NORMAL EXTENSIONS OF FORMALLY
NORMAL OPERATORS

EARL A. CODDINGTON

1. Introduction. Let  be a Hilbert space. If T is any operator
in © its domain will be denoted by D(T), its null space by R(T).
A formally normal operator N in O is a densely defined closed operator
such that ®(N) < DN*), and || Nf|| = || N*f]|| for all f e D). Inti-
mately associated with such an N is the operator N which is the
restriction of N* to (). The operator N is formally normal if and
only if N is. A normal operator N in  is a formally normal operator
for which $(N) = D(N*); in this case N = N*. A densely defined
closed operator N is normal if and only if N*N = NN*!

Let N be formally normal in . Since Nc N* we have Nc N*,
where N* = (N)*. Thus we see that a closed symmetric operator is a
formally normal operator such that N = N, and a self-adjoint operator
is a normal operator such that N = N (= N*). If a closed symmetric
operator has a normal extension in 9, this extension is self-adjoint. It
is known that a closed symmetric operator may not have a self-adjoint
extension in . Necessary and sufficient conditions for such extensions
were given by von Neumann.? However, until recently, conditions under
which a formally normal operator N can be extended to a normal one
in  were known only for certain special cases.** Kilpi® considered the
problem in terms of the real and imaginary parts of N. It is the pur-
pose of this note to characterize the normal extensions of N in a manner
similar to the von Neumann solution for the symmetric case.

If N, is a normal extension of a formally normal operator N in 9,
then it is easy to see that N N, © N*, and Nc N* c N*. In Theorem
1 we describe D(N*) and DN *) for any two operators N, N satisfying
Nc N*, Nc N*. With the aid of this result a characterization of the
normal extensions N, of a formally normal N in » is given in Theorem
2. It is indicated in Theorem 3 how the domains of normal extensions
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can be described by abstract boundary conditions.
I would like to thank Ralph Phillips for instructive conversations
during this work.

2. Domains.

THEOREM 1. Let N, N be two closed densely defined operators in
a Hilbert space © such that Nc N*, Nc N*. Then

DN*) = DN) + M, DN*) =DN) + M,

where M = NI + N*N*), M = NI + N*N*). Here I is the identity
operator, and the sums are direct sums.

Proof. Let N, N be any two closed densely defined operators in
such that Nc N*, Nc N*. Then (Nf, g) = (f, Ng) for all fe D),
g € D(N). Define an operator _s~ in the Hilbert space 9, = H D » with
domain ®(_+") the set of all 7 = {f, fi} with f; € D), f, € DN), and
such that _sf = {Nf,, Nf}. Then _s~ is closed symmetric. Indeed
D(_+") is dense in HP O, and, if = {£,, £i}, § = {g,, 9.} are in D),
we have .

(F, 8) = (Nfy 9) + (Nf,, 02) = (fi, Ngo) + (fr Now) = (F, 479) -

Since N and N are closed, so is _#~. The adjoint _+* of _s" has
domain D(_s*) the set of all § = {g,, g,} such that g, € D(N*), g, € DN*);
and _7*§ = {N*g,, N*g,}.

