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This article is concerned with polynomials with respect to the Cauchy-
Riemann operators

dzλ 2\dx1 dyj dzn 2\dxn dyn.

We establish an ZΛestimate, for such polynomials, and derive from it
uniqueness in a class of Cauchy problems. The estimate is quite similar
to Hόrmander's inequalities and, in fact, can be essentially deduced
from them. However, its direct proof is very simple and leads to a
constant better than the one in Hormander's inequalities. We have
therefore preferred to present it thoroughly.

The last part of the paper studies a class of Cauchy problems and
applies the estimate to obtain uniqueness. There the methods are quite
standard (see for instance Nirenberg [1]). The nature of the differential
operators considered allows us to remove the strict convexity of the
domains in which the solutions are studied, and replace it by a weaker
condition.

1. The inequality. We consider a polynomial P(z) on C\ We set,
f o r p = (pl9 ---fpn)eNn:

We shall denote by P(DZ) the differential polynomial on R2n obtained by
substituting d/dzj = 1/2(0/9^ + (l/i)(9/92/j)) for z3 (1 ^ j g n) in P(z).

If S is a subset of R2n, we denote by βj(S) the diameter of S in
the complex "direction" z3: βj(s) = sup^^es I sj — %" |.

THEOREM 1. Let Ω he an open set in R2n. For all polynomials P(z)
on Cn, all functions H(z) defined and holomorphic in Ω, all functions
φ(x, y) e C~(Ω), all p - (plf .. , pn) e Nn:

|| e™P^(Dz)φ | | ί2 ^ βHΩ) . . . #ftβ) || e™P(D,)φ ||zi .

It is enough to prove the inequality in Theorem 1 for pλ — 1 and
Pj = 0 for j ^ 2. We shall denote by Pλ(z) the corresponding P{p)(z).
On the other hand, we set, for j = 1, , n:
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= ±-H(z) ,
dZ

Λ, = ±. HAz) .

Observe that for all 1 ̂  j , k ^ n, (d/dz^H^z) = (dldzk)H3(z); it follows
from this that the A/s all commute.

The formal adjoint of A3 is A* = — d/dzj — Hj(z). Observe first
that the Af's all commute, since the A/s do. But also the Af's com-
mute with the Afc's, for the Hj(z)'s are antiholomorphic functions of z
in Ω.

If Q(z) is a polynomial on Cn, we denote by Q(A) the differential
operator on R2n obtained by substituting Aj for z5 (1 ̂  i ^ w) in Q(z).
If Q(«) is the polynomial whose coefficients are the complex conjugates
of the ones of Q(z), the formal adjoint of the operator Q(A) is Q*(A) =
Q(A*) = Q(Af, , Aϊ). It is easy to check that:

(1) (PJT(A) = - (P*h(A) = - [P*(A)f gj .

Let us denote by (,) and || || the inner product and the norm in L\Rin).
We may as well assume that β-Sβ) = 2d, with d — sup^o I «i |. If Φ(%, y)
has its support in Ω, we can write:

(P*(A)φ, Zl(Pi)*(A)φ) = (φ, P(A)[zι(P1)*(A)φ])

= frφ, (P1)*(A)P(A)φ)+ (φ, (P1)*(A)P1(A)Φ)

), P(A)φ) + || P1(A)Φ II2

, ZlP(A)φ) + \\P1(A)Φ II 2 -

Hence:

= (P1(A)φ9 z1P(A)φ) + (z1P%A)φf (P*MA)φ) ,

by applying (1). We get at once:

(2) ||PU)ΦII2 ^ d || P1(A)Φ|| | |P(A)φ|| +d \\P*{A)φ\\ || (P%(A)φ\\ .

But since the Â  and the A* all commute with each other, P(A) and
P*(A) commute, and PX{A) and (P^iA) do. Therefore:

|| P*(A)φ || - || P(A)φ || , || (Pir(A)φ \\ = || P,(A)φ || .

