ON DENSITIES OF SETS OF LATTICE POINTS

BETTY KVARDA

1. Introduction. Let A be a set of positive integers, and for any positive integer *x* denote by *A(x)* the number of integers of *A* which are not greater than *x.* Then the Schnirelmann density of *A* is defined [4] to be the quantity

$$
\alpha = \mathop{\rm glb}\limits_x \frac{A(x)}{x} \; .
$$

For any *k* sets A_1, \dots, A_k of positive integers, $k \ge 2$, let the sum set $A_1 + \cdots + A_k$ be the set of all nonzero sums $a_1 + \cdots + a_k$ for which each a_i , $i = 1, \dots, k$, is either contained in A_i or is 0. Let kA be the set $A + \cdots + A$ with k summands.

Schnirelmann [4] and Landau [2] have shown that if *A* and *B* are two sets of positive integers with $C = A + B$, and if α, β, γ are the Schnirelmann densities of A, B, C, respectively, then $\gamma \ge \alpha + \beta - \alpha \beta$, and if $\alpha + \beta \ge 1$ then $\gamma = 1$. They have also shown that if A is a set of positive integers whose Schnirelmann density is positive then *A* is a basic sequence for the set of positive integers, or, in other words, there exists a positive integer *k* such that every positive integer can be written as the sum of at most *k* elements of *A.*

We will show that by using extensions of the methods employed by Schnirelmann and Landau the above results can be generalized to certain sets of vectors in a discrete lattice (for definition and discussion see $[3, pp. 28-31]$ or $[5, pp. 141-145]$. Without loss of generality it may be assumed that the components of the vectors in such a lattice are rational integers. The usual identification of algebraic integers with lattice points then gives an immediate extension of these results to algebraic integers.

2. Notation and definitions. Let Q_n be the set of all *n*-dimensional lattice points (x_1, \ldots, x_n) , $n \ge 1$, for which each x_i , $i = 1, \ldots, n$, is a nonnegative integer and at least one *x{* is positive. Define the sum of subsets of Q_n in the same manner as was done for sets of positive integers, and for any subsets A and B of Q_n let $A - B$ denote the set of all elements of *A* which are not in *B.* If *A* and *S* are subsets of *Qn* and S is finite let *A(S)* be the number of elements in *A Π S.*

DEFINITION 1. A finite nonempty subset R of Q_n will be called a

Received August 10, 1962, and in revised form February 27, 1963. The author is indebted to the referee for a suggestion which has greatly simplified the proof of Theorem 2.

fundamental subset of Q_n or, briefly, a *fundamental set*, if whenever an element (r_1, \ldots, r_n) is in R then all elements (x_1, \ldots, x_n) of Q_n such that $x_i \leq r_i$, $i = 1, \dots, n$, are also in *R*.

DEFINITION 2. Let *A* be any subset of *Qⁿ .* The *density* of A is defined to be the quantity

$$
\alpha = \mathrm{glb}\, \frac{A(R)}{Q_{\scriptscriptstyle n}(R)}
$$

taken over all fundamental sets *R.*

3. Extension of the Landau-Schnirelmann results. Throughout this section we let A and B be subsets of Q_n with $C = A + B$, and let α , β , γ be the densities of A, B, C, respectively.

THEOREM 1. If $\alpha + \beta \geq 1$ then $\gamma = 1$.

Proof. Assume $\gamma < 1$. Then there exists a fundamental set R for which $C(R) < Q_n(R)$, which in turn implies that there exists an ${\rm element} \;\; (x_1^0, \; \cdots , \; x_n^0) \;\; {\rm in} \;\; Q_n - C. \;\; \; {\rm Let} \;\; R_0 \;\; {\rm be \;\; the \;\; set \;\; of \;\; all \;\; elements}$ (x_1, \dots, x_n) in Q_n for which $x_i \le x_i^0$, $i = 1, \dots, n$. Then for any (x_1, \dots, x_n) $\text{in} \,\, R_{\scriptscriptstyle{0}} \text{ either } (x_{\scriptscriptstyle{1}}, \, \cdots\!, x_{\scriptscriptstyle{n}}) \text{ is in } A, \text{ or } (x_{\scriptscriptstyle{1}}, \, \cdots\!, x_{\scriptscriptstyle{n}}) = (x_{\scriptscriptstyle{1}}^{\scriptscriptstyle{0}}, \, \cdots\!, x_{\scriptscriptstyle{n}}^{\scriptscriptstyle{0}}) - (b_{\scriptscriptstyle{1}}, \, \cdots\!, b_{\scriptscriptstyle{n}})$ for some (b_1, \dots, b_n) in $B \cap R_0$, or neither, but not both. In particular, (x_1^0, \ldots, x_n^0) is neither. Hence,