We now show that the defect spaces of _s~, namely,

G(+1) = {d e DA™ : 4% = if},
G(—i) = { € DA ™) : 47 = —idi},

have the same dimension. We have ¢ = {¢:, .} € G(+1) if and only if
¢ € DN*), ¢, € SN*), N*p, = i, N*p, = ip,. The latter is true if
and only if N*(—¢,) = —ip;, N*p, = —i(—¢,). Thus we see that the
unitary map 2 of 9, onto itself given by Z{f., fi} = {f;, —f.} carries
E(—7) onto E(+1) in an isometric way. This proves dim &(+1%)=dim &(—1).
We note that {¢p, ¢} e E(+4) if and only if ¢ e DIN*N*),
(I+ N*N*)¢, =0, and ¢, = —iN*¢,. Alternatively {¢,, ¢,} € G(+1) if
and only of ¢, € D(N*N*), I + N*N*)¢p, =0, and ¢, = —iN*¢,. Thus
we see that the algebraic dimensions of the spaces I = NI + N*N*),
M= NI + N*N*), G(+1), and G(—1) are all the same. Further it is
easy to see that N* maps I one-to-one onto M, the inverse mapping
being —N* restricted to . '
Since dim €(+17) = dim &(—<) the operator _s~ has self-adjoint
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extensions in ©,. They are in a one-to-one correspondence with the iso-
metries of &(—1) onto G(+1). If &7 is a self-adjoint extension of _s~
there is a unique isometry 7~ of ¢(—1%) onto €(+1¢) such that D(&) =
D) + (F — #7)8(—1), where .7 is the identity operator on 9,.
Let us consider that self-adjoint extension .o of _ s determined in this
way by the isometry —< restricted to €(—4). Then we have / € D)
if and only if A =f -+ + 2, for some fe D(_17), e G(—5). If
h = {hy, by}, fA: {f1, fo}, ‘2’ = {y, ‘Pz}l this means &, = f, + 20y, hy = fo
where f, € DN), Y, e M, f,€ S(N). Thus (<) is the set of all
{hy, b} with h, e DN) + M, h, e D(N). Now the operator & with
domain all {k,, h,} with h, € D(N*), h, € D(N), and such that 57 {h, h,} =
{Nh,, N*h}, is readily seen to be a self-adjoint operator in 9, satisfying
N % N* Hence & =.5%, and we see that D(N*) =
D(N) + M. The sum is a direct one, for if feDIN)NM, 0=
(I+ N*N*)f = f+ N*Nfimplying 0 = (f + N*Nf, f) = [| £I* + | Nf |},
or f=0.

A similar argument shows that the self-adjoint extension & of _/~
determined by the isometry <~ equal to % restricted to &(—<¢) has
domain the set of all {h, h)} with h, € D), h,e DN)+ M. This
operator is equal to the self-adjoint extension of _#~ having domain the
set of all {h, b} with h, € D(N), h, e S(N*), implying that DN*) =
D(N) + M, a direct sum. This completes the proof of Theorem 1.

Note added in proof. The results of Theorem 1 can be obtained
more directly, although some of the discussion given in the proof above
is required for our proof of Theorem 2. Let &(T) denote the graph of
an operator T. If A, B are any two closed operators with dense domain,
and A C B, then it is easy to see that G(B)©S &(A) is the set of all
{u, Bu} € ®&(B) such that weN(I + A*B). Since

&(B) = &(4) B [S(B) © G(4)],
we have D(B)=D(A)+N(I[+ A*B), a direct sum. This implies Theorem 1.

3. Normal extensions.

THEOREM 2. If N, is a nmormal extension of a formally normal
operator N in a Hilbert space £, then there exists a unique linear
map W of M onto itself satisfying

(1) W? =1, _ _

(i) el + (IN*p|F = [| Wo [ + [| N* W], (e M),

(iii) (I_— WY = N*(I + W)W,

(iv) [IN*(I— W)p|l=I[IN*(I— W)pll, (¢ e M).

In terms of W we have

(1) DN) = DN) + (I — WM, N f=N*f, (f € DN) .
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Conversely, if W is any linear map of WM onto M satisfying (1)—
(iv) above, then the operator N, defined by (1) is a normal extension of
N in 9.

REMARKS. Condition (i) implies that P, = (1/2)({ + W) and P, =
(1/2)(I — W) are projections (not necessarily orthogonal) in It, and MM
is the direct sum of W, = PM and M, = P, If ¢ € M, then ¢ € W,
if and only if W¢ = ¢, and ¢ € W, if and only if W¢ = —¢.

Condition (ii) implies that if ¢, ¢’ € Ut then

(@, ¢) + (N*¢, N*¢') = (W, W¢') + (N* W, N* W) .

If peM, ¢ M, we see that (¢, ¢') + (N*¢p, N*¢') = 0, which means
that the graph of N* restricted to 9t is orthogonal to the graph of N*
restricted to k,.

Since N* is one-to-one from I onto 9N, condition (iii) implies that
M, = N*IM, c M N M, and M, has the same algebraic dimension as IM,.
In particular the dimension of 9 must be even.

Proof of Theorem 2. Let N, be a normal extension of the formally
normal operator N in ©. Then we have Nc N, c N*, Nc N*¥c N*.
Let the operator .7{ in 9, be defined with domain all {k,, k,} such that
h, € D(N,), h, € DIN}), and so that s {h,, h,} = {Nh,, Nyh,}. Then it is
easily seen that _7{ is a self-adjoint extension of the operator _s~ de-
fined in the proof of Theorem 1.

