
FINITE NETS, II. UNIQUENESS AND IMBEDDING

R. H. BRUCK

l Introduction* In discussing the present paper we have a
choice of three languages: (a) the language of orthogonal latin squares;
{b) the language of incomplete block designs, as used in connection
with design of experiments; and (c) the geometric language of nets.
As far as proofs are concerned, either (b) or (c) affords a useful sym-
metry which is missing in (a); it is merely a matter of taste that we
choose (c). Here let us begin with (a).

Let C be a collection of t mutually orthogonal latin squares of
side n. We assume n > 1, t ^ 1. The inequality t ^ n — 1 necessarily
holds; if t — n — 1, C is said to be complete. As is well known, a
complete set of orthogonal latin squares of side n determines and is
determined by an affine plane of order n. We define the degree, k,
and deficiency, df of C by

(1.1) fc = ί + 2 , d = n - 1 - ί ,

so that

(1.2) k + d = n + 1 .

Here k is, in language (b), the number of constraints: one constraint
for the rows of the squares, one for the columns, and one for each
of the t squares. On the other hand, if C can be enlarged to a com-
plete set, C , of n — 1 mutually orthogonal latin squares, then d is
the number of squares in C which are not in C; or the number of
constraints missing in C. In language (c) we may describe C as a
net N of order n, degree k, deficiency d. For an example of such a
net N, we may begin with an affine plane π of order n—with its n2

points and n + 1 parallel classes of lines, n lines per class—and retain
the points but delete some d parallel classes.

Before discussing the results of the paper, it will be convenient
to define two polynomials p{x), q(x):

<1.3) p(x) = \x" + x* + x* + lx ,

(1.4) q(x) = 2x*-x2-x + l,
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We note from (1.1) that the side n and deficiency d of the collection
C (of mutually orthogonal latin squares) satisfy the inequality n ^
d + 2. Assuming that d ^ 1, we are interested in conditions under
which C can be completed; that is, can be enlarged to a complete set,
C", of mutually orthogonal latin squares of side n. Our first result is:

(A) Ifn>(d — I)2, and if C can be completed at all, then it
can be completed uniquely, aside from trivialities.

This follows from Theorem 3.1. However, examples show that
the condition n > (d — I)2 does not ensure completion. On the other
hand:

(B) If n> p(d — 1), C can always be completed.

This follows from Theorem 4.3. The result (B) is known to be
best possible for d = 1 (folk-lore) and for d — 2 (Shrikhande [9]).
Whether (B) is best possible for d > 2 is unknown to the author.
Before mentioning further results, intermediate between (A) and (B),
which take into account the structure of C, it seems worthwhile to
give a simple consequence of (B).

Bose and Shrikhande defined m(n) to be the maximum number of
mutually orthogonal latin squares of side n. As a result of the work
of Bose, Shrikhande and Parker (see, for example, [1]), Chowla, Erdos
and Straus [5] were able to prove that

(1.5) m{n) > in1191

for all sufficiently large n (the lower bound on n being unknown.) In
view of (B) we may state a dichotomy:
Either ( I ) m(n) = n — 1

or (II) n ^ p(n - 2 - m(n)) < i[n - 1 - m(n)]\
As an easily stated consequence:

(1.6) / / m(n) <n—l, then m{n) <n- 1- (2n)114 .
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We note that (I) holds precisely when there exists an affine or projective
plane of order n. Thus (I) holds for infinitely many n, for example,
for every prime-power. However, by the Bruck-Ryser Theorem (Bruck
and Ryser [3]), (II) also holds for infinitely many n. We may add
that, just as Chowla et al. state that their methods would not allow
(1.5) to be improved to

«(1.7) m(n) > n112

(although (1.7) is not known to be false for large n), so it seems
likely that the present methods would not allow (1.6) to be improved to

•(1.8) If m(n) <n — l , then m(n) S n - 2 - n1'2 .

Note that (1.8) would result from (II) if we could replace p(x) by x2.
—A more reasonable possibility is that p(x) could be replaced by q(x),
by dint of a more penetrating discussion of maximal incomplete sets
•of orthogonal latin squares. This would give an exponent 1/3, instead
of 1/2, in (1.8).—But even if (1.7), (1.8) could both be proved, they
would still leave a great gap in our knowledge of m(ri).

The refinements of (A), (B) are conveniently stated in terms of
graphs. From the collection C—or, equivalently, from the correspond-
ing net N of order n, degree fc, deficiency d—we define a graph Gx

with n2 vertices, whose edges are the unordered pairs of distinct points
lying on a common line of the net N. If G2 is the complementary
graph of Gx then G2 has (at least superficially) the type of structure
that one would associate with the graph of a net of order n, degree
d, deficiency k. (Note that the roles of k and d have been inter-
changed.) We abstract from this superficial structure a definition of
what we call a pseudo net-graph of order n, degree c£, deficiency k.
Our first observation is that, to enlarge C to a complete set C", or,
equivalently, to imbed the net N in an affine plane of order n, we
must introduce a suitable collection of lines into the complimentary
graph G2 in such a way as to turn G2 into the graph of a net of order
n, degree d, deficiency k. We actually prove our results for pseudo
net-graphs. Thus (B) is obtained as a consequence of:

(B') Ifn> p(d — 1), every pseudo net-graph of order n} degree
d is the graph of a uniquely defined net of order n, degree d.

The corresponding theorem for d = 2 was proved by Shrikhande
[10], who also refers to unpublished results of Dale Mesner for d ^ 2.
In the language (b) used by Shrikhande, (B') could be restated as:

(B") If n > p(d — 1), and if the parameters of the second kind
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for a partially balanced incomplete block design with n2 treatments
with two associate classes are given by

Ul = d(n - 1) , p\x = n - 2 + (d - l)(d - 2 ) , p\x = d(d - 1) ,

then the design has Ld association scheme.

