SOME ZERO SUM TWO-PERSON GAMES WITH
MOVES IN THE UNIT INTERVAL

MARTIN Fox

Introduction. Consider the following zero sum two person game.
The players alternately choose points ¢, €[0,1] for ¢+ =1,2, .-+, n, the
choice being made by player I if ¢ is odd and by player II if 7 is even.
After the ith move the player who is to make the (¢ + 1)st move ob-
serves the value of ¢,(t, ¢, --+, t;) where ¢, is some function on the -
dimensional closed unit cube to some set 4,. The payoff is f(¢, t, +--, ,)
where f is a continuous, real-valued function.

If all the ¢, are constant we have the case of no information. Ville
[1] showed that in this case such a game has a value. At the other
extreme, if the ¢, are all one-to-one we have the case of perfect infor-
mation so the game has a value.

The purpose of the present paper is to show that, in general, games
of the form introduced in the first paragraph do not have values and
to consider two cases in which they do. The counter-examples to be
presented will be compared with Ville’s classical example of a game on
the unit square which has no value.

It is shown in §2 that the games considered always have values
when n = 2,

An example of a game with no value is presented in §3. In this
example n = 3 and the ¢, take only a finite number of values.

In §4 it is shown that the additional hypothesis of continuity of
the ¢, is not sufficient to guarantee existence of a value. In that ex-
ample n = 4. The case » = 3 with continuous ¢; remains unsolved.

Section 5 deals with a special case for which n is arbitrary and
yet the game has a value. In this case the ¢, each take only a finite
number of values and each is constant on sets which are finite unions
of i-dimensional generalized intervals.

1. Preliminary remarks. In this section the notation to be used
in this paper will be introduced. This will be facilitated by the intro-
duction of the normal forms of the games under consideration.

A pure strategy for player I is a vector @ = (2, s **, Lrninyz)
where #,€[0, 1] and the «; for ¢ = 2,8, --+, [(n + 1)/2] are functions on
A, , to [0,1]. If moves ¢, ¢, ---, t,_, have been made, then the 4th
move made by player I (the (2¢ — 1)st move in the game) will be
Cy(Pas_o(ty, Tay + o+, ty_5)). His first move will be x,.
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A pure strategy for player II is a vector ¥y = (Y, ¥s ***, Yn) Where
each ¥, is a function on A,_, to [0,1]. If moves t,¢, -+, ty;_, have
been made, then the 4th move made by player II (the (2¢)th move in
the game) will be y;(¢s—i(ts, Ty + =+, Ea))-

When player I uses the pure strategy x and player II uses the pure
strategy y let t,(x, y) be the ith move made in the game. The ¢, are
defined recursively as follows:

t(x, y) = @, ;
0u(®, Y) = Yu(Pu—a(Eu(, ¥), Lo, Y), + -+, Lo, ¥)))
for1=1,2,--+,[n/2];
b 1(Z, Y) = Zo(Po—o(8(T, Y), (2, Y), -+, too(%, ¥)))
for ©=2,8,---,[(n + 1)/2] .

The payoff function is given by M(x,y) = f(t.(x,y), tx,Y), -+, t.(x,Y)).
The payoff as a function of mixed strategies will also be denoted by M.

In our case, since the moves are points in [0, 1], the strategy spaces
X and Y are products, usually infinite dimensional, each coordinate space
being [0, 1]. Hence, the choice of a strategy by player I is equivalent
to the choice of a distribution function F' on X. It will be convenient
to let the space P of mixed strategies for player I be the family of all
distribution functions on X which assign probability 1 to a finite subset
of X. The same will be done for @, the space of mixed strategies for
player II.

If H is a distribution function on the real line and S is any subset
of the real line which is Borel measurable, we will let HS be the
probability assigned to S by H.

For Fe P we let F;, denote the marginal distribution function of
the coordinate of player I's strategy which corresponds to his 4th move
when ¢,,_, = «. Similar notation will be used for G e Q.

2. The case n = 2. In this section it will be shown that any game
<« of the type given in the introduction for which #» = 2 has a value.
It is not even necessary to assume that ¢, is a measurable function.

For any ae 4, let £ (a) = (¢7%(), [0, 1], M,) where M, is f restricted
to ¢ () x[0, 1]. It follows by the proof used for Ville’s minimax theorem
that each Z(a) has a value v(a). Let

v = sup v(a) .
W€ 4
Fix ¢ > 0 and let a* be such that v(a*) > v —e. For each aeA, let
F' and G be e-good strategies for players I and II, respectively, in
Z (o). The distribution function F'® assigns probability 1 to a finite
subset of ¢;'(a). Since F'*” is a distribution function on [0, 1] which
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is the strategy space for player Iin ¥ it can also be used as a strategy
in & Let y be any pure strategy for player Il in &, Since y,(a*) €0, 1],
it follows that #.(a™) is a pure strategy for player Il in & (a*). Hence,

MEF™,y) = Sd) IR AL CL)

1_1(01«
ZSMMa%mmewo
= M (F", y(a™))
>o(a®) —e>v — 2.
Let G be any strategy for player II in & such that G, ,=G" for all
aeA,. Let x be any pure strategy for player Iin & For some e A4,

it must be true that xe¢; () so that x is also a pure strategy for
player I in < (a). Then,

MWJ%=Sﬂ%0&Aﬁ)

=§Mm¢mwww
— w(x, G(w))
<vy+e=Zv+te.