Let .1 be any self-adjoint extension of .4, and let %" be the
unique isometry of &(—1%) onto &(+7) such that D(A;") =D(47) +
(F — 77)&(—1). Then we may write ¥~ = 9% %/, where Z is the
isometry defined on &(—1%) to (+7) by Z {yn, Yo} = {Yr, — Yo}, and 7~
is a unitary map of &(+7) onto itself. For {¢, ¢} € E(+7) let
VA b} = X, X%}, Then ¢, X, € M and ¢, = _iN*le, X = ”‘@N*Xl
Define the map W of I into M by W¢, = X.. Then W is linear, and
since 97 is unitary, W is onto, and

g, —iN*$}||" = |[{We, —iN* W}, (peW),

or
(2) I¢IP + | N*p P = [| Wo P + [| N*We |, (ped).

Conversely, suppose W is a linear map of I onto M satisfying (2).
Then for ¢ = {p, —iN*¢} € G(+1) define 7°p = {W¢, —iN*W¢}. Then
" maps E(+17) onto &(+1%) and (2) implies that 97~ is unitary. Thus
we see that the self-adjoint extensions ./, of _4~ are in a one-to-one
correspondence with the linear maps W of It onto I satisfying (2).
We have h = {hy, by} € D(A]) if and only if h can be represented in
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the form h=f+ (7 — 7/7/)@, where f = {f, fi} € D( 1), V=
{¢, IN*¢} € G(—1). This means h, = f,+(I—W)p, h, = f,+iN*(I+ W),
where f, e D( 1), f, e DN), ¢ € M.

The self-adjoint extension ./ arising from the normal extension
N, of N has the property that if & = {hy, by} € D(./{) then so does
gfﬁ = {h,, 0}. It will now be shown that a self-adjoint extension _/{
of _ 4~ has this property if and only if the W corresponding to ./;
satisfies W? = I. First suppose Zh e (1) for all ke D). Letting
hi=fi+T— W)p, h,=f, + iN*(I + W)¢p as above, we see that this
implies that there exist elements f,e D(N), fie D(N), ¢' € M, such
that

L+ T=Wp=ri+T—= W),
0=f1+ iN*(I+ W) .

Since DN) + M and D(N) + M are direct sums these equations imply
that f=f, I — W)p = — W), fi =0, and N*(I + W)¢' = 0. The
last equation implies (I + W)¢' = 0 since N* is one-to-one from I to M.
Thus we have

(3) ¢'+W¢)'=0,
¢ — W' =¢— Wo,

from which results 2¢' = (I — W)¢. Returning to the first equation in
(3) we obtain (I + W)YI — W)p = (I — W?¢ = 0 for all ¢ € M, showing
that W* = I. Conversely, suppose W? = I on M. Then if h = {h, h,} €
DA, h=fi+T—=W)p, hy=fi+iN*(I+ W)p, define ¢ =
(1/2)(I — W)p. Then equations (3) will be valid, implying that

H+T=Wp=Ffi+UT—- W),
0=0+iN*I+ W),

which shows that Z2h = {h,, 0} ¢ D(_4).

If _7{ is any self-adjoint extension of _ 4~ for which W? = I, then
D(_+7) consists of those {h, h,} such that h, = f, + (I — W)$, h, = f, +
iN*(I + W)¢', for some f, € S(N), f, € DN), and ¢, ¢’ € M. The point
is that ¢ and ¢’ need not now be the same element. Indeed, if &, h,
have such representations let ¢ = (1/2)(I — W)¢ + (1/2XI + W)¢'. Then
I—W)yp=UT— W)p", and (I + W)¢' = (I + W)¢"”, which implies that
{h., hy} € D(_47). For such an _4; define N, to be the operator in  with
DN, = DN) + (I — W)WM, and N,h, = N*h, for h, € D(N,). Similarly
define N, on D(N,) = D(N) + N*(I + W)M by Nh, = N*h, for h, e
B(N,). In terms of N, and N, we have {h, h,} € D(_4) if and only if
h, € ®(N,), h, € T(N,), and _4{"{h,, h;} = {N,h,, N:k,}. A short computation
shows that ©(_s,*) is the set of all {g, g;} such that g, € T(NJ),
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9: € DNY), and _#7*{gy, g2} = {N*gs, Ny*g,}. But since g7 = 4 we
obtain N, = N;*. Hence (1) consists of all {, h,} with h, € D(N,),
hy, € D(N*), and 4 {h,, by} = {N*h,, N;h,}. Here

(4) DN, = DN) + (I — W)M,
DN = D(N) + N*I + W)l ,

and Nc N,c N*, Nc N* c N*. Thus any self-adjoint extension _{
of _+~ having the property that W? = I determines a unique operator
N, in $ as above, which is easily seen to be closed. In particular, if
N, is a normal extension of N, then the equalities (4) hold.