Now we require the notion of a claw. If G is a pseudo net-graph,
a claw P, S of G is a pair consisting of a vertex P and a nonempty
set S of vertices distinct from P such that P is joined in G to every
vertex in S but no two vertices in S are joined in G. The order of
the claw is the cardinal number, \S\, of S. If G is the graph of a
net of degree d then, obviously, G has no claws of order d + 1. We
may state a partial converse (see Theorem 4.2):

(C) If n> 2(d — I)3, ami if G is a pseudo net-graph of order n,
degree d which possesses no claws of order d + 1, then G is the graph
of a uniquely defined net of order n, degree d.

This result is also given by Shrikhande [10] for d = 2. We may
remark here that the inequality in (C) could probably be sharpened to

n > 2(d - I)3 - (d - I)2 .

This could be done if the right-hand side of formula (4.7) in Lemma
4.2 could be replaced by d — 1, as seems likely.

To state our final result in this direction we need the notion of
a grand clique. A clique (of a pseudo-net graph G of order n, degree
d) is a set of vertices every two of which are joined in G. And a
grand clique is a maximal clique containing at least

n - (d - l)\d - 2)

vertices. Our result is (Theorem 4.1):

(D) Assume n > q(d — 1), and let G be a pseudo net-graph of
order n, degree d such that (i) no two distinct grand cliques of G
have more than one common vertex and (ii) G has no claws of order
d + 1. Then G is the graph of a uniquely defined net of order n,
degree d.

We may remark that, for d = 1 or 2, condition (i) of (D) may be
dropped. Indeed, in these cases, grand cliques have exactly n vertices,
and this simplifies matters considerably. On the other hand, for d > 2,
(i) is needed to help us prove that grand cliques have exactly n
vertices and are in fact the lines of a net.
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These are perhaps the main results of the paper. However, other
items are also worthy of note. In § 2 we find it worthwhile to
formalize the familiar process of "enumeratinng in two ways." We
feel that this process would repay formal study, just as the formal
study of equality has led to a rich theory of equivalence relations.
In § 5 (originally conceived as a section designed to end all study of
incidence matrices, but now recast) we uncover a one-to-one corre-
spondence, apparently unknown until the present, between sets of
k — 2 mutually orthogonal latin squares of side n and sets of k mutually
orthogonal matrices of order n\ (Theorem 5.1). The suitable modifi-
cation for pseudo net-graphs is given in Theorem 5.2. We also show
in § 5 that a conjecture concerning adjacency matrices of finite graphs
(originally advanced by Harary and disproved by Bose) is hopelessly
beyond repair.

The paper [4], of like title to the present one, was compressed at
the suggestion of the editors. A good deal of material—some of which
appears in almost unrecognizable form in §§ 3, 5 of the present paper—
was omitted, including all examples. There are some grounds for our
belief that the result was to hamper theory of latin squares. As a
case in point, a counterexample contained in the original version of
[4], and known to the author in 1949, served in 1961 to halt an ex-
tensive high-speed machine program on latin squares. With this in
mind, we have tried in the concluding section (§ 6) to include a reason-
able selection of remarks and examples.

In conclusion, the author would like to express his appreciation to
The EAND Corporation of Santa Monica and to all the participants
of the 1961 Summer Symposium on Combinatorial Mathematics of
Project EAND. The present paper has been largely molded in dis-
cussions with Alan Hoffman, R. C. Bose and E. T. Parker. Hoffman
is certainly the father of Lemma 4.4 (though he is not responsible for
(4.19)), and Hoffman and Bose must share some guilt in connection
with the birth of Theorem 5.1—which they, however, have never
seen.

2* Counting in two ways During the course of this paper we
shall have many occasions to use the familiar process of "counting in
two ways." In order to ensure brevity without loss of clarity, it
seems worthwhile to state the process as a formal lemma. Here, for
any set S, | S | denotes the cardinal number of S.

LEMMA 2.1. Let A, B be nonempty sets, p be a finite subset of
the direct product set A x B. For each a in A, let ap denote the
subset of B consisting of all b in B such that (α, b) is in p; and, for
each b in B> let pb be the subset of A consisting of all a in A such
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that (α, 6) is in p. Then

(2.1) ΣI<Vl = ΣΣ
aβA

Proof. For each a in A, the set (α, ap), consisting of all pairs
(α, b) with 6 in ap, contains precisely | ap | elements of />. Also, the
sets (α, α^), as a ranges over A, partition ^—provided we ignore the
empty sets which may turn up. Hence the left-hand side of (2.1) is
equal to \p\. Similarly for the right-hand side of (2.1). This com-
pletes the proof.

It goes without saying that the value of (2.1) in any particular
case depends upon skill in choosing the sets A and B (these may often
be complex sets constructed from others more immediately at hand)
and the relation (or finite subset) p. I would conjecture that all
proofs by enumeration may be reduced to a sequence of applications
of the apparently innocuous Lemma 2.1. Be that as it may, there
were several instances at the 1961 Combinatorial Symposium of Project
RAND in which Lemma 2.1 provided a simpler alternative to proofs
involving matrix calculations.

3 Nets* We begin with a positive integer (or, more generally,
with any cardinal number) k such that

(3.1) k ^ 3 .

A fc-net, N, is a system of undefined points and lines, together with
an incidence relation, subject to the following axioms: (i) N has at
least one point, (ii) The lines of N are partitioned into k disjoint,
nonempty, "parallel classes" such that (a) each point of N is incident
with exactly one line of each class; (b) to two lines belonging to
distinct classes there corresponds exactly one point of N which is
incident with both lines. For convenience, we shall use phrases such
as "point is on line" instead of speaking of incidence.

