of Z(Sm), Z(Sn),
and Z(St) respectively. Then in this notation the left-hand member of
equation (6) is A x B and the term of Z^^K^)) obtained from A, B,
and C is,

(15) (A x B){B x C)(C x A) ,

where each of the three factors in the expression (15) is a product of
the indeterminates d% using equations (6) and (7). For example,

Z{ΓlK^ί) - }o (d[ι + Sdldl + 2d\dl + didl + 3dΆ + 2d5dόd2)

is the cycle index of the line group of the tricolored graph Km shown
in Figure 4 (a).

Referring to Figure 4(b), one can find

)) - I (dl + 2dt + Mid] + d\) .

The group ΓΊ(Km) appears to be irreducible by any of the operations
of direct product, cartesian product, composition, or exponentiation.
However, it is abstractly isomorphic to D4 and can be obtained from
two copies of D± defined on disjoint object sets {1,2,3,4} and {5,6,7,8}
by the following operation.

Let the set X be the union of the disjoint sets Xλ and X2. Let A1

and A2 be permutation groups defined on Xx and X.z respectively, such
that h is an abstract isomorphism of A1 onto A2. Then the permutation
group Aj 0 A A2 can be defined as follows: The function / from X onto
X belongs to Ax φ Λ A2 if and only if there exist ax e A2 and at e A2
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with <x2 = hax such that f(x) = cφc) if xeX1 and f(x) = a2(x) if xeX2.
Clearly A = Aτ φh A2 is abstractly isomorphic to Ax.

Now let D4)1 be the dihedral group of degree 4 generated by the
permutations (1234) and (12)(34), let D4)2 be generated by (5678) and
(57)(6)(8), and let h be the isomorphism between them which preserves
respective generators. Then

Finally, it is easy to see that ΓΊ(K2n) is abstractly isomorphic to
S3[SJ and that

Z(Γi(Km)) = ^ [ ( c Γ + 3c& + 4c6

2) + 3-2(2^ + 2c3,) + 2 - 2 ^ + cζ)]

= -1-- {cf + Scfci + 4c6

2 + 8cl + Scl + Ylc& + 12cS) .
48

It is clear that the line group of Knnn is abstractly isomorphic to the
automorphism group of Knnn. Its complement K'nnn consists of three
disjoint copies of Kny so that the group of Knnn is /S3[Sn]. But an
explicit expression for Z^^K^) does not appear to be obvious. (For
the particular case n = 3, it can be shown that Γλ{K^) is permutationally
equivalent to S&.) It does not appear that the operations considered
here will suffice to enumerate even the tricolored graphs.

5 Connected k-colored graphs* Let

, v) = Σ g(pk)(χ)yp

be the generating function for all (connected or not) k-colored graphs,
and let c(x, y) be that for the connected ones only. Then to find the
number of connected A -colored graphs, we substitute into equation (33)
of [2] to get

(16) 1 + g{x, y) = exp (f, - ί φ w , yn))
n = l n

or equivalently,

(160 Σ — ΦΛ yn) = Σ ( " i r + 1 9n(χ,v)
n=Ί n w=i n

From either of these last two equations, the number of connected
ά-colored graphs of p points can be computed recursively in terms of the
total number of fc-colored graphs.
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6. Balanced signed graphs* Signed graphs are obtained by assign-
ing either a positive or a negative sign to each line of a graphs. It was
indicated in [5] how one could enumerate all signed graphs by a varia-
tion in one of the formulas of [2]. The sign of a cycle is the product
of the signs of its lines, and a signed graph is balanced if all its cycles
are positive. The problem of enumerating balanced signed graphs was
proposed in [5]. The result is derivable by an appropriate modification
of the generating function for bicolored graphs.

It was shown in [5] that a signed graph is balanced if and only if
its set of points can be partitioned into two disjoint subsets such that
each positive line and no negative line joins two points in the same sub-
set. In view of this characterization, called the " structure theorem for
balance ", on deleting all the positive lines of a balanced signed graph
one obtains a bicolored graph. Let Gt and G% be arbitrary graphs with
m and n points respectively, m < n, and let p = m + n. Let Γ(Gλ) and
Γ(G2) be the groups of Gτ and G2 respectively. Let bq(Gu G2) be the
number of nonisomorphic balanced signed graphs with q negative lines,
whose positive lines generate the (disjoint) graphs Gt and G2 in accord-
ance with the structure theorem for balance. Let

6(Gi,G,, a?) = Σ &«(<?!, W
<2 = 0

be the desired configuration counting series. Then the figure counting
series is 1 + x. For the figures are the mn pairs of points (c, d) where
ceG1 and d e G2. The content of a figure (c, d) is 0 if c and d are not
joined by a negative line and is 1 if they are.

Analogously to the situation for bicolored graphs there are two pos-
sibilities. If Gx and G2 are not isomorphic, then the configuration group
is Γ(G^) x Γ(GZ). But if they are isomorphic, the configuration group is

Hence an application of Pόlya's Theorem yields

(17) b(Glf Gt, x) = f ( Γ ( G l ) X Γ ( ^ ' X + x) W h e n ^ * G

I y , + x) when Gx ~ G

It is clear for the special case where G1 and G2 are the totally discon-
nected graphs of m and n points that b(Gu G2, x) = gmn(x), Γ(Gλ) = Sm,
and Γ(G2) = Sn. Thus the formula (17) is a generalization of that for
bicolored graphs.
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