ON DENSITIES OF SETS OF LATTICE POINTS

BETTY KVARDA

1. Introduction. Let A be a set of positive integers, and for any positive integer x denote by A(x) the number of integers of A which are not greater than x. Then the Schnirelmann density of A is defined [4] to be the quantity

$$\alpha = \operatorname{glb} \frac{A(x)}{x}$$
.

For any k sets A_1, \dots, A_k of positive integers, $k \ge 2$, let the sum set $A_1 + \dots + A_k$ be the set of all nonzero sums $a_1 + \dots + a_k$ for which each $a_i, i = 1, \dots, k$, is either contained in A_i or is 0. Let kA be the set $A + \dots + A$ with k summands.

Schnirelmann [4] and Landau [2] have shown that if A and B are two sets of positive integers with C = A + B, and if α , β , γ are the Schnirelmann densities of A, B, C, respectively, then $\gamma \ge \alpha + \beta - \alpha\beta$, and if $\alpha + \beta \ge 1$ then $\gamma = 1$. They have also shown that if A is a set of positive integers whose Schnirelmann density is positive then A is a basic sequence for the set of positive integers, or, in other words, there exists a positive integer k such that every positive integer can be written as the sum of at most k elements of A.

We will show that by using extensions of the methods employed by Schnirelmann and Landau the above results can be generalized to certain sets of vectors in a discrete lattice (for definition and discussion see [3, pp. 28-31] or [5, pp. 141-145]). Without loss of generality it may be assumed that the components of the vectors in such a lattice are rational integers. The usual identification of algebraic integers with lattice points then gives an immediate extension of these results to algebraic integers.

2. Notation and definitions. Let Q_n be the set of all n-dimensional lattice points (x_1, \dots, x_n) , $n \ge 1$, for which each x_i , $i = 1, \dots, n$, is a nonnegative integer and at least one x_i is positive. Define the sum of subsets of Q_n in the same manner as was done for sets of positive integers, and for any subsets A and B of Q_n let A - B denote the set of all elements of A which are not in B. If A and B are subsets of Q_n and B is finite let A(B) be the number of elements in $A \cap B$.

DEFINITION 1. A finite nonempty subset R of Q_n will be called a

Received August 10, 1962, and in revised form February 27, 1963. The author is indebted to the referee for a suggestion which has greatly simplified the proof of Theorem 2.

fundamental subset of Q_n or, briefly, a fundamental set, if whenever an element (r_1, \dots, r_n) is in R then all elements (x_1, \dots, x_n) of Q_n such that $x_i \leq r_i$, $i = 1, \dots, n$, are also in R.

DEFINITION 2. Let A be any subset of Q_n . The density of A is defined to be the quantity

$$\alpha = \operatorname{glb} \frac{A(R)}{Q_n(R)}$$

taken over all fundamental sets R.

3. Extension of the Landau-Schnirelmann results. Throughout this section we let A and B be subsets of Q_n with C = A + B, and let α, β, γ be the densities of A, B, C, respectively.

Theorem 1. If $\alpha + \beta \ge 1$ then $\gamma = 1$.

Proof. Assume $\gamma < 1$. Then there exists a fundamental set R for which $C(R) < Q_n(R)$, which in turn implies that there exists an element (x_1^0, \dots, x_n^0) in $Q_n - C$. Let R_0 be the set of all elements (x_1, \dots, x_n) in Q_n for which $x_i \leq x_i^0$, $i = 1, \dots, n$. Then for any (x_1, \dots, x_n) in R_0 either (x_1, \dots, x_n) is in A, or $(x_1, \dots, x_n) = (x_1^0, \dots, x_n^0) - (b_1, \dots, b_n)$ for some (b_1, \dots, b_n) in $B \cap R_0$, or neither, but not both. In particular, (x_1^0, \dots, x_n^0) is neither. Hence,

$$A(R_0) + B(R_0) \leq Q_n(R_0) - 1$$
.

and

$$lpha + eta \leq rac{A(R_{\scriptscriptstyle 0}) + B(R_{\scriptscriptstyle 0})}{Q_{\scriptscriptstyle n}(R_{\scriptscriptstyle 0})} < 1$$

which is a contradiction. Therefore $\gamma = 1$.