The axioms, coupled with (3.1), ensure the existence of two distinct
lines L, U of N and a parallel class K containing neither of L, I/.
Since each point of L lies on a unique line of class K, and since each
line of class K meets L in a unique point, there is a one-to-one corre-
spondence between the points of L and the lines of K. Similarly,
there is a one-to-one correspondence between the points of U and the
lines of K. Furthermore, each point of N lies on exactly one line of
K. Hence, if some line of N contains exactly n distinct points, the
following statements are true:

( I ) Each line of JV contains exactly n distinct points, where
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(II) Each point of N lies on exactly k distinct lines, where

A ^ 1.
(III) N has exactly kn distinct lines. These fall into k parallel

classes of n lines each. Distinct lines of the same parallel class have
no common points. Two lines of different classes have exactly one
ĉommon point.

(IV) N has exactly n2 distinct points.
A system N satisfying (I)-(IV) we shall call a net of order n,

degree k. If (3.1) fails—in particular, if k = 1 or 2—we shall call the
net degenerate. And if n = 1 we shall call the net trivial. In the
sequel we study finite nontrivial nets (n and k finite) but we cannot
entirely avoid degenerate nets.

For each finite nontrivial net N of order n9 degree k we introduce
integers d, n{ and p)k as follows:

<3.2) k + d = n + 1

.(3.3) nλ = k(n - 1) , n2 = d(n - 1) ,

p\x = n - 2 + (k - l)(fc - 2) ,

Vn = P21 = (fc - 1)^ ,

PΛ = d(d - 1) ,
<3.4)

PL = n - 2 + (d - l)(d - 2) ,

Pi = Pl2 = (d - l)fc ,

In (3.3), (3.4) we are using the notation of R. C. Bose [2]. We call
the integer d the deficiency of N. It is to be observed that inter-
change of k and d preserves (3.2) and has the effect in (3.3), (3.4) of
interchanging the subscripts and superscripts 1, 2.

Before making clear the significance of the above definitions, it
will be convenient to introduce further notation. If P, Q are two
distinct points of N we say that P, Q are joined in N if there exists
a line PQ of N (necessarily unique) which contains both P and Q; if
the line PQ does not exist, we say that P, Q are not joined in N.
By a partial transversal, S, of N we mean a nonempty set, S, of
points of N such that every two distinct points in S are not joined
in N. By a transversal of N we mean a partial transversal with
exactly n distinct points (where n is the order of N). We are now
ready for an important elementary lemma.

LEMMA 3.1. Let N be a nontrivial finite net of order n, degree
My deficiency d.

( i ) If S is a partial transversal of N, then | S | ^ n.
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(ii) If P is a point of N, then, of the n2 — 1 points of iNΓ
distinct from P, nx are joined to P in N and n2 are not joined to P
in N.

(iii) If P is a point of N and if L is a line of N not contain-
ing P, then P is joined to k — 1 points of L and P is not joined to
d points of L.

(iii') If P is a point of N and if T is a transversal of N not
containing P, then P is not joined to d — 1 points of T and P is
joined to k points of T.

(iv) If P, Q are distinct points joined in N, then, of the remain-
ing n2 — 2 points, p\x are joined to both of P, Q; p\2 are joined to P
and not joined to Q; pλ

21 are not joined to P and joined to Q; p\2 are
not joined to P and not joined to Q.

(iv') // P, Q are distinct points not joined in N, then, of the
remaining n2 — 2 points, p\2 are not joined to P and not joined to
Q; p\λ are not joined to P and joined to Q; pl2 are joined to P and
not joined to Q; p2

n are joined to P and joined to Q.

REMARKS. (1) The statement of Lemma 3.1 is intended to
emphasize a duality of importance for the sequel. Item (i) merely
points out that transversals are maximal partial transversals. (How-
ever, not every maximal partial transversal is a transversal.) We note
that if "joined" and "not joined" are interchanged, then (ii) remains
true provided nλ, n2 are interchanged; (iii) and (iii') are interchanged
provided "line L" and "transversal T" are interchanged, as well as k
and d; and (iv), (iv') are interchanged provided the subscripts and
superscripts 1, 2 are interchanged.

(2) In view of (ii)—since n2 = d(n — 1)—or (iii) we see that the
deficiency, d, of a finite net N, is a nonnegative integer.

(3) In view of (ii) we see that a finite net, N, of order n,
deficiency zero is precisely an affine plane of order n. Thus the
deficiency measures the extent to which a net fails to be an affine
plane—namely, it lacks d classes of parallel lines.

(4) In view of (iii') we see that if d = 0, then N has no trans-
versals. (Indeed, if d = 0, each partial transversal of N has exactly
one point, since every two distinct points are joined in N—by (ii), (3.3).)

Proof ( i ) . Let s = | S | and let K be any parallel class of lines
of N. Each of the s points of S lies on a unique line of K. Two
distinct points of S are not joined in ΛΓand hence lie on distinct lines
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of K. Therefore s^\K\=n. This proves (i).
(ii) We note from (3.3), (3.2) that nx + n2 = n2 - 1. Each of

the k lines through P contains n — 1 points in addition to P. The
nλ — k(n — 1) points so obtained are distinct and are all the points
joined to P. This proves (ii).

(iii) We note from (3.2) that (k — 1) + d = n. One of the k
lines through P is parallel to L. The rest meet L in k — 1 distinct
points. Moreover, L has exactly n distinct points. This proves (iii).

(iii') The n distinct points of T lie one each on the n distinct
lines of each parallel class (cf. the proof of (i)). Hence the k lines
through P meet T in k distinct points. Since k + (d — 1) = n, there
remain d — 1 points of T not joined to P. This proves (iii').

(iv) Here P, Q lie on a line PQ of JV. There are n — 2 points
of PQ which are joined to both P and Q. Each of the k — 1 lines
through P, other than PQ, is met by the k — 1 lines through Q, other
than PQ, in k — 2 distinct points (there being a case of parallelism).
This gives a total of

n - 2 + (k - l)(k -2) = pi,

distinct points joined to both P and Q. Since

by (3.4), (3.2), (3.3), and since P is joined (by (ii)) to exactly nλ — 1
points distinct from itself and Q, then there are exactly p\2 distinct
points joined to P but not to Q. (And, of course, there are pι

Ά distinct
points joined to Q but not to P.) Since

Pli + Vn = n2

by (3.4, (3.2), (3.3), and since P is not joined (by (ii)) to exactly n2

distinct points, then there are exactly p]2 distinct points joined to
neither P nor Q. This proves (iv).