These relations, together with (2), lead to:

(3) \\P1(A)Φ\\^(2d)\\P(A)φ\\.

In this inequality (3), let us replace φ by eH{z)φ; we have
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and hence:

Q(A)[e™φ] = eH{z)Q(Dz)φ ,

for any polynomial Q(z) on Cn. Thus, we get, from (3):

^ (2d) \\ e™P(Da)φ\\ . q.e.d.

2 Uniqueness in Cauchy problems* We shall denote by Bα (α > 0)
the open ball | z \ < α in Cn.

We say that an open set Ω in R2n is admissible at the point zQ if
z0 lies on the boundary of Ω, if the boundary of Ω is, near z0, a piece
of a C°° hypersurface and if the following property holds:

(A) For some a > 0, there exists a function F(z), holomorphic in the
ball I z — z01 < α, vanishing at z0 and such that the diameter of
the set Ub of those points ze Ω which satisfy \z—zQ\<a, — b<Re F(z)
converges to 0 when b > 0 does.

In the sequel, Ω will be an open set in R2n admissible at the origin,
a will be a positive number such that (A) holds for z0 = 0 and some
function F(z) holomorphic in Ba. Furthermore, we shall assume that
the intersection of Ba with the boundary of Ω is a piece S of a hyper-
surface C°° (passing by 0).

Let us clarify a little the geometric situation. Let us denote by
W the piece of the hypersurface ReF(z) — 0 contained in Ba. Since
0eWf)Ω aUb for every b > 0, we must have WnΩ = Wf]S = {0}.
On the other hand, for any 6 > 0, Ub[jCΩ is a neighborhood of 0. For,
let ε > 0 be small so that | z | < ε implies | Re F(z) \ < b. If z e BB, z $ Ub

only if z 0 Ω. The interior of Ub is never empty. For assume it were
and let z belong to Ub; z would have a neighborhood N in which Re F
would still be > — b and since zeΩ, N would intersect Ω; obviously
Nf) Ω is contained in the interior of Ub.

We consider a polynomial P(z) on Cn, of degree m > 1, and a partial
differential operator on R2n with continuous coefficients, Q, of order
^ m — 1, satisfying the condition:

for all iϊ(2) holomorphic in Ba, all iφ;, y) e Co°° with support in Ba.

THEOREM 2. Lei 17(8, y) be a function defined and Cm in Ω, with
zero Cauchy data on S, satisfying:

( 2 ) \P(D,)U\ ^ \QU\ in Ω .

There exists a neighborhood of 0 in which U vanishes identically.
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We keep our previous notations, for a, F(z), etc.
Let us take a function β(z), C°° in Ba, with the following properties:

β(z) = 1 for z e Ba and -2ε g i2e i^(z) ^ 0

β(z) = 0 ίor zeBa and -3ε ^ Re F(z) ,

where ε > 0 is chosen small enough so that the support of β(z) intersects
Ω according to a compact set contained in Ba. That is possible because
of property (A); notice that the diameter of the compact set in question
goes to 0 when ε —•* 0.

We define now a function v(z) as being equal to β(z) U in Ω and to
0 elsewhere. Notice the following properties of v:
( i ) the support of v is compact (and contained in BaΓ\Ω))
(ii) v(z) is m — 1 times continuously differentiate;
(iii) P(Dz)v — βP(Dz)U + RUφ in Ωy R being a partial differential operator

with C°° coefficients.
If one extends the definition of RU by 0 outside Ω, it becomes a con-
tinuous function in Ba since the order of R is at most m — 1 and the
Cauchy data of U were 0 on S. On the other hand, P(DZ)U vanishes
also on S, because of (2) and of the fact that Q is of order g= m — 1.
Hence, continuing βP(Dz)U by 0 outside Ω leads again to a continuous
function in Ba. We see thus that P{Dz)v is a continuous function (in
Rn). This fact, together with properties (i) and (ii), allows us to extend
to v(z) the inequality of Theorem 1. We see that there exists a constant
A such that, for all holomorphic functions H(z) in Ba,