Theorem 2. $\gamma \ge \alpha + \beta - \alpha\beta$.

Proof. Let ω_i , $1 \le i \le n$, be that vector in Q_n for which the *i*th component is 1 and the other components, if any, are 0. If any one of the vectors $\omega_1, \dots, \omega_n$ is missing from A then $\alpha = 0$ and the theorem is trivial. Hence we assume all the vectors $\omega_1, \dots, \omega_n$ are in A. We must show

(1)
$$\frac{C(R)}{Q_n(R)} \ge \alpha + \beta - \alpha\beta$$

for all fundamental sets R. If $C(R) = Q_n(R)$ then (1) holds, since

 $(1-\alpha)(1-\beta) \ge 0$ implies $1 \ge \alpha + \beta - \alpha\beta$. Therefore we assume $C(R) < Q_n(R)$ and, consequently, $A(R) < Q_n(R)$.

Let H=R-A. We will show that there exist vectors $a^{(1)}, \dots, a^{(s)}$ in A and sets L_1, \dots, L_s with the following properties.

- (i) $L_i \subseteq H$ and L_i is not empty, $i = 1, \dots, s$.
- (ii) The sets $L_i' = \{x a^{(i)} | x \in L_i\}$ are fundamental sets.
- (iii) $L_i \cap L_j = \phi$ for $i \neq j$.
- (iv) $H = L_1 \cup \cdots \cup L_s$.

Let the elements of R be ordered so that $(x_1, \dots, x_n) > (x_1', \dots, x_n')$ if $x_1 > x_1'$ or if $x_1 = x_1', \dots, x_p = x_p', x_{p+1} > x_{p+1}'$. For every $h = (h_1, \dots, h_n)$ in H, let A_h be the set of all (a_1, \dots, a_n) in A such that each $a_i \leq h_i$. The sets A_h are not empty since $\omega_i \in A$ for $i = 1, \dots, n$. The A_h are finite sets, hence they contain (in our ordering) a largest vector. Let $a^{(1)}, \dots, a^{(s)}$ be all the distinct vectors that are largest vectors in any A_h . Let A_h be the set of all vectors x in A_h such that A_h is the largest vector in A_n .

That (i), (iii), and (iv) are satisfied follows immediately from this definition of the L_i . To prove (ii) consider a vector $y = (y_1, \dots, y_n)$ such that

$$(2) x_i \geq y_i \geq \alpha_i^{(i)},$$

where $x=(x_1,\,\cdots,\,x_n)$ is in L_i and $y\neq a^{(i)}$. Suppose $y\in L_k$, $k\neq i$. Then

$$(3) x_i \ge y_i \ge a_i^{(k)}$$

and $a^{(k)} \ge a^{(i)}$. But (2) and (3) and $x \in L_i$ imply $a^{(k)} \le a^{(i)}$, hence $a^{(k)} = a^{(i)}$. Similarly, $y \in A$ implies $y = a^{(i)}$. This proves (ii).

If $b \in B \cap L'_i$ then $a^{(i)} + b$ is in $C \cap L_i$, hence in C - A. Therefore,

$$egin{aligned} C(R) & \geq A(R) + B(L_1') + \cdots + B(L_s') \ & \geq A(R) + eta[Q_n(L_1') + \cdots + Q_n(L_s')] \ & = A(R) + eta[Q_n(L_1) + \cdots + Q_n(L_s)] \ & = A(R) + eta[Q_n(H)] \ & = A(R) + eta[Q_n(R)] \ & = (1 - eta)A(R) + eta[Q_n(R)] \ & \geq (1 - eta)lpha[Q_n(R)] + eta[Q_n(R)] \ , \end{aligned}$$

and

$$rac{C(R)}{Q_n(R)} \geq lpha + eta - lpha eta$$
 ,

which completes the proof.