(iv') Here P, Q are not joined in N. Since each of the k lines
through P is met by the k lines through Q in exactly k — 1 points
(one case of parallelism) and since none of these intersection points is
P or Q, there are exactly

k(k -1) = p\x

distinct points joined to both P and Q. Since

Pli + Vn = nx ,

there are exactly p\2 points joined to P but not Q. Since

Pli + PI2 = n2 - 1 ,
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and since P is not joined to exactly n2 — 1 points in addition to Qr

the proof of (iv') and of Lemma 3.1 is now complete.
It will be convenient at this point to make a brief review of some

well known facts about nets. Let n ^ 2 be any given positive integer,
and let us construct a square of side n, containing n2 cells. We regard
the cells as points of a net N. If we define two distinct cells to be
joined in N if and only if they lie in the same row, then N is a
(degenerate) net of order n, degree 1, with the n rows of cells as the
n lines of its single parallel class. If we allow both rows and columns
of cells as lines, we have a (degenerate) net of order n> degree 2*
If we now mark the cells with the numbers 1 through n in such a
way as to form a latin square and allow, in addition to the row-lines
and column-lines, lines consisting of n cells marked with the same
number, we get a net of order n, degree 3. Similarly, for any integer
k in the range 3 ^ k ^ n + 1, a set of k — 2 mutually orthogonal
latin squares of side n may be used to define a (non-degenerate) net
of order n, degree k. Conversely, any net of order n9 degree k (k ^ 1)
can be obtained in the manner indicated, usually in many ways.

To imbed a net N of order n, degree k (where k < n + 1) in a.
net Nτ of order n, degree k + 1 which has the same points as N and
has k of its line classes identical with those of N is equivalent to
finding a single new "parallel class." This must consist of n distinct
transversals of N, no two with a point in common. To imbed N in
an affine plane N2 of order n (with the same points as N and with k
of its line classes identical with those of N) is equivalent to finding
d — n + 1 — k new "parallel classes," consisting of d sets of n parallel
transversals, such that two distinct transversals belonging to the same
set have no common point and two belonging to different sets have
exactly one common point. It is easy to see that each of the n2 points
should lie in exactly d of the transversals. Indeed, to imbed net N~
of order n, degree k, deficiency d > 0 in an affine plane is equivalent
to defining a complementary net, JV, of order n, degree d, deficiency
k, whose points are identical with those of N and whose lines are a.
suitably selected set of transversals of N.

Several problems arise. A given net may have no complementary
net or several complementary nets. How can we ensure existence or
uniqueness of a complementary net? A given net may have several
classes of parallel transversals, or no complete parallel class of trans-
versals, or no transversals at all. How can we ensure existence of a
suitable collection of transversals?

One case in which transversals are embarrassingly common is
worth mentioning, A net of order 10, degree 3, is essentially a latin
square of side 10. Here the deficiency is d = 8. To imbed such a
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net in an affine plane of order 10 we would need a suitable collection
of dn = 80 transversals, 8 through each point. No such collection has
ever been found. However, E. T. Parker, in a machine search for
an orthogonal mate to suitably selected latin squares, usually finds an
average of about 120 transversals per cell—or about 15 times as many
transverals per point of the net as we would want. As we shall see,
the situation changes when the order n is somewhat "larger" compared
with the deficiency d.

LEMMA 3.2. Let N be a finite nontrivial net of order n, degree
fc, deficiency d > 0. Let T be a transversal of N and let S be a
partial transversal of N not contained in T but containing at least
two points of T. Then

(3.5) \SΠ T\ S d - 1 ,

(3.6) | S | ^ ( d - l ) 2 .

COROLLARY. IfNisa finite nontrivial net of order n, deficiency
d > 0, and if n > (d — I)2, then two distinct transversals of N can
have at most one common point.

Proof. By hypothesis, S contains at least one point R which is
not in T. By Lemma 1 (iii')> there are precisely d — 1 points of T
not joined to R. Among these d — 1 points must be the points of
S Π T, since R is joined to no other point of S. Hence we have (3.5).
Again, by hypothesis, SίΊ T contains at least two distinct points P, Q.
By Lemma 1 (iv'), there are precisely p\ points joined to neither P
nor Q, and the points of S U T — {P, Q} must be among these p\2 points.
Hence

(3.7) \SΌT\^plΛ + 2 = n + (d- l)(d - 2) .

By this and (3.5), we have

\s\ + \τ\ = ι s n τ\ + \SΌ τ\
^(d-l) + n + (d- l)(d - 2) - n + (d - I)2 .

However, | T\ = n, since T is a transversal. Therefore we have (3.6).
If we assume that S is also a transversal, (3.6) yields

(3.8) n ^ (d - I)2 .

At this point we note that if S, T are any two distinct transversals,
then S must have a point not in T. Hence, if we further assume
that Sy T have at least two common points, we get (3.8). Thus, by
denying (3.8), we get the Corollary. This completes the proof.
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Two remarks are in order. First, if (3.8) holds, then (3.6) is
trivial in view of Lemma 1 (i). Secondly, the Corollory to Lemma 3.2
is "best possible" of its kind. One class of examples may be obtained
as follows: Let m be any integer (for example, any prime power) for
which there exists an affine plane π of order n = m2 which possesses
an affine subplane πx of order m. We form a net iVof order n = m\
degree k = m2 — m, deficiency d = m + 1 whose points are the points
of 7Γ and whose lines are the k parallel classes of π containing no lines
of πλ. The net is degenerate if m = 2, and nondegenerate otherwise.
Among the transversals of N are the m2 + m lines of πλ (that is, the
lines of π containing at least two and hence exactly m points of π±)
and each two of these intersect in at most one point. But there is
another transversal, namely the set consisting of the n — m2 points
of πlf and this has exactly m points in common with each of the lines
of πγ. In this class of examples we have n = (d — I)2. In addition,
when equality holds in (3.8), transversals seem to behave as the above
discussion indicates. Indeed:

LEMMA 3.3. Let N be a finite net of order n = m2, degree k =
m2 — m, deficiency d = m + 1. Assume m > 2, so that N is nontrivial
and nondegenerate.

