SOME EXTREMAL PROPERTIES OF LINEAR COM-
BINATIONS OF KERNELS ON RIEMANN
SURFACES

GEORGES G. WEILL

1. Introduction. Let I', be the Hilbert space of analytic differenti-
als of finite Dirichlet norm on an open Riemann surface. We shall
consider analytic singularities which are finite linear combinations of
elements of the type

cidz 4 didz _
(2 — &))F+ z—§&;

s;dz = i
k=0
Let
N N o
sdz = >s;dz, >.di=0.
i=1 i=1

To a given singularity sdz there correspond Bergman kernels
k(z,8)dz and h,(z, £)dz
for the space I7,.

We now consider various subspaces ', < I',, and show that linear
combinations of the kernels for I, of the form

hdz + Mk dz ,

where ) is complex, extremalize an explicity given functional.
We proved in our thesis [2] that, for the space I',, of analytic ex-
act differentials on a planar Riemann surface,

1 90
k = —— o o d
sdz 2 62 (pl p) 2
hdz = ——; —aaz (o, + p)dz

where p, and p, are Sario’s principal functions with the corresponding
singularities [1, Chapter III].

Here we show that the right hand sides still enjoy the same pro-
perties on an arbitrary Riemann surface, for the subspace I", N I,,,, where
r,,. ={adz: adzel,, S adz = 0, v any dividing cycle} , and I", is gene-

Y
rated over the complex numbers by {I',} = {adz: adz = 0p/dz, p a sin-
gle-valued harmonic function on W, with finite Dirichlet integral.}
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2. Inner products and singular differentials. We shall be con-
cerned here with the Hilbert space I', of analytic differentials on a given
Riemann surface W. The inner product of two analytic differentials
adz = adx + Bdy and a,dz = a,dx + B,dy is defined as;

(adz, a,dz), = — iga?zldzc% = S(ac‘rl + B BYdxdy .
w w

If we now consider differentials analytic on W, except for a singularity
of the type dz/(z — )™, m = 0, we delete a disk 0 of radius » about
z = ¢ and define for differentials bdz and b,dz analytic except for a
singularity of the above type, the inner product

(bdz, b,dz),, = lim (bdz, bd2),—s ,

which amounts to considering the Cauchy principal value for the inner
product. In the case of a singularity dz/(z — &) — dz/(z — &,), we re-
place ¢ by disks about z = ¢, and z =¢,, plus a narrow strip along a
cut joining 2z = ¢, to 2 = &, and define in the same fashion the inner
product by a Cauchy limit.

The previous remarks may be extended to finite linear combinations
of singularities of the type

dp — = c¢idz didz
R Te—o)

provided >\¥,d? = 0.

3. Esxtremal properties of the kernels. Let sdz = 37X, s;dz be a
singularity differential and k.dz, h,dz be the Bergman kernels corre-
spond to that singularity. We shall consider linear combinations

(B, + Nk)dz
which are normalized in the sense that they all exhibit the same sin-
gularity.

We recall that for l(z)dze I",, the Bergman kernels corresponding
to a singularity sdz, enjoy the following properties:

o _2mi(g)
for sdz = W , m=0 (ldz, kdz) = T D!
(ldz, hdz) =0
for sdz = 9% 2 (dz, k.dz) = — (ldz, hsdz)]-——EZTCS lde
=8 22— ¢

where ¢ is a path from &; to ¢,.
For sdz = as,dz + bs.dz, (a, b constant),



SOME EXTREMAL PROPERTIES OF LINEAR COMBIMATIONS 1461

k,dz = ak,dz + bk, dz

h,dz = ah,dz + bhydz .
Such a linear property is a consequence of the uniqueness of the ker-
nels. Notice that in particular: (Idz, k,dz) = a(ldz, k,dz) + b(ldz, k.dz).
Let now a,dz be a differential, analytic except for the singularity sdz.
We form

lla.dz — (b, + Ne)dz || * = || a.dzl” — [[ hudz ||" + [ N[ || Bodz]f®

1 _
(1) + 2Re((h, — a,)dz, h.dz) + 2Rex((h, — a,)dz, k,dz) .

