
THE WAVE EQUATION FOR DIFFERENTIAL FORMS

AVNER FRIEDMAN

1. The Problem. Let M be a compact C°° Riemannian manifold of
dimension N, having a positive definite metric. The operator j = dS +
Sd (see [13] for notation) maps p-forms (0 ^ p ^ N) into p-forms and
it reduces, when p = 0, to minus the Laplace-Beltrami operator. Let
c(P) be a C°° function which is nonpositive for PeM, and consider the
Cauchy problem of solving the system

(1.2) «(P, 0) = »(P), A »(ί>, 0) = k(P) ,
at

where /, gy h are C°° forms of degree p. The main purpose of the
present paper is to solve the system (1.1), (1.2) by the method of Fourier.

The Cauchy problem for second order self-adjoint hyperbolic equations
was solved by Fourier's method by Ladyzhenskaya [8] and more recently
(with some improvements) by V. A. IΓin [6]. In [8], other methods are
also described, namely: finite differences, Laplace transforms, and analytic
approximations using a priori inequalities. Higher order hyperbolic equa-
tions were treated by Petrowski [12], Leray [9] and Garding [5],

The Fourier method can be based on the fact that the series

π QΪ v 1 φn(χ)I2

 v 1 dφn(χ)ldχI2

 v \P<PAx)ldx*\%

are uniformly convergent. Here {φn} and {Xn} are the sequences of
eigenfunctions and eigenvalues of the elliptic operator appearing in the
hyperbolic equation. In [6] the convergence of (1.3) is proved for a =
[iV/2] + 1. Our proof of the analogous result for eigenforms is different
from that of [6] and yields a better (and sharp) value for α, namely,
a = N/2 + e for any ε > 0. It is based on asymptotic formulas which
we derive for Σ \d3φn(x)ldx3\2 as λ—> CXD.

In § 2 we recall various definitions and introduce the fundamental
solution for L + djdt which was constructed by Gaffney [4] in the case
c(P) = 0. In § 3 we derive some properties of the fundamental solution.
These properties are used in § 4 to derive the asymptotic formulas for
Σ I d3φn(x)ldxj I2, by which the convergence of the series in (1.3) for any

a > N/2 follows. In § 5 we solve the problem (1.1), (1.2); first for/, g, h
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infinitely differentiate and then under much weaker differentiability
assumptions with regard to M, c, f, g, h. In § 6 we briefly treat the
Cauchy problem for the parabolic system

(1.4) Lu + θ^

(1.5) u(P, 0) = g(P) .

2. Preliminaries* The first one to use fundamental solutions of the
heat equation in the study of the asymptotic distributions of eigenvalues
and eigenfunctions was Minakshisundaram [11]. Gaffney [4] extended
his method to derive asymptotic formulas for eigenvalues and eigenforms.
We shall describe here some well known facts and some of the results
of [4] which we will need later on. Slight modifications will be made
due to the fact that in [4] c = 0.

As is well known, there exists a sequence of eigenvalues {λj (0 ^
\ ^ ^ λA —* oo as k —* oo) and a sequence of the corresponding eigen-
forms {ωn} of degree p (0 g p S N, p is fixed throughout the paper) of
L, that is, Lωn = Xnωn, such that the eigenforms form a complete
orthonormal set in L\{M) (square integrable p-forms on M). The co^p)
are C°° forms. The fundamental solution Θ(P, Q, t) of

(2.1) (L + JL)a> = 0

is a double p-form which is twice differentiable in Q, once differentiable
in t, satisfies (2.1) in (Q, t), Q e M, t > 0, (for any fixed P) and, for any
PeM,

(2.2) lim ( Θ(P, Q, t) * a(Q) = a{P)

for any U p-form a which is continuous at P. As in [4] one easily
derives the expansion (provided Θ is known to exist)

(2.3) θ(P, Q,t) = ± ωi(P)ωi(Q)e'λit

t=l

where the series on the right is pointwise convergent for all P,QeM,
t > 0 (that is, the series of each component is pointwise convergent).

A p-form a can be written locally as

a = Σ A, t dx*1 dx1* = Σ'A^x1

where ' indicates summation on / = (iu , ip) with ix < < ίp. The
absolute value of a at P is given by
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where x is the local coordinate of P. Similarly, for a double p-form
having local representation a(P, Q) = Σ'Auix, y)dxΣdyJ where y is the
local coordinate of Q, we define the absolute value by

I a(P, Q) I - [Σ; AZJ(X, y)A»(x, y)Γ .