(i) If S, T are distinct transversals with more than one common
point, then they have exactly d — 1 = m common points. Moreover
(a) each point ofS— T is joined to each point ofT—S and (b) if
P, Q are any two distinct points of the intersection S Π T9 then every
point not in the union S U T is joined to at least one of P,Q.

(ii) // S, T, U are three distinct transversals such that S has
m points in common with each of T, U, then T, U have at most one
common point.

Proof. For (i), we use the proof of Lemma 3.2, assuming that
S, T are distinct transversals with at least two common points. Then
(3.5), (3.7) become

( 3 . 9 ) \ S f ) T \ ^ m , \ S Ό T \ ^ 2 + p t 2 = m 2 + m ( m - 1 ) ,

and we get

2 n = \ S \ + I T\ = \ S \ J T\ + \SΠ T\ ^ 2 m 2 = 2 n .

Hence we must have equality in (3.9). Thus | S Π T\ — m, and, more-
over, (b) holds. Again, if R is any point in S — T, then R is not
joined to exactly d — 1 = m points of T, and these points must be
the points of S Π T. Consequently, R must be joined to every point
of T — S. This proves (a) and completes the proof of (i).
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To prove (ii), we begin by assuming that S Π T Π U has at least
two distinct points P, Q. Then, by (i) (b), since S Π T has m points
and since no point of U is joined to P or Q, we must conclude that
U is in S U T. Since, by (i) (a), every point of S — T is joined to
every point of T — S, we see that U cannot contain both a point of
S - T and a point of T - S. Therefore either UaSor UaT. But
then, since \ U\ ~ \S\ = \ T\, either U = S or Ϊ7 = ϊ7, in contradiction
to hypothesis. Consequently,

(3.io) | s n TΠ u\ ̂ 1 .

By hypothesis, | S Π Γ| = m = | S Π Z7|. By (3.10), S Γi Γ, S Π ί7have
at most one common point. These two facts, taken together, tell us
that U has at least one point of S — T (indeed, at least m — 1 such
points). Therefore U, having a point of S — T, can have no point of
T - S. This means that

(3.10a) Γnί/cSflΓn?/.

And (13.10a), (3.10) complete the proof of Lemma 3.3.
There are many other examples indicating that the Corollary to

Lemma 3.2 is best possible. One comes from the nets of order n = 6,
degree k = 3, deficiency d = 4. Here we have n — 6 < 9 = (d — I)2.
Such nets are given by latin squares of order 6. There are 17 types,
and at least one has two distinct transversals with 3 common points.
(See Fisher and Yates [6].)

As far as construction is concerned, the nets satisfying (3.8) are
the most important at present. Nevertheless, there is a great deal
to be learned about the remaining nets, and we shall be concerned
here with inequalities at least as strong as

(3.11) n >{d - I)2 .

The most obvious consequences of (3.11*) are summed up in the follow-
ing theorem.

THEOREM 3.1. Let Nbe a finite nontrivial net of order n, degree
k, deficiency d, satisfying (3.11*). Let ΛΓ* be the system whose points
are the points of N and whose lines are the lines of N together with
the transversals of N, and whose incidence relation is the natural one.

( i ) If t is the total number of distinct transversals of N, then

(3.12) t^dn.

(ii) A necessary and sufficient condition that N be imbeddable
in an affine plane of order n is that equality hold in (3.12).

(iii) / / N is imbeddable in an affine plane JVΊ of order n, then
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JVΊ is isomorphic to JV*. In summary, JV* is the only candidate for
an affine plane of order n containing JV.

Proof. By the Corollary to Lemma 3.2, two distinct transversals
of JV have at most one common point. Moreover, two distinct lines
of JV have at most one common point, and a line and a transversal
of JV have exactly one common point. Consequently, two distinct lines
of N* have at most one common point.

For each point P of JV(and JV*), let t(P) be the number of distinct
transversals of JV containing P. Thus the number of distinct lines of
JV* containing P is exactly

k + t{P) .

Two such lines have only the point P in common. Therefore the number
of points, distinct from P, to which P can be joined in JV* (not JV!) is.

[k + t(P)](n - 1) ^ n2 - 1 .

Since n > 1, we deduce that

k + t(P) ^n + 1 = k + d

and hence that

(3.13) t(P) ^ d

for every point P in JV. Moreover, for any fixed P, equality holds in
(3.13) precisely when P can be joined (in JV*) to every other point.
By summing (3.13) over the n2 points P of JV, and remembering that
every transversal has exactly n points, we see that (3.12) holds, with
equality precisely when every two distinct points are joined in JV*..
In particular, (i) is true.

If JV is imbeddable in an affine plane JV2 of order n, then (when
JV is considered as a subsystem of NJ every line of Nx is either a line
of JV or a transversal of JV. Hence every line of JVi. is a line of iV*.
Since every two distinct points are joined in Nlf we must conclude
that equality holds in (3.12).