$$
A(R_{\scriptscriptstyle 0})\,+\,B(R_{\scriptscriptstyle 0})\leqq Q_{\scriptscriptstyle n}(R_{\scriptscriptstyle 0})-1\;,
$$

and

$$
\alpha+\beta\leq \frac{A(R_{\scriptscriptstyle 0})+B(R_{\scriptscriptstyle 0})}{Q_{\scriptscriptstyle n}(R_{\scriptscriptstyle 0})}<1
$$

which is a contradiction. Therefore $\gamma = 1$.

THEOREM 2. $\gamma \ge \alpha + \beta - \alpha \beta$.

Proof. Let ω_i , $1 \leq i \leq n$, be that vector in Q_n for which the *i*th component is 1 and the other components, if any, are 0. If any one of the vectors ω_1 , \cdots , ω_n is missing from A then $\alpha = 0$ and the theorem is trivial. Hence we assume all the vectors $\omega_1, \dots, \omega_n$ are in A. We must show

(1)
$$
\frac{C(R)}{Q_n(R)} \geq \alpha + \beta - \alpha \beta
$$

for all fundamental sets R . If $C(R) = Q_n(R)$ then (1) holds, since

 $(1 - \alpha)(1 - \beta) \ge 0$ implies $1 \ge \alpha + \beta - \alpha\beta$. Therefore we assume $C(R) < Q_n(R)$ and, consequently, $A(R) < Q_n(R)$.

Let $H = R - A$. We will show that there exist vectors $a^{_{(1)}}, \dots, a^{_{(s)}}$ in *A* and sets L_1, \dots, L_s with the following properties.

- (i) $L_i \subseteq H$ and L_i is not empty, $i = 1, \dots, s$.
- (ii) The sets $L_i' = \{x a^{(i)} | x \in L_i\}$ are fundamental sets.
- (iii) $L_i \cap L_j = \phi$ for $i \neq j$.
- (iv) $H = L_1 \cup \cdots \cup L_s$.

Let the elements of *R* be ordered so that $(x_1, \ldots, x_n) > (x'_1, \ldots, x'_n)$ $x_1 > x'_1$ or if $x_1 = x'_1, \dots, x_p = x'_p, x_{p+1} > x'_{p+1}$. For every $h = (h_1, \dots, h_n)$ in *H*, let A_k be the set of all (a_1, \dots, a_n) in A such that each $a_i \leq h_i$. The sets A_k are not empty since $\omega_i \in A$ for $i = 1, \dots, n$. The A_k are finite sets, hence they contain (in our ordering) a largest vector. Let $(a_1, \ldots, a^{(s)})$ be all the distinct vectors that are largest vectors in any *A_h*. Let L_i be the set of all vectors x in H such that $a^{(i)}$ is the largest vector in *A^x .*

That (i), (iii), and (iv) are satisfied follows immediately from this definition of the L_i . To prove (ii) consider a vector $y = (y_1, \dots, y_n)$ such that

$$
(2) \t x_j \geq y_j \geq a_j^{(i)} ,
$$

where $x = (x_1, \dots, x_n)$ is in L_i and $y \neq a^{(i)}$. Suppose $y \in L_k$, $k \neq i$. Then

$$
(3) \t x_j \geq y_j \geq a_j^{(k)}
$$

and $a^{_{(k)}}\geq a^{_{(i)}}$. But (2) and (3) and $x\in L_i$ imply $a^{_{(k)}}\leq a^{_{(i)}},$ hence $a^{_{(k)}}=$ (*i*). Similarly, $y \in A$ implies $y = a^{(i)}$. This proves (ii).

If $b \in B \cap L'_i$ then $a^{(i)} + b$ is in $C \cap L_i$, hence in $C - A$. Therefore,

$$
C(R) \geq A(R) + B(L'_1) + \cdots + B(L'_s)
$$

\n
$$
\geq A(R) + \beta [Q_n(L'_1) + \cdots + Q_n(L'_s)]
$$

\n
$$
= A(R) + \beta [Q_n(L_1) + \cdots + Q_n(L_s)]
$$

\n
$$
= A(R) + \beta [Q_n(R)]
$$

\n
$$
= A(R) + \beta [Q_n(R) - A(R)]
$$

\n
$$
= (1 - \beta)A(R) + \beta [Q_n(R)]
$$

\n
$$
\geq (1 - \beta) \alpha [Q_n(R)] + \beta [Q_n(R)]
$$
,

and

$$
\frac{C(R)}{Q_n(R)} \geqq \alpha + \beta - \alpha \beta ,
$$

which completes the proof.