From the two inequalities obtained above it follows that the value of
Z is .

3. A counter-example for # = 3. In this section the counter-
example for n = 3 will be given. The functions ¢, (¢ =1, 2) each take
only a finite number of values. The similarity of this example to Ville’s
example will be discussed.

For this example let

¢1(t1)50;
—1ift,=00r 0<min(t,1—1t)=t;

t,if t,=0o0r 1 and ¢, +0;

ity 1) = 2if0<t1<t2§—;—

Bif0<t<l—t,<L

f(tn ts ts) = _I ty — 1, ]

Let F' be any strategy for player I. Fix ¢ > 0 and let §¢(0,¢) be
sufficiently small so that F(0, §) < e. Let G{8} = G{1 — 8} = 1/2. Then,
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M(F, 6) = —+ (Fi5, 11+ Fop[ {1t — 81 Fu(dt)

+ |1t -9 7@

<—faof(3-9)+(-o- Pl <-d+is
so that

sup inf M(F, G) < —+ .
@ 2

Let G be any strategy for player II. Fix ¢ > 0 and let z, € (0, 1/2)
be sufficiently small so that G(0, z,] + G[1 — z,, 1) < e.
Let

1

—ifa=—-1;

2

aif a=0o0r1l;
(@) = lifa=2;

4

3 ita=3.

4

Let © = (x,, #,) so that x is a pure strategy for player I. Then,

MG, ») = —SW (% — t,)G(dt) - S

B
0.1/21] 4

1
—E — —
> 4

<t2 — %)G(dtz)

3,

4

[1—-::1,1)

G(dt,) — S

G(dt,)

(1/2,1]

so that

inf sup M(F, G) = —L.
oL sy 1

and the game has no value.

In Ville’s example the payoff function is such as to force each
player to attempt to choose a point closer to 1 than does his opponent
without actually choosing 1. It is impossible for either player to
guarantee he will achieve this with any preassigned positive probability
no matter what pure strategy his opponent may use. In the example
just presented a similar situation arises on the first two moves. In Ville’s
example the competition to choose a point close to the endpoint is.
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a direct competition over payoff. In the present example this competi-
tion is over the information player I will receive, which, of course, helps
determine the payoff. If on his first move player I chooses a point
closer to 0 (but not 0) than the choice of his opponent is to both 0 and
1, then he will obtain more accurate information about the location of
his opponent’s choice than would be the case otherwise. Player II is
prevented from choosing an endpoint since to do so would be to give
his opponent perfect information.

4. A counter-example with continuous ¢;,. In this section a coun-
ter-example will be presented in which the functions ¢, are all con-
tinuous. In this example » = 4. Again a comparison will be made with
Ville’s example.

Let

$i(t) =0;
¢2(t1, tz) = tl(l - tl)t2 H
0if min(¢,1 —¢) <t, < max(t,1—1t);

tz(l - tz)(t1 - tz) t1 - % if tz < tl < “;—

1
or §<t1<t2;

1

-5

¢3(t1, L, ts) =
tz(l - t2)[t1 - (1 - tz)]

if—%-gt1<1——t2

1
01‘1—t2<t1§?;

f(tlytzyts,t4):|t1_t4l_10|t2_t3,-

Assume t,#0 or 1. Then, ¢y, t,, t;) >0 for min (¢, 1 —¢,) <t, < 1/2
while ¢y(t,, t,, ;) < 0 for 1/2 < ¢, < max (¢, 1 — ¢,). On the other hand,
di(ty, t,, ;) = 0 otherwise.

Let F be any strategy for player I. Fix e > 0 and let §¢€(0, &) be
sufficiently small so that F\(0, 8] + F[1 — 8,1) <e. Let

1 if a=0;
2

(@) = 11T ifa>0;

3 .
= if a<0.
g tes

Let G assign probability 1/2 to each of the pure strategies (5, y,) and
(1-—38,y,). Then,
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e 02, ( e)r + [ (o Do

+ S
(8,1/2)

— 10[F {0} + Fl{l}][-;—gl 5 — t,| Fl(dt,)

3'
t, — | Fy(dt,
4 | Fidt)

tl - %IFl(dtl) + S

(1/2,1-38)

+i1-s—niman]

< % [F,{0} + Fi{1}] + %5 + 715[1 — & — F{0} — Fy{1)]

—B[F,{0} + F@}][(% _ 3) " (1 s _;_ >]

D D - 2)
=L+ 5e [Fl{0}+F1{1}][5(1 2) = ]

1
— + 11e
<4+

so that sup,inf, M(F, G) < 1/4.