Now suppose, conversely, that equality holds in (3.12). Then, also,
equality holds in (3.13) for every point P, and every two distinct
points are joined in JV*. We consider a transversal T and a line L
of JV and note the T> L have a unique common point, Q. Let P be
any point of L distinct from Q. Then P is not in T. Hence, by
Lemma 1 (iii'), there are axactly d — 1 distinct points of T not joined
in JV to P. Each of these is joined to P by a unique line of JV*,
giving, in all, d — 1 distinct transversals of JV which contain P and
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intersect T. Since t(P) — d, there remains a unique transversal which
contains P and if parallel to T. As P varies over the n — 1 points
of L distinct from Q, we get in this way n — 1 distinct transversals
parallel to T. No two of these transversals intersect, for a common
point R would lie on two distinct transversals parallel to T. Conse-
quently, when we include Γ, we get a set of n distinct, mutually
parallel transversals. These must contain all the points of N, namely
n points on each of n transversals. It should now be clear that the
t = dn transversals of N form d distinct parallel classes of lines of
N*, distinct from the kn lines of N. Therefore iV* is a net of order
n, degree k + d = n + 1, deficiency 0. That is, ΛΓ* is affine plane.

Putting the last two paragraphs together, we see that (ii) and
(iii) are true. This completes the proof of Theorem 3.1.

It would be wrong to assume that the N* of Theorem 3.1 is
always an affine plane. If N is the net of order n = 4, degree k = 3,
deficiency d = 2 given by the cyclic group of order 4 then (3.11) holds
but N has no transversals. If N is the net of order n = 5, degree
k = 3, deficiency d — 3 given by any loop of order 5 other than the
cyclic group (there are only two nets of order 5, degree 3) then (3.11*)
holds but N has exactly 3 transversals; one point lies on all three, 12
points lie each on one, and 12 points lie on none. Moreover (see
Norton [8]) there exists a net of order n = 7, degree k = 5, deficiency
d = 3 with too few transversals to be imbedded in a net of degree 6,
deficiency 2. Precise necessary and sufficient conditions, in the presence
of (3.11*), that -ΛΓ* be an affine plane still await exploration.

In the section which follows we show, in particular, that a suitable
strengthening of the inequality (3.11*) suffices to ensure that iV* is
an affine plane.

4 Net*graphs and pseudo net-graphs From a net N of order nf

degree k, deficiency d we form a net-graph G1 of order n, degree k,
deficiency d (namely, the graph of N) as follows: Gx has n2 vertices,
namely the n2 points of N. Two distinct points P,QoίN form an
(unordered) edge {P, Q} of G1 if and only if P, Q are joined in N (that
is, lie on a common line of N.) Since the edges of Gx are unordered,
Gj is a symmetric graph. Since each vertex of Gλ lies on exactly
nλ — k(n — 1) edges of Gl9 the graph is regular. But Gι has still more
regularity, given in Lemma 3.1 (iv) and (iv') in terms of the constants
of connection p)k.

For any symmetric graph G, the complementary graph Gf is a
symmetric graph with the same vertices as G, such that, if P, Q are
distinct vertices of G, then {P, Q} is on edge of G' precisely when
{P, Q} is not an edge of G.

In particular, if G1 is as in the first paragraph, and if G2 is the
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complement of Glf then G2 is an example of what we shall call a pseudσ
net-graph of order n, degree d, deficiency k. And the question as to
whether N can be imbedded (in at least one way) in an affine plane
of order n is (as essentially noted in § 3) equivalent to the question
as to whether G2 is the net-graph of at least one net N' of order n,
degree d, deficiency k, namely a net complementary to N. Moreover,
by Theorem 3.1, if n > (d — I)2, and if G2 is a net-graph, then the
corresponding net is uniquely defined by G2.

By a pseudo net-graph G of order n, degree d, deficiency k, where
n, d, k are nonnegative integers related by

(4.1) d + k = n + 1 ,

we mean a symmetric graph with n2 vertices such that
( i ) each vertex of G is joined (by an edge of G) to exactly

nx = d(n — 1)

other vertices of G;
(ii) two distinct vertices P, Q of G which are joined in G are

together joined to exactly

p\, = n - 2 + (d - l)(d - 2)

other vertices of G;
(iii) two distinct vertices P, Q which are not joined in G are

together joined to exactly

pi, = d(d - 1)

other vertices in G.
It will be noted that we have interchanged k and d and the

indices 1 and 2 in formulas (3.2), (3.3), (3.4). This is merely a matter
of convenience in view of the application to imbedding of nets. We
shall have little need to refer to the deficiency, k, of G. However,
to avoid trivialities, we shall assume throughout that

(4.2) n ^ d ^ 1 .

By a clique of graph G we mean a subgraph of G every two of
whose vertices are joined in the subgraph. That is, a clique is a
complete subgraph of G. We are interested in introducing certain
cliques as lines. Specifically, if G is a pseudo net-graph of order n,
we define a line of G to be a clique with exactly n vertices. When
G is the complementary graph, G2, of a net N, the cliques of G are
the partial transversals of N, and the lines of G are the transversals
of N. In this case, by Lemma 3.1 (i), no clique of G has more than
n elements. The same fact is true for pseudo net-graphs, but requires
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a different proof.

LEMMA 4.1. Let G be a pseudo net-graph of order n, degree d>
and let L be a line of G. Then

( i ) each vertex of G which is not in L is joined in G to exactly
d — 1 distinct vertices of L; and

(ii) L is a maximal clique of G.

COROLLARY. NO clique of G has more than n elements.

Proof. Let 1/ be the set consisting of the n2 — n vertices of G
which are not in L. For each integer x in the range 0 ^ x ^ n, let
g{x) denote the number of vertices in 1/ which are joined in G to
exactly x distinct vertices in L. We shall first make use of the
formulas

(4.3)

(4.4) Σ xg(x) = (d - l)(n* - n) ,

(4.5) Σ s'flrOB) = (d - l)\n2 - n),

where the sum in each case is over the range of x, and then establish
them later. From these formulas we deduce that

Σ{d - I - x)2g{x)

= (n2 - n)[(d - 1)2 1 - 2(d - l) (d - 1) + l (d - I)2] = 0 ,

and thence that g(x) = 0 for x Φ d — 1. At this point, (4.3) yields
g(d — 1) = n2 — n. And now (i) follows. From (i) and the fact that
n exceeds d — 1, we see that for every vertex P in U, the set L U {P}
is not a clique, since P is joined to only d — 1 vertices, and therefore
is not joined to all vertices, in L. This means that L is a maximal
clique.—The Corollary should be obvious.