( 3 ) Σ II e™PM(D,)v |U» S AS || e™P(D,)v |U» ,

δ being the diameter of the support of v. Remember that δ —> 0 if
ε —> 0. Since, on f/2ε, v = U, by using inequality (1) and (3), we get:

(\ U\2 + I QU\2)dxdy rg (2AiΓδ)2( e2/?e^ | P(Dz)U\2dxdy
J

But since ί72S c Ω, we have the right to substitute \QU\ for
in the first integral of the right hand side; and if we choose ε small
enough so that (2AKS)2 < 1/2, we obtain finally:

e2Reπ I U \2dxdy ^ M ( e2ReH \ P(Dz)v \2dxdy ,
}cσ2ξ

M being a constant independent of both H(z) and ε. Observe that
the integral on the right hand side is actually performed on U&Γ\CU2B.
Let us take H(z) = (t/2)F(z), t > 0. The nature of the domains of
integration leads us to:
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I Ufdxdy rg Me-^oσ \ P(Dz)v fdxdy ,

or:

j f /j Ufdxdy £

where M1 does not depend on t; we conclude that U = 0 in Us, q.e.d.
We end now by a few remarks about admissible sets.

l Any open set Ω, strictly convex at a boundary point z0 (and
bounded near z0 by a piece of C°° hypersurface) is admissible at this
point. For simplicity, let us assume that z0 = 0, and let H be an hyper-
plane passing by 0, such that Ω intersects H only at the origin and lies
entirely on one side of H (at least near 0). Let N be the unit vector,
orthogonal to H, which lies on the side of H containing Ω. If N19 , Nn

are the complex components of JV, we may choose, as holomorphic function
F(z)9 the hermitian product Nxzx + + Nnzn.

2. There are open sets, admissible at a boundary point, which are
not strictly convex at this point. For instance, consider an open set Ω
whose boundary contains the origin (and is a piece of C°° hypersurface
near it) and whose complement contains the cylinder \zx — a\ < \a\9 a
being a complex number Φ 0. If the diameter of the intersection of
Ω with the cylinder | z1 — ka | < eQk | a \ (k < 1, ε > 0) tends to 0 when
ε —> 0, Ω will be admissible at z — 0. For then we may take, as holo-
morphic function F(z)9 any branch of — log (1 — zjka). If n = 1, any
open set whose complement contains the circle \z1 — a\ < \a\ (and whose
boundary, near 0, is a piece of C°° curve passing by 0) is admissible at
z1 — 0. If n > 1, one may still construct open sets having the desired
properties, which are not strictly convex at 2 = 0.

3 Let F(z) be any holomorphic function of z in a neighborhood

U of 0 in Cn, such that F(0) = 0. Let U+ be the set of points zeU

such that ReF(z) > 0. / / n > 1, the set U+ cannot be strictly convex

at z = 0.

It U+ were strictly convex at 0, there should exist an hyper plane
H, passing by 0, intersecting U+ only at this point 0 and such that U+

would lie only on one side of H. Let Ω be the other side of H, and
U(b) be the set of z e U such that ReF(z) > - 6 , (δ > 0). After
maybe shrinking U we may say that the diameter of U(b) Π Ω converges
to 0 when b —»0. For assume that this were not true: there would be
pairs of points z'k9 z" in £7(l/&) such that | z'k — z" \ Ξ> c > 0 for every
k = 1, 2, . We could assume that z'k converges to z\ z" to z", and
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we should have: | z' - z" | ^ c, z\ z" e Ω. But also Re F(z') = 0, Re F(z") = 0,
i.e., z\ z" e U+. But that implies z' = 2" = 0, which is absurd. Hence
the open set Ω is admissible at z — 0. But if £? is admissible at some
boundary point, the same must clearly be true for any open half space
in Cn. And this would mean that there is uniqueness in the Cauchy
problem for data on an arbitrary hyperplane and for any differential
polynomial

d

which is absurd.
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