Assume now that in a disk about z =¢;
hdz = s;dz + Zb (2 — ¢&;)*d=
a,dz = s;dz + kzzo ai(z — &;)dz .
We then compute:
2Re((h, — a,)dz, hodz) = — 47 i RleS (h, — a)dz ,

2RX(h, — )4z, kd2) = 47 3] Rex[ S ﬁ’T“l)C_ G+ d S (h, —a,)dz
k=1 cy

using the linear property of the kernels, with respect to the coefficients
of the singularity. We now write (1) in the following form:

la,de || — 4n L Re [; Z“jr“k + (% — 1, g (@, — s)dz]: | ode |

R s _ y s xb,,c i _ i _
%Pl e | — 47 35 Re| 3 2258 4 (= ) |1, — 5)dz
+ |la,dz — (h, + Nk)dz | .

We can now study the value of the bracket in the functional, and
prove that

ﬁ[ﬁ X+1 Xél'fgcj(hs - s)dz] —0.

We shall summarize our results in a theorem:

THEOREM IIT A. Let sdz = >, s,dz where

A — o cidz didz
s 2='° (7 — &)+ * (—¢

be an analytic singularity with >, d? = 0.
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Let k,dz, h,dz be the Bergman kernels corresponding to sdz, and
let N be a complex parameter.
Then the linear combination (h, + \k,)dz minimizes the functional:

2 _ J = Naici 5 —jg _
lade [} — 4z 35 Re[kE:_‘,o U G- 10 @ s)dz]

over the class of differentials a,dz, analytic except for the singularity
sdz. The minimum is

kel + 4x 3% Red' | (h, — s)dz + |\ || Rdz |,
i=1 7

and the deviation from the minimum is
lla.dz — (h, + Me)dz|]* .
Proof. h,dz + \e®k,dz for 6 real is a competing function; therefore:

J

I hdz | — | )| edz | — 4 ﬁ Re [i Zif’ibi + O —1)T gcj(hs — s)dz]

k=0

N o Y ,—i0=ihi
<||hdz|f — |\ [ kdz || — 47 2[2'—“‘_”2 fib"

+ (Rei® — 1)d Sw_(hs - s)dz] :

It follows that

>, Re [i AGibL + X "S (h, — s)dz]
=t °s

J

= SRe {5 2 5 | — 9)az]}
j =0 k + 1 ¢y

which is only possible if the bracket is real. It cannot be real fer all
A except if it is equal to zero.

4. Particular cases-applications. Assume now that adz = (8p/dz)dz,
where p is a single-valued harmonic function on W, except for a sin-
gularity Re S(z) = 3%, Re S;(z), with

— i — ¢, > z
ReS;(z) = d’ log |z — &;| +Re[k2=.0 (—k—1)(z — &)+ ]

where d? is real. The singularity of (6p/0z)dz is then sdz = >, s;dz,
with

didz i = cidz

dez: Vs
z2—§; k=0 (L)
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Moreover if p = Re {S;(z) + Xiv=0 Ai(z — £;)*} near z = ¢; and
9P g, — s;dz + X aj(z — &),
0z k=0

it follows that Ai.,=ai/k+1 for k = 0. We notice furthermore that
||adz ||* = 2(B(p) — A(p)), where B(p) = Sﬁpdp* (B the ideal boundary of
w) and A(p) = 2r 31, dfg (@, — s)dz . The functional to be minimized
becomes: K

2[B(p) —on ﬁ Re [g Za—fi + degcj(as — s)dz]] .

We notice that the differentials adz = (0p/6z)dz with p single valued
harmonic function generate a subspace I',cI",. If k,,dz and h,,dz are
the Bergman kernels for I",, they correspond to two functions K
harmonic and H, harmonic except for the singularity Re S(z) and such
that:

k,dz = 9K, 4,
02

hde = 2He g
0z

We can write the value of the minimum as:
2B(H,,) + [N [l kopdz | .
We now shall prove the following theorem.