We prove the formulas by appeal to Lemma 2.1. In each case,
the set B of that lemma is U. For (4.3), A is any one-element set,
and p is A x B. For (4.4), A is L and p is the set of all pairs (α, b)
with a in A, b in B such that {a, b} is an edge. The left side of (4.4)
is a double sum; xg(x) counts all | pb \ with b joined to exactly x
edges, and Σ ®9(ρ) gives the complete sum. For the right-hand side,
we note that there are n choices of a in A. Each a lies on d(n — 1)
edges, including n — 1 edges joining it to points of A — L. Hence

Σ \aρ\= n [d(n - 1) - (n - 1)] = (d - l)(n2 - n) .

To get (4.5), we take A to be the set of n(n — 1) ordered pairs of
distinct vertices of L, and p to be the subset of A x B consisting of
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all pairs (α, 6) such that b is joined by an edge to both of the vertices
making up a. Then x(x — l)g(x) is the sum of \pb\ over all b which
are joined to exactly x vertices of L, and

On the other hand, for each element a of A,

I α/0 I = Vn ~(n-2) = (d -l)(d - 2) .

Thus

Σ x(x — l)g(x) = (n2 — n)(d — l)(d — 2) ,

whence, by addition of (4.4), we get (4.5). This completes the proof
of Lemma 4.1. It seems worth remarking that, although Lemma 4.1
and its proof both seem pretty obvious, the proof was still lacking
for several weeks after everything which follows in this section had
been established subject to the conjecture that no clique had more
than n vertices.

In the proofs which follow, we first establish the existence of
certain cliques called grand cliques, and eventually prove, on the basis
of Lemma 4.1, that these are lines. We make two definitions, relative
to a pseudo net-graph of order n, degree k:

A major clique, K, is a clique such that

(4.6) \K\^n-(d- l)\d - 2) .

A grand clique is a major clique which is also a maximal clique. We
note from Lemma 4.1 that, if d = 1 or 2, major cliques and grand
cliques are the same as lines. There is a lemma for graphs completely
analogous to Lemma 3.2 (with lines and cliques replacing transversals
and partial transversals) but here we need something weaker:

LEMMA 4.2. Let G be a pseudo net-graph of order n, degree d,
and let K, L be two distinct cliques of G.

( i ) IfKuLis not a clique, then

(4.7) \KΠL\

(ii) IfKf)L has at least two vertices, then

(4.8) \KΌL\^n + (d- l)(d - 2) .

(iii) / / (4.7), (4.8) hold, then

(4.9) \K\ + \L\^n + 2(d-lY .

COROLLARY. If G is a pseudo net-graph of order n, degree d,
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and ifn> 2(d — I)3, then two distinct grand cliques of G can have
at most one common vertex.

REMARK. Analogous results hold for partial transversals in a net
of order n, deficiency d.

Proof. ( i ) If K u L is not a clique, there must exist a vertex
P in K— L and a vertex Q in L — K such that P, Q are not joined
in G. Then P, Q are together joined to exactly

Pϊi = d(d - 1)

other vertices, and these must include Kf)L. This proves (i).
(ii) If K f) L contains two distinct vertices R, S, then R, S are

are joined in G and hence are together joined to exactly

p\1 = n~2 + (d- l)(d - 2)

other vertices. Among these must be included K U L — {R, S}. This
proves (ii); and (iii) follows immediately.

Now suppose that K, L are two distinct maximal cliques with at
least two common vertices. Then (ii) holds. Moreover, K\JL cannot
be a clique, so (i) holds. Therefore we have (iii). If if, L are also
both major cliques, (4.9) yields

2 ) l ^ n + 2(d - I)2

and hence

(4.10) n^2(d- I)3 .

Consequently, two distinct grand cliques cannot have two common
vertices unless (4.10) holds. This proves the Corollary.

To establish the existence of major and grand cliques, we need
the concept of a claw—a concept suggested in conversation by Alan
Hoffman. By a claw, P, S, of a pseudo net-graph, G is meant an
ordered pair consisting of a vertex P, the vertex of the claw, and a
nonempty set S of vertices distinct from P such that every vertex in
,S is joined to P in G but no two vertices in S are joined in G. By
the order of the claw P, S we mean the number, | S|, of vertices in S.

When G is the complementary graph of a net JV of deficiency d,
it is easy to see that a claw P, S of order d exists for every vertex
P. Indeed, let L be any line of JV not containing P, and let S consist
of the d distinct points of L not joined to P in N; then every two
points of S are joined in N. Hence, in G, P, S is a claw of order d
with vertex P.

We need several lemmas concerning claws, and it is convenient
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to begin with a fairly general preliminary lemma.

LEMMA 4.3. Let G be a pseudo net-graph of order n, degree d,
and let P, S be a claw of G of order \S\ = s. Let T be the set of
all vertices of G other than P and those in S. For each x in the
range 0 ^ x ^ s, let f(x) be the number of vertices in T which are
joined to P and, in addition, are joined to exactly x vertices in S.
Then

(4.11)
0

(4.12) /(0) -±(x- l)f(x) = (d- s)(n - 1) - s(d - l)(d - 2) ,
2

(4.13) 2/(0) + ±(x- l)(x - 2)f(x)
3

= as + 2(d - s)(n - 1) - 2s(d - l)(d - 2) ,

where as is an integer such that

(4.14) 0 ^ a. S s(s - l)(d2 - d - 1) ,

and the upper bound is attained in (4.14) precisely when every vertex
of T which is joined to at least two distinct vertices of S is also
joined to P.

REMARK. If s ^ 2, the summation on the left side of (4.13) should
be omitted. Similarly, if s = 1, the summation on the left side of
(4.12) should be omitted.