COROLLARY 1. Let A_1, \dots, A_k be any k subsets of $Q_n, k \geq 2$, let α_i be the density of A_i for $i = 1, \dots, k$, and let $d(A_1 + \dots + A_k)$ be *the density of* $A_1 + \cdots + A_k$ *. Then*

$$
1-d(A_1+\cdots+A_k)\leq (1-\alpha_1)\cdots(1-\alpha_k).
$$

Proof. If $k = 2$ then Theorem 2 implies that $1 - d(A_1 + A_2) \leq$ $1 - \alpha_1 - \alpha_2 + \alpha_1\alpha_2 = (1-\alpha_1) (1-\alpha_2)$. Hence assume $1 - d(A_1 + \cdots + A_{k-1}) \le$ $(1 - \alpha_1) \cdots (1 - \alpha_{k-1})$. Then

$$
\begin{aligned} 1 - d(A_1 + \ \cdots \ + A_{k-1} + A_k) &\leq [1 - d(A_1 + \ \cdots \ + A_{k-1})] \, (1 - \alpha_k) \\ &\leq (1 - \alpha_1) \ \cdots \ (1 - \alpha_{k-1}) \, (1 - \alpha_k) \ \ . \end{aligned}
$$

COROLLARY 2. If A is any subset of Q_n with density $\alpha > 0$ $exists$ an integer $k > 0$ such that $kA = Q_n$.

Proof. There exists an integer $m > 0$ such that $(1 - \alpha)^m \leq 1/2$. Let $d(mA)$ be the density of mA . Then Corollary 1 implies that 1 $d(mA) \leq (1 - \alpha)^m \leq 1/2$, or $d(mA) \geq 1/2$. From Theorem 1, $d(mA)$ + $d(mA) \ge 1$ implies $d(2mA) = 1$, or $2mA = Q_n$.

4. Remark. We may identify Q_2 with the set of nonzero Gaussian integers *x + yi* for which *x* and *y* are both nonnegative rational integers. Luther Cheo [1] defined density for subsets of this Q_2 as follows, using our notation.

DEFINITION 3. Let $x_0 + y_0 i$ be any element of Q_2 and S the set of all $x + yi$ in Q_2 such that $x \leq x_0$ and $y \leq y_0$. Then for any subset A of *Q²* the *density* of A is the quantity

$$
\alpha_{c}=\mathrm{glb}\frac{A(S)}{Q_{2}(S)}.
$$

Cheo proved Theorem 1 for his density and also a theorem which implies that if *ji* is in A for all $j = 1, 2, \cdots$, and if $\alpha_e, \beta_e, \gamma_e$ are the Cheo densities of $A, B, C = A + B$, respectively, then

$$
\gamma_{\scriptscriptstyle c} \geqq \alpha_{\scriptscriptstyle c} + \beta_{\scriptscriptstyle c} - \alpha_{\scriptscriptstyle c} \beta_{\scriptscriptstyle c} \; .
$$

We cannot remove the requirement that all *ji* be in *A* by means of an argument like that used to establish Theorem 2 since it would be necessary to partition *H* in such a way that the sets L'_{i} are of the type *S* used in defining the Cheo density, and this is not always possible. Consider, for example, the set $R = \{x + yi : x + yi \text{ is in } Q_2, x \leq 4, y \leq 3\},$ and let $A \cap R = \{1, i, 3 + 3i\}$. Then $H = R - A$ cannot be so partitioned, as the reader can easily verify.

REFERENCES

1. L. P. Cheo, *On the density of sets of Gaussian integers,* Amer. Math. Monthly 58 (1951), 618-620.

2. E. Landau, *ϋber einige neuere Fortschritte der additiven Zahlentheorie,* Cambridge Univ. Press, London, 1937.

3. H. B. Mann, *Introduction to algebraic number theory,* The Ohio State Univ. Press, Columbus, 1955.

4. L. Schnirelmann, *ϋber additive Eigenschaften von Zahlen,* Math. Ann., **107** (1933), 649-690.

5. H. Weyl, *Algebraic theory of numbers,* Princeton Univ. Press, Princeton, 1940.

 $\bar{\Gamma}$

SAN DIEGO STATE COLLEGE