Let G be any strategy for player II. Fixe >0 and let 6€(0,¢)N(0,1/2)
be sufficiently small so that G,0,8) + G, (1 — §,1) <e. Let z(a) =
a/[8(1 — 8)] and let F" assign probability 1/2 to each of the pure strategies
(8, x,) and (1 — 8, x,). When player I uses the strategy F the value of
the nonpositive term in f will always be zero. Thus,

MF,6) 2|1 = G0, 8) = Guol — 8,1

X [%S |8 — t,]| Gao(dty) + %S [1—8—1¢,] Gz.o(dt4)]

>z e (o))

1 3
= — =2
>2 2

so that inf,sup, M(F, G) = 1/2 and the game has no value.

Here again the primary competition between the players is to make
their first moves as close to the endpoints as possible without actually
choosing the endpoints. If player I is successful in choosing a point ¢,
at least as close to one of the endpoints as is player II’s choice, then
player II will have less information about ¢, than would be the case
otherwise. Player I is prevented from choosing an endpoint by the fact -
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that if he does so he will get no information about his opponent’s first
move so that he cannot guarantee that he can keep the negative term
close to zero. Player II is prevented from choosing an endpoint by the
fact that when he does so the function ¢, will take the value zero no
matter what his opponent does so that he will have no information about
player I’s first move.

5. The case of information sets which are unions of generalized
intervals. The case to be considered here is that in which each ¢, takes
only a finite number of values and each is constant only on sets which
are finite unions of ¢-dimensional generalized intervals. This is the only
case considered in this paper in which » remains arbitrary.

Let the values of ¢, be 1,2, «.., m;. Let Pg;'(k) be the projection
on the jth coordinate of ¢;'(k) where j =1,2, .-+, 7. The interval [0, 1]
can be subdivided into disjoint sets By, By, -+, By, such that for each
By, there exist 4, %, +++, %, and ky, ky, +++, ky, all integers, such that
teB; if, and only if, tePg;'(k) whenever ie{i,, ---,%,} and
kelk, k, «-+, k,} while t¢& P;'(k) otherwise. Suppose j is even so that
player II makes the jth move. Let ¥ = (¥, ¥y ***, Ym) and y'=
(Y5, yby + -, Y™ be any strategies for player II such that y, = y] for
1 # j/2 and if y,.(k) e B,,, then y),(k) € B;,. For any pure strategy « for
player I we have ¢,(x, y) = t;(z, %) for ¢ = 1,2, -+, 5 — 1 since for these
values of ¢ player II'’s moves are unchanged. If t(x,y)e B, then
t(x,y') € B;,. Hence,

i@, ), 6, ¥), + -, tl(x, ¥) = &, ¥), Lz, ¥), + -+, t(2, ¥))

so that t,..(x,y) = t;..(x, ¥’). Suppose that ¢,(x,y) = ¢, (x,y) for 7 =
j +1, .7 +2, -, /io- Then’ ¢i0(t1(x7 y)r tz(x’ y), ] tio(x, ’Z/)) = d)io(tl(wy y’)7
t(x, ¥, »++, (2, y) so that ¢ ..(x,y) =, (2, ). Thus, t(x,y) =
t,(x, ') for all 4 + j.

Foreachj=1,2, ..., n — 1fix § > 0 and select points ¢, ¢, -, b,
such that for any ¢, e B;, there exists ¢;, € B;; such that for any ¢, ¢,, «--
t; 1ty o0, t, we have

’

|f(tly tZy cty tj—l’ tj, tj+17 ccey tn)
_f(tl, t2y ) tj—ly tjv’ tj+1v cey tn) I < 8} .

Select the t,, in such a way that as §;| the set of all the ¢, increases
monotonically.

Let the game 5/&(81’ 82’ ) Si) = (X(817 8y v ey 87.)9 Y(Sly Byy =0 e, 81),
M, s,...5,) be our original game with the jth move for j=1,2,...,1
restricted to t,, ¢y, <+, Ty - In (6, 6,, -+, §,_,) the player who makes
the (n — 1)st move has only a finite number of strategies so that
Z (8, 8 +++, 8,,) has a value (see Wald [2]).
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Suppose £ (8,, 8,, +++, 8;_1, 8;) has a value for all §, > 0. It follows,
by a proof similar to Ville’s, that (8, 8,, * -+, 6,—,) has a value. Thus,
by induction, & will also have a value.
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