COROLLARY 1. Let A_1, \dots, A_k be any k subsets of $Q_n, k \geq 2$, let α_i be the density of A_i for $i = 1, \dots, k$, and let $d(A_1 + \dots + A_k)$ be the density of $A_1 + \dots + A_k$. Then

$$1-d(A_1+\cdots+A_k)\leq (1-\alpha_1)\cdots(1-\alpha_k).$$

Proof. If k=2 then Theorem 2 implies that $1-d(A_1+A_2) \leq 1-\alpha_1-\alpha_2+\alpha_1\alpha_2=(1-\alpha_1)\,(1-\alpha_2)$. Hence assume $1-d(A_1+\cdots+A_{k-1}) \leq (1-\alpha_1)\cdots(1-\alpha_{k-1})$. Then

$$1 - d(A_1 + \cdots + A_{k-1} + A_k) \le [1 - d(A_1 + \cdots + A_{k-1})] (1 - \alpha_k)$$

 $\le (1 - \alpha_1) \cdots (1 - \alpha_{k-1}) (1 - \alpha_k)$.

COROLLARY 2. If A is any subset of Q_n with density $\alpha > 0$ then there exists an integer k > 0 such that $kA = Q_n$.

Proof. There exists an integer m>0 such that $(1-\alpha)^m \le 1/2$. Let d(mA) be the density of mA. Then Corollary 1 implies that $1-d(mA) \le (1-\alpha)^m \le 1/2$, or $d(mA) \ge 1/2$. From Theorem 1, $d(mA)+d(mA) \ge 1$ implies d(2mA)=1, or $2mA=Q_n$.

4. Remark. We may identify Q_2 with the set of nonzero Gaussian integers x + yi for which x and y are both nonnegative rational integers. Luther Cheo [1] defined density for subsets of this Q_2 as follows, using our notation.

DEFINITION 3. Let $x_0 + y_0 i$ be any element of Q_2 and S the set of all x + y i in Q_2 such that $x \le x_0$ and $y \le y_0$. Then for any subset A of Q_2 the density of A is the quantity

$$lpha_{\scriptscriptstyle c} = \operatorname{glb}_{\scriptscriptstyle S} rac{A(S)}{Q_{\scriptscriptstyle 2}\!(S)}$$
 .

Cheo proved Theorem 1 for his density and also a theorem which implies that if ji is in A for all $j=1,2,\cdots$, and if α_c , β_c , γ_c are the Cheo densities of A, B, C=A+B, respectively, then

$$\gamma_c \geq \alpha_c + \beta_c - \alpha_c \beta_c$$
.

We cannot remove the requirement that all ji be in A by means of an argument like that used to establish Theorem 2 since it would be necessary to partition H in such a way that the sets L'_i are of the type S used in defining the Cheo density, and this is not always possible. Consider, for example, the set $R = \{x + yi \colon x + yi \text{ is in } Q_2, x \leq 4, y \leq 3\}$, and let $A \cap R = \{1, i, 3 + 3i\}$. Then H = R - A cannot be so partitioned, as the reader can easily verify.

REFERENCES

- 1. L. P. Cheo, On the density of sets of Gaussian integers, Amer. Math. Monthly 58 (1951), 618-620.
- 2. E. Landau, Über einige neuere Fortschritte der additiven Zahlentheorie, Cambridge Univ. Press, London, 1937.
- 3. H. B. Mann, Introduction to algebraic number theory, The Ohio State Univ. Press, Columbus, 1955.
- 4. L. Schnirelmann, Über additive Eigenschaften von Zahlen, Math. Ann., $\mathbf{107}$ (1933), 649–690.
- 5. H. Weyl, Algebraic theory of numbers, Princeton Univ. Press, Princeton, 1940.

SAN DIEGO STATE COLLEGE