ASYMPTOTIC EXPRESSIONS FOR X-n2f(n)log ™n

R. G. BuscHMAN

In this paper some asymptotic expressions for sums of the type

2m?f(n)log ™ ,

where f(n) is a number theoretic function, are presented. (The sum-
mations extend over 1 < n < 2 unless otherwise noted.) The method
applied is to obtain the Laplace transformation,

P{F)} = r et F(8)dt = F(s)

of the sum and then use a Tauberian theorem either from Doetsch [2]
or its modification for a pole at points other than the origin, or from
Delange [1] to obtain the asymptotic relation. If f(n) is non-negative,
then F'(t) is a non-negative, non-decreasing function and hence satisfies
the conditions for the Tauberian theorems. In many cases the closed
form of a Dirichlet series involving the functions are known, and in
this case the relation

g{ 3 nf(n) logrn} = (—1)s7'(d/ds)" ina—sf(”)

can be used. The functions chosen for discussion and the Dirichlet
series involving them ecan be found in Hardy and Wright [3], Landau
[4], [5], or Titchmarsh [7]. We present first a few illustrations of the
method and then a more extensive collection of results is presented at
the end in a table.

First we choose o,(%) as an example of a simpler type. Since

S ntun) = Ls)(s — k),
we have

_g{ > () logrn} =f(s)=(=1)ysYd/ds) {¢(s+1=b)(s+1—b+Fk)}.

1sn<e’

For k > 0 the pole where Rs is greatest is at s=05b if b>0. At that
pole, since

(s +1=b~(="m!l(s—0b ™",
the Laplace transformation of the sum has the form
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F(s) ~ b7+ Tyr ! (s — b)=t.

Now if b > 0, then by modifying Doetsch [2, p. 517] for poles not at
the origin or from Delange [1, p. 235] we obtain

> mrtEe(n) log"n ~ b7 + k)edit”

1=n=e’

or, if x =¢*
St g (n)log™ n ~ b7(1 + k)x® log” x .
If 5 =0, then
f(&)~CQ +krlsr?,
so that form Doetsch [2, p. 517] after substituting x = ¢’ we obtain
St Ee(n) logm ~ (r + 1)~ + k) log™+'x .

The expressions for «(n) can be obtained by setting &k = 1.
For k = ¢, o4(n) becomes d{n) which will be covered as a special
case of d,(n).

For & < 0 the pole where s is greatest is at s =b — k so that
for b >k

fE~b =k —krl(s—>b+ k"',
Hence

Snd-1-te (n) log™m ~ (b — k)"¢(1 — k)x*>~*log"x , for b >k ;
Snloy(n) log™m ~ (v 4+ 1)7¢(1 — k) log™'x , for b=1Fk.

By analogy, since

Sintp(n) = s — DILE)
then

>, nPp(n) log™n ~ {bZ(2)}'a” log™x , for b >0 ;
Sy () log™ ~ {(r 4+ 1)¢(2)} ' log™ 2 , for b=0.

If y.(n) represents a character, mod k, then the Dirichlet series can
be represented by

Sineun) = Ly(s)
so that if y, is a principal character then L,(s) has a pole at s=1and

S0Py (n) log™n ~ ¢(k)(kb)'a” log™e , for b>0:
> ny(n) logn ~ (k) {(r + 1)b}*log™'w,  for b=0.
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The Dirichlet series involving d,(n) yields a power of the ¢-function,
i.e.

Sind(n) = £5s)
so that for £ > 0

f//‘{ S -y (n) logm} — (—1y's~(d)dsyc(s + 1 — b) .

1=as<c

Now the Laplace transform can be written to show the behavior at
the pole at s = b,

FE)~@+k—1)! bk — 1)1} (s — b)"* .
Thus

St (n) log™n ~ {b(k — 1) 1} ~*a® logm+*-1x | for b >0 ;
S n7ld(n) logn ~ {(r + k)k — 1)1}t log™+*x , for b=0.