The right "half-norm" is defined by

\<*\\(P) = [\M\<*(P,Q)\*dVQJ* .

Given two double #-forms a and β, a new double p-ίorm is defined
by

[a, β] = [a, β](P, Q) = ί a{P, W) * β(Q, W) .

One then verifies:

(2.4) \l«,β](P,Q)\£\<*\\(P)\β\\(Q).

The following inequalities are immediate:

(2.5) \ a + β \ t g \ a \ + \ β \ , \ a + β\\ £ \ a \ \ + \β\\ ,

where a, β are any double p-forms.
In order to construct Θ, one first constructs a parametrix. Gaffney

[4] constructs a parametrix by generalizing the method of MinaksM-
sandaram [11], making use of some calculation of Kodaira [7]. Given
a point P, let y = {yι) be normal coordinates about P (with coordinates
#*'). A p-form can be written as a vector X with {ζ) components and then

(2.6) AX = -ΣgVθβjX + ΣA%X + BX

where {gi}) is the metric tensor, (gis) is the inverse matrix, d{ = d\dx\
and A\ B are matrices depending on the gi5 and their first two deriva-
tives. If X = f(r2) W(x, y) where r is the geodesic distance from x to
y (each component of X is now a vector so that W is a square matrix),
then

(2.7) Ay[f{r2) W] - /(r2)j y W - /'(r2)Ϊ2N - 4K + 4r M W - 4r2/"(r2) if,

where K = if(a;, ι/) is a C°° matrix which vanishes for y = x.
There exists a C°° matrix Jkf satisfying

(2.8) r^-M=KM (x fixed), Jlf(a?, a?) = /
dr
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where J is the identity matrix. Using (2.8), (2.7) is simplified to

(2.9) M-'jyifMW) = f(M-xAM)y W - f'UίN + 4r —} W - 4r2/" W .

(2.9) will now be applied with

f(r\ t) = —1—e-^ (t > 0 fixed) .
(4τrί;

Setting

m

one then gets

JS. = fM Σ \{M-'AM)U^ + UϊN + 4r f) Ujb> - £- uA .
i=o I 4ί \ 0r/ 4ί2 J

Calculating also dH^ldt, one then obtains

, + A)fL = /Jlf Σ {(M-W + β) ϋ, + (r ± + i + l

which leads to the successive definitions:

(2.10) U,= -—. [(M-'JM + c)Uj-rdr (1 ^ j < «), where Z7, = / .
T ' Jo

We conclude that, for any m ^ 0,

(2.11) (L, + | ) f f m = ^ ^

Hm is a local parametrix. Note that when P, Q vary in a sufficiently
small neighborhood V (contained in one coordinate patch), Hm is defined
and is C°° in (P, Q, t) iΐ t > 0. Let ηs(r) be a C°° function of r which
is equal to 1 for r < ε and is equal to 0 for r > 2ε. If ε is sufficiently
small then the support of Ύ]z{r)Hm(P, Q, t) (where r is the distance from
P to Q) as a form in Q lies in V, provided PeW, where W is a given
open subset of V, W c F. We can cover the manifold M by a finite
number of sets W, call then TΓ*. Let the Hm corresponding to (the
corresponding) Vt be denoted by Hi. If {αj is a C°° partition of unity
subordinate to {TFJ, then the support of 0Ci(P)ηB(r)Hi(P,Qft) as a form
of (P, Q) lies in W{ x F< and hence this form is C°° in (P, Q, ί) if ί > 0.

The global parametrix is given by

(2.12) θm(P, Q, t) = ΣamMrWi&P, Q, t) .
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The fundamental solution should then formally be

(2.13) Θ(P, Q, t) = Θm{P, Q, t) + \\ym(P, U, t), Θm(Q, U, t - τ)]dτ
Jo

where τm is defined by

(2.14) γm(P, Q, ί) = Σ ( - l ) ^ ( P , Q, t)
l

(2.15) SUP, Q, t) = \\S£\P, U, τ), δ ,(Q, U, t - τ)]dτ,
Jo

Using (2.4) and the inequality

(2.16) I j α(P f Q, τ)dτ J α | dτ ,

Gaffney establishes the uniform convergence of the right side of (2.14)
and then proves that Θ, as defined in (2.13), is a fundamental solution,
for any m ^ 0, written in matrix form. We shall use the matrix notation
of Θ and the usual double form notation for Θ interchangably; the same
for Θm.