THEOREM IV A: Let (0,,/02)dz and (8,,/02)dz be the analytic dif-
ferentials with singularity sdz, corresponding to the principal functions
p, and p,.. Then

%8/(12(1)1 - po)dz = kspdz
%a/dz(pl + po)dz = hspdz ’

where h,,dz and k,,dz are the orthogonal and reproducing kernels for
r,nr,, corresponding to the singularity sdz.

Proof. First, we know from the definition of p, and 7p,, that
(0,0/02)dz and (0,,/02)dz are elements of I", N I',,. Second, from (1.
Chapter III. Theorem 9E where only the notation is different), (9,,/02)dz
minimizes the same functional as bk,,dz — k,,dz (which corresponds to
A = —1), and (0,,/02)dz minimizes the same functional as (k,,dz + k,,)dz,
(which corresponds to A = 1). The theorem follows.

We shall consider here a family of functions P harmonic, except
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for a singularity of the type ReS(2); the periods of P vanish along all
dividing eycles. It follows that the differentials (0P/dz)dz are elements
of I'nNTI,,,, except for a singularity s(z)dz.

We shall call H, the function corresponding to %,dz, and K, the
one corresponding to k,,dz. The following results are consequences of
the main Theorem.

THEOREM IV B: Among all functions P with singularity 1/(z — £),
H, + \K, minimizes the functional B(P) — 2w Re)A,.

THEOREM IV C: Among all functions P with singularity log|(z—¢))/
& — &), H, + \K, minimizes B(P) — 2rRex(A} — A3).

THEOREM IV D: Among all functions P with singularity ReS(z),
H, minimizes the functional B(P).

We shall now consider exact differentials, analytic except for some
singularity s(z)dz = >}, s;(?)dz, which may be written f'(2)dz = df(z),
where f is a function analytic except for a singularity S(z) = >\, s,(2)
such that S'(z)dz = s(z)dz; then f=S;(z) + X, a.(z — ¢;)* near z = ¢;.
We proved [II] the existence of a non-zero reproducing kernel if W¢O0,,.
We shall now find a sufficient condition for the existence of an ortho-
gonal kernel. We recall that in the case of a planar Riemann surface

'n=rTyw+Ii.nry,.
We shall consider here Riemann surfaces on which
r=r,+r;y,.
We call such surfaces type Wy;. On a surface of type W,
w0 =+ I =0.
We then get the following lemmas:

LEMMA IV E: On a surface of type Wy, given a singularity
s(z)dz = dz/(z — &)™, m = 0, there exists a differential analytic exact,
except for the corresponding singularity.

Proof. Let @ be constructed as in [1, Chapter V. 18.19]. The
differential ® — 16* is square integrable and hence has the decomposi-
tion?.

0 — i0* = w, + 0, + O, = ©,, + OF, + O, + O .
It follows that

n=@—weo—whe=i@*+wiﬁ+w;
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is harmonic exact except for the singularity and so is 7*. We may
write 7 = ¢ + 4 where + is analytic and ¢ is analytic except for the
singularity. It follows that ¢ is the differential mentioned in the lemma;
¢ = dF, where F, is an analytic function except for the singularity

—1
(m + 1)(z — )"

and from [2] there exists an orthogonal kernel dH,, for I",, on Wj.

Note. An analogous proof works for differentials with s(z)dz=
dz[(z — &) — dz[/(z — &,); we have only to discard the periods about
z=2¢; and 2 = ¢,

From the existence of orthogonal kernels for I”,, we can state the
following theorems; here B(f) = %S fdf; H, and K, are analytic func-

8
tions whose differentials are respectively the orthogonal and reproduec-
ing kernels for I",,, corresponding to the singularity.

THEOREM IV F: Among all functions f analytic except for a
simple pale at z =& with expansion f =c¢/(z —¢) + a(z — &) +--+ in
a netghborhood of z =¢, H, + MK, minimizes the functional B(f) +
2 Re\c,«,.

THEOREM IV G: Among all functions f(2) analytic except for the
singularity

RS ¢
R R =

(S

the function H, minimizes B(f).
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