Special cases can be obtained for k£ =1,2, since d,(n)=1 and
dy(n) = oy(n) = d(n).
In an analogous manner we can obtain from

S nsd(nt) = ¢(5)/2(2s)

the expressions

3 nbd(n?) log™n ~ {2b£(2)} ~'2” log™x for b >0 ;
M r7td(n?) log™n ~ {2(r + 1)¢(2)} * log™ % , for b=0.

Certain of the common number-theoretic functions have not been
considered and do not appear in the table (in particular p(n), A(n), and
¥.(n) for non-principal characters) because the sum F'(¢) fails to satisfy
the non-decreasing hypothesis for the Tauberian theorems. 2(n) has the
additional bad characteristic as shown by the poles of the closed from
of the Dirichlet series

S n2(n) = (29)/€(s)

in that the pole of the numerator is on the line Ns = 1/2 which is
critical for the determinator, and thus this is not the pole where s
is greatest as required by the theorem from Delange.

Results which he has obtained for the case r = 0 and the functions
a(n), ox(n), d(n), and ¢(n), treated by a different method, have been
communicated to me in advance of their publication by Mr. Swetharanyam

[6].
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Table
Asymptotic expressions for 3 n®f(n)log’n
General term of

the sum Asymptotic Expressions
b5>0 b=0
nd~1-¥gy(n) log'n -1l + k)? logre (r + DA + k) logr+lz
k>0
n? ~log(n) log™n b = k)~¢1 — k)ab-*logrz (r + 1)~ — k) logr+ix
(k<< 0) (b> k) (b=Fk)

n®~2¢(n)log™n b=1{(2)x" log™ (r + 1)71¢(2) logm+1w
n"=1dy(n) logrn {b( — 1)!}—-1ad logr+k-1z {(r +Fk ) — 1)!}-11logr+ka
n?-1d(n) logrn b-1xb logr+igx (r +2)-1logr+2x
n"-1log™n b-1xv logrx (7 + 1)~1logr+ix
n”~1A\(n)logrn b-1a? logra (r + 1)-1logr+z
n’~2¢(n) log™n {b¢(2)} - 1ab logre {(r + 1)¢(2)}~11logr+1w
n?~1qx(n) log'n {b¢(Fe)} b logra {(r + 1)¢(E)}-11ogr+1x
7>~ p(n) | logrn {b¢(2)} ~1a logre {(r + 1))}~ logr+1x
nb-126(n) logrn {b¢(2)} ~1a? logr+1w {(r + 2){(2)}-11log"+2x
n?~ld(n?) logrn {2b¢(2)}~1ab logr+2x {2(r + 3)¢(2)}~1logr+3
n’ ~1d*(n) logn {6b¢(2)}~1a? logr+3 {6(r + 4)¢(2)} -1 logr+iz
aa(n)oa(n) logrn (A +a+d)A+a)1+d) . (Q+a+d)+a)d+d)

nlvard=b b2 +atd) Slogme e G ratrd) 08

(@>0) (@d>0)

oa(n)d(m) logrn ¢ +a) 1 ¢ed + a) .

ni+a=0 5@ +a)” 08 Tt 20@ +a) ET

(@>0)
n?—2a(n) log™ 2(3b)~1z? logra 2{3(r + 1)}~1logr+lx
n® 1y, (n) logrn @ (Fe)(Feb) 120 logrx o {(r 4+ 1)}-1 logr+1x
n?~1r(n) logrn 46-1L4(1)x? logre 4(r + 1)71L4(1) logr+1x
nP LA 1)y (n) log™n b-1xb logrx (r + 1)-1llogr+izx
n"=2h(n)y,(n) log™n G(F) {lebLy(2)} ~ 1P logra SR (r + 1ELx(2)}-1logr+lx
nb —120(ny, (n) log™ 4¢p(%){3kb((2)} ~1ac® logr +1x 4 (R){3k(r + 2)((2)} 1 logr+2x
n-Yn(n)—n(n—1)} logrn p~lwd logr—1x r-1logre
(r>0)
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