3. Properties of the fundamental solution. We denote by dh

PΘ(P, Q, t)
an hth derivative of Θ with respect to the coordinates of P, in a given
coordinate system. If h = (hlf , hN), set | h \ = hx + + hN. From
the formulas defining Θ it is clear that dh

PΘ{Py Q, t) exists and is continu-
ous (in fact C~) in P,QeM and t > 0. Let

(3.1) dPΘ{P, Q, t) ~ Σ BAP, t)ωt(Q)
i = l

be the Fourier expansion of dhβ, for (P, t) fixed. Then (recalling (2.3))

(3.2) 5,(P, t) = ( dPΘ{Py U, t) * ωi(U) = dh

P\ Θ(P, U, t) * ωt(U)

where dP is abbreviated by dh when there is no confusion.
By the (easily verified) ParsevaΓs equality we get

(3.3) ψ(P, Q, t) = [ ^ ( p , U,^-), 9 ^ ( Q , C7,1-)]

= Σ dh

Pωi(P)dh

Qωi(Q)e-λίt

and the series is pointwise convergent for P, Q e M, t > 0.
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We need the following notations. Let a be a double p-form. If it
is locally represented by ΣΆIJdxIdyJ, then we set

[a(P, P)] = ΣΆi .

If β is also a double p-form, then we define [[a(P, U), β{P, U)]σ] to be
[y(P, P)] where y(P, Q) = [a(P, U), β(Q, U)].

Using (2.13) and the definition of -f in (3.3) we have

(3.4) Σ I PωtP) I2 e-^ = [ψ(P, P, t)]
l

, W, τ), θm(ϋ, W,±-

= J,{P, t) + 2 J2{P, t) + J3(P, t) .

We proceed to estimate the J{. We shall make use of the inequality
[4]

(3.5) [a(P

and of the inequality [1]

T(3 6) [T exP{-Ms-s 1V(*-Γ)} exp{-λμ-y|Vr}

< const.
v—l—jv/2

where d^ = dz1 d^^ and λ > 0, μ < JV/2 + 1, v < N/2 + 1. The follow-
ing, easily verified, inequality will also be used:

(3.7) Γ e x p { - λ \ x - z \ηt) e x p { - λ \z-y \2/t}dz
J — o o

^ const. exv{-μ\x-y \2lt}tN'2

where dz = dz1 -•• dzN and λ > μ > 0. We shall denote by A3 constants
which (unless otherwise stated) may depend only on h and on the mani-
fold M.

Using (3.6) one can prove by induction on ί that

(3.8) I PpSUP, U,t)\^ ^Lltίc+i-^i/w-i-wβ-π/βί β
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The case ί = 1 follows by (2.11), (2.12). (In deriving (3.8) we also use
the elementally inequality λe~αλ ^ const. e~δλ for all λ > 0, where a, S
are constants and a > δ Ξ> 0.) In (3.8) it is understood that t° (if it
occurs) must be replaced by -logί. From now on we take m such that

m + i -IM >o .

Using the definition (2.14) we then conclude from (3.8) that

(3.9) I dh

P7m(P, Q , t ) \ ^ A 2 e - r 2 l δ t t m

Next, from the definition of Θm one derives

(3.10) I d h

P θ m ( P , Q , t ) \ ^ A 3 e - r 2 l H t

Combining (3.9) and (3.10) (h = 0) and applying (3.6), we get

(3.11) I ΓT^>Ύm(P, W, τ), θJϋ, W,— - τX\dτ ^ A4e-2r2/5ίr+1

Using (3.10), (3.11) one easily derives, applying (3.7),

(3.12) J2(P, t) ^ Abt
m+1->hl~NI2 .

Similary one gets

(3.13) J 3 ( P , ί ) ^ A6t
2{m+1)-]h>-»12 .

Evaluation of JX{P, t). From the construction of Θm it follows that
for every sufficiently small neighborhood V we may take it to be of the
form

(3.14) Θm(P, U, t) = Hm(P, U, t) + Rm(P, U, t) for all PeV

where Hm is constructed in § 2 and where, for some ar > 0,

(3.15) Idh

FRm(P, U,t)\£ A7e-«Ίtt^Nl2 S Ajfi

for any ζ > 0. A8 depends also on ξ. Next,

(3.16) dh

PHm(P, tf, t) = Σ t ' Σ
j=o i v | = o

where (fy = (M .. . (^j. It is easily seen that

(3.17) dPf(r2, ί) = Σ H

where y\ xι are the coordinates of U, P respectively, and i/vμ(z) is a
polynomial in z = (z\ , zN) with C°° coefficients which, for Hn, are
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functions of x only. Substituting (3.17) into (3.16) and recalling that
M(P, U)v2 becomes (Si) at P = U, we obtain

(3.18) dh

PHm(P, U, t) = HhllLz^L)f(r\ «)«-'*'" Y + Sh(P, U, t)

where Y is the matrix (Si) and

(3.19) I Sh(P, U,t)\

Combining (3.14), (3.15), (3.18), (3.19) we conclude that

(3.20) dh

Pθm(P, U, t) = HjV^S)f(r\ t)t'»"*Y + TΛ(P, U, t)

and

I TΛ(P, U,t)\^ Alot
(1-IΛI-")/a .