It remains to characterize those _#; such that W?* = I for which
N, is normal, that is D(N,) = D(N*) and || N:&h|| = || N*h|l, h e DN)).
We claim that this is true if and only if

(5) (I— W)y =N*I+ W),
and
(6) |N*(I — W)l = |IN*T — W)l , (pemMm).

If (5) is valid then (4) implies that D(N;) = D(N¥), since D(N) = D(N).
Let he DN), h=f+T— W)p, fe DN), pe M. Then (I— W)p e
M N M, and we have Nh = Nf +N*(I—W)p, Ni*h = Nf + N*(I— W)p.
Thus :

| Nok | = | NFII* + (Nf, N*(I — W)¢) + (N*(I — W)¢, Nf)
+IN*I = WP,

and

INFRP = |NFIF + (Nf, N*(I — W)¢) + (N*(I — W)p, Nf)
+IN*(I— W)l .

Since N is formally normal || Nf|| = || Nf||. Moreover N*(I — W)p ¢ M
implies that (Nf, N*(I — W)$) = (f, N*N*(I — W)¢p) = —(f, I — W)¢),
and similarly (Nf, N*(I — W)$) = —(f, (I — W)$). Using (6) we see
that || Ni|| = || NXh || for all h € D(N,), proving that N, is normal.

Conversely, suppose N, is normal. Then (6) is clearly valid, for
(I— W)pe DN,) by (4). Suppose h e D(N,) = DN*) and h=f+
(I— W)p=rf"+ N*I+ W)P with £, f' € DN), ¢,¢' € M. We show
that f=f" and (I — W)p = N*(I + W)¢'. Applying this to f=0
we obtain (I— W)WM c N*(I+ W)M, and with f/ =0 we get
N*(I + W) c (I — W), proving (5). Now for any g € D(N) we have
(Nlh; Ny) = (Nl*hr Nl*g)f or

(Nf, Ng) + (N*(I — W)$, Ng) = (Nf', Ng) — (I + W)¢', Ny) .
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Since (Nf’, Ng) = (Nf’, Ng) and (N*(I — W)$, Ng) = —((I — W), 9),
this yields

(Nf, Ng) — (I — W)$, g) = (Nf', Ng) — (N*(I + W), g) ,
or
N(f =), Ng) + (N*IL + W)/ — (I — W), 9) =0.
But N*(I+ W)¢' — (I — W)p = f — f', and hence
NUSF=F)N N+ (f—f,9=0

for all g € D(N). Letting g = f — f' we obtain f = f' as desired. This
completes the proof of Theorem 2.

4. Abstract boundary conditions. For u ¢ DN*), v e DIN*) de-
fine (uv) = (N*u, v) — (w, N*v).

THEOREM 3. If N, is a normal extension of the formally mormal
operator N such that DN = DN) + (I — W), then D(N,) may be
described as the set of all w e D(N*) satisfying {ua) =0 for all
ae(I— W)me

REMARK. For differential operators the conditions (ua)> = 0 become
boundary conditions. They are self-adjoint ones, that is, {aa’> = 0 for
all a,a’ e (I — W)M. Indeed a,a’ € DN, = D) and for any
aeDWN,), o ecID(NF) we have (N*a,a')= (Na,a) = (a, Nfa') =
(o, N*a').

Proof of Theorem 3. If uwe D), ae(d — W)McC DN*), the
above argument shows that <(ua)> = 0. Conversely suppose u € D(N*)
and <ua) =0 forallae(I— W)M. Letu=f+UT— W)p+ I+ W)p,
where fe DWV), ¢ € M. We note that { > is linear in the first spot,
and f+ (I — W)pe D(N,). Thus {(I + W)pa> =0 foralla e (I — W)I.
Let a=N*I+ W)pe (I — W), since (I— W) = N*(I + W)M.
Then

0=<I+ W)p N*(I+ W)py = (N*I + W), N*(I + W)$)
+ L+ W, I+ W),
which proves that (I + W)$ = 0, and hence u € D(N,) as desired.
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6 A result similar to Theorem 3 appears in the report by Davis (4) for the case when
dim (DN*)/D(N)) < oo.