Using the definition of Jl9 and substituting (3.20) in the part of the
integral [dh

Pθm(P, U9t/2)9 dh

Fθm(P, U,tl2)]σ taken over a coordinate patch
Fo containing V: yi — xι = ξ1]/ t , we find that

(3.21) Jλ(P, t) - (Ch(P) + B0{P, «))«-'*'-*/»

where Ch(P) is a continuous function of P, and | B0(P, t) \ ̂  Auτ/ t for
Pe V, 0 < t ^ 6, for any 6 > 0. -An depends on b.

Combining the evaluation of Jt with (3.12), (3.13), we obtain from
(3.4),

(3.22) Σ I dha>i(P) Γ β~λiί = Ch(P)t-]hl-NI2 + Dh(P, t)f^'{N-^1

where Dh(P,t) is a uniformly continuous function of (P,t),Pe V and
0 < ί g 6 for any b > 0. Thus

(3.23) I J9Λ(P, ί) I ̂  A12

where An depends on b.
Note that the Aίf in particular Al2, are independent of P which

varies in V.

4* Asymptotic formulas. To derive asymptotic formulas from the
equation (3.22) we use a Tauberian theorem due to Karamata, specialized
to Dirichlet series [14; p. 192], It states:

Let ak ^ 0 and 0 ^ λx g λ2 5g g λn ^ , and assume that the
oo

Dirichlet series f(t) = 2 ake~λkt converges for t > 0 and satisfies
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f(t)~φ<L8 ί\0 ( 7 ^ 0 ) .

Then the function a(x) = ^ ak satisfies

Axy

a(x) ~ as x —> oo .

Γ(Ύ + 1)

Applying it to (3.22) (using (3.23)), we get

(4.1) Σ I β*ω*(P) I2 = ^ . . . y f l λ Γ / o / ' f t l W [ l + o(l)] (λ -> oo)
λ^λ Γ( I fe I + 1 + N/2)

and o(l) —» 0 as λ —> oo, uniformly in P e F .
Let λx = = λg_! = 0, λg > 0. Using the asymptotic formula (4.1)

we shall prove:

THEOREM 1. For any h and for any e > 0, the series

(4.2) £

is uniformly convergent in Pe M.

Proof. We introduce the function

JB(P,λ)= Σ

Then, we can write the series (4.2) in the form

Integrating by parts we get

Since, by (4.1), B{P, λ) £ AldX
lhl+NI2 and since B(P, λ') = 0, the first

term in (4.3) vanishes. The integral in (4.3) converges uniformly in P
in view of the bound on B(P,X) just given. The proof of Theorem 1 is
thereby completed.

5. Solution of the system (1.1), (1.2). We first derive the formal
solution. Substituting

(5.1) g(P) = £ ff.α).(P), h(P) = £ Kω.(P), f(P, ί) = Σ L(t)ωn(P)
1 l l
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(5.2) v(P, t) = Σ vn(t)ωn(P)
n — l

into (1.1), (1.2) we arrive at the equations

(5.3) <'(ί) + Xnvn(t) = fn(t)

(5.4) vn(0) = gn, <(0) = K .

If λn = 0 the solution is

vn(t) = gn + hnt + [f(τ)(t - τ)dτ .
Jo

If Xn > 0 the solution is

vn(t) = gn cos T/X t + —β=z sin τ/λn ί + — = \ fn(τ) sin τ/λn (t - τ)dτ .

Hence, the formal solution of (1.1), (1.2) is

(5.5) v(P, t) = Σ βf,(»,(P) cos Λ/K t + Σ>Kωn(P)t

Σ - ^ ^ p ) s i n Vτ*t + Σω.ί^Γ/.^X* - τ)dτ

+ Σ -^=β».(P)(V.(τ) sin l / λ : (t - τ)dτ .

To prove that the formal solution is a genuine one we observe that
if λn > 0

(5.6) gn = \ g(Q)*ωn(Q) = \ \ L™g{Q)*ωn{Q)

for any positive integer m. Applying BesseΓs inequality, we get

(5.7) Σ λϊ Λ S \ L™g{Q)*L™g{Q) = || L™g | | 2 .

Similarly,

(5.8) Σ λf/t2

π ^ || L-fc ||2, Σ Km(Mt)Y S || L-/( , t) ||2 .

It will be enough to show that the part of the first series on the
right side of (5.5), where summation is on Xn > 0, when differentiated
term-by-term twice with respect to P is uniformly convergent in P e ikf,
0 ^ ί g 6, for any 6 > 0. Now the series obtained is majorized by

Σ\gn
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Hence that series is uniformly convergent if k > ΛΓ/2 + 1.
It is clear that each series in (5.5) can actually be differentiated

term-by-term any number of times and the resulting series is uniformly
convergent.

By a solution of (1.1), (1.2) we mean a p-form which is (a) twice
continuously differentiable in (P, t) for P e M, t > 0 (6) once continuously
differentiate in t for P e M, t ^ 0 and (c) satisfies (1.1), (1.2).

The uniqueness of the solution can be proved as for the classical
wave equation. Assuming # = 0, h = Q, f = 0 and using the rule

\du*ω = \u*δω one finds that if u is a solution then

— \ [ut*ut + δu*δu + du*du — cu*u] = 0 .
dt JM

Since the integral vanishes for t = 0, it vanishes for all t > 0. Since
the integrand is nonnegative, ut*ut = 0, which implies ut = 0 and hence,
u = 0.

We have thus completed the proof of the following theorem.

THEOREM 2. Let g,h be C°° p-forms and let fbe a C°° p-form such
that dpf is continuous in (P, t), for any λ. Then the Cauchy problem
(1.1), (1.2) has one and only one solution. The solution is a C°° p-form
and is given by (5.5).

The assumption that the manifold M is C°° can be weakened. Indeed,
the theory of differential forms used above remains valid under the
assumption that the metric tensor is C5 (Gaffney [3]; see also Friedrichs
[2]). The assumptions on /, g, h can also be weakened without any
modification of the preceding proof of Theorem 2.

We need the assumptions:
(A) The metric tensor g{J belongs to C[ΛΓ/2]+2 and to C5, and c belongs
to C[*/2]+1 (recall that c g 0).
(B) The form g belongs to C [ΛΓ/2]+3 and Lί{N+4mg belongs to C\
(C) The form h belongs to C W 2 3 + 2 and LίiN+2)/2% belongs to C1.
(D) The form / and its first [N/2] + 2 p-derivatives are continuous for
PeM, 0 ^ t ^ b (for any 6 > 0); LC(*+2)/2]/ and its first p-derivatives
are continuous for PeM, 0 ^ t <£ 6.

THEOREM 2'. Under the assumptions (A) — (D), there exists one
and only one solution of the Cauchy problem (1.1), (1.2). It is given
by (5.5).

The assertion of Theorem 2' remains valid if we further weaken
the assumptions (A) — (D) by replacing the classes of continuous deriva-



1278 AVNER FRIEDMAN

tives Cq by classes of "strong" derivatives Wξ (see [6]), assuming that

6. The heat equation. The method of § 5 can easily be extended
to solve the system (1.4), (1.5). The formal solution is

(6.1) u{Pf t) = Σ gnωn(P)e-*»> + Σ ωn{P)\
n=l n = l JO

We shall need the assumptions:
(A') gi3 belong to CίNI21+1 and to C5, and e belongs to CίNI*\
(B') The form g belongs to C W 2 ] + 1 and LίNl*g belongs to C\

THEOREM 3. Under the assumption (A'), (B'), (D) there exists a
unique solution of the system (1.4), (1.5). It is given by (6.1).

REMARK 1. The assumption c ̂  0 is not needed for the validity of
Theorem 3 since it can be achieved by a transformation u = eatu for
any constant a ^ c.

REMARK 2. Assuming c ^ 0 , / ^ 0 , w e can rewrite (6.1) as an operator
equation

(6.2) Tt = H-

where {μfc} is the sequence {λ̂ } taken without multiplicities, Hk is the
projection into the space of eigenforms corresponding to μkf H corre-
sponds to μ0 = 0, and Tt is the operator which maps g into the solution
u, that is, u{P, t) = Ttg(P). Formula (6.2) was derived, in a different
way (for c ~ 0) by Milgram and Rosenbloom [10].
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