Proof. The left-hand side of (4.11) is the number of vertices of
T which are joined to P. As for the right-hand side of (4.11), P is
joined in G to exactly d(n — 1) distinct vertices; of these vertices, s
are in S and the rest are in T. This proves (4.11).

Next we prove

(4.15) Σ »/0*0 = s[n - 2 + (d - l)(d - 2)] ,
1

by applying Lemma 2.1. We take A to be the set of all vertices in
T which are joined to P, B to be S, and p to be the subset of A x B
consisting of all (α, b), a e A, b e B, such that {α, b) is an edge of G.
For any x ^ 1, xf(x) is the sum of | ap | as a ranges over the vertices
in A which are joined to exactly x vertices in B = S; hence the left-
hand side of (4.15) is | p \ = Σ I aP l F° r a n y b in B = S, since P and
6 are joined, there are exactly p\λ vertices in G joined to both P and
6; and these are in A. Hence
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I pb I = p\λ = n - 2 + (d - l)(d - 2)

and therefore, since | B | = | S | = s, Σ I pb I is the right-hand side of
(4.15).

This proves (4.15). To get (4.12), we subtract (4.15) from (4.11).
Next we prove

(4.16) ± Φ ~ l)/(») = «.
2

where a8 satisfies (4.14). To do this we first define, for every ordered
pair U, V of distinct vertices in S, Λ(?7, V) to be the number of
vertices in T which are joined to U, V and also to P, and fo( U, V)
to be the number of vertices in T which are joined to U, V but not
to P. For each such pair U, V, there are exactly p\x vertices in G
joined to both of U, V; one of these vertices is P and the rest are
in T. Hence

7, V) + fo(U, V) = pl1-l = d*~d-

We define

where the sum is over the s(s — 1) ordered pairs of vertices U, V in
S, and observe that

α. + Σ/o(CT, V) = s(s - 1W ~ d - 1) .

Since the second sum is a nonnegative integer, we see that the integer
a8 satisfies (4.14) and attains its upper bound under the conditions
stated in the lemma. To prove (4.16) we use Lemma 2.1 with A as
before and with B defined to be the set of all ordered pairs U, V of
distinct vertices in S. Also, p is the subset of A x B consisting of
all triples (α, U, V) with a joined to both of U, V, From the definition
of as,\p\ — X I pb I = ocs. For each x ^ 2, x(x — ϊ)f(x) is the sum of
\ap\ over all a in A which are joined to exactly x elements of S.
Thus we have (4.16). To obtain (4.13), we multiply (4.12) by 2 and
add the result to (4.16). This completes the proof of Lemma 4.3.

The author is indebted to Allan Hoffman for suggesting the
importance of the non-existence of claws of order d + 1, and for
sketching a non-existence proof for n large compared with d. In the
next lemma we give precise details in terms of the polynomial p(x)
defined by

(4.17) p(x) = ix4 + xz + x2 + ix .

It will be convenient to note that
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(4.18) 2[p(d - 1) - 1] = (d + ΐ)d(d2 - d - 1) - 2(d + l)(d - l)(d - 2) .

LEMMA 4.4. If G is a pseudo net-graph of order n, degree d,
and if

(4.19) n>p(d-l) ,

then G has no claws of order d + 1.

Proof. Assume, by way of obtaining a contradiction, that G has
a claw P, S of order d + 1. Then we may quote Lemma 4.3 with
s = d + 1. The left hand side of (4.13) is a nonnegative integer.
Hence, certainly, if we replace ad+1 by its upper bound in (4.14), the
right hand side of (4.13) must be nonnegative. This gives

(d + l)d(d2 - d - 1) - 2(n - 1) - 2(d + l)(d - l)(d - 2) ̂  0

and hence, by (4.18),

2(n - 1) S 2[p(d - 1) - 1] ,

in contradiction to (4.19). This proves Lemma 4.4.

The next three lemmas may conveniently be stated and proved
together:

LEMMA 4.5. Let G be a pseudo net-graph of order n, degree d
such that

(4.20) n - 1 >(d - l)\d - 2) .

Then to every pair P, Q of distinct vertices joined in G there corre-
sponds at least one claw P, S of order d such that S contains Q.

LEMMA 4.6. Let G be a pseudo net-graph of order n, degree d
such that (4.20) holds and G has no claws of order d + 1. Then
every edge of G is contained in at least one grand clique of G.

LEMMA 4.7. Let G be a pseudo net-graph of order n, degree d
subject to the following three conditions: (i) G has no claws of order
d + 1; (ii) two distinct grand cliques of G have at most one common
point and (in) n > q(d — 1) where

(4.21) q(x) = 2xz-x2-x + l.

Then every vertex of G lies in exactly d distinct grand cliques, and
every grand clique of G is a line of G.

Proof of Lemma 4.5. We begin by noting that P, {Q} is a claw
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of order one. If d = 1, the proof of Lemma 4.5 is complete. There-
fore we consider the case d > 1 and assume inductively that there
exists a claw P, S of order s such that S contains Q and 1 ^ s S
d — 1. Since s ^ d — 1, the right-hand side of (4.12) (see Lemma 4.3)
is at least

n - 1 - (d - l)\d - 2) .

Since the sum on the left-hand side of (4.12) is non-negative, we
deduce that

(4.22) /(0) ^ n - 1 - (d - l)\d - 2) > 0 ,

the last inequality following from (4.20). If R is any one of the/(0)
vertices in T which are joined to P but to no vertex in S, then P,
β U {R} is a claw of order s + 1. Therefore, by mathematical induction,
we have the conclusion of Lemma 4.5.

Proof of Lemma 4.6. Let {P, Q} be any edge of G. By Lemma
4.5, there exists at least one claw P, S' of order d such that S'.
contains Q. We write S' = {Q} U S where S does not contain Q. Then
(in the notation of Lemma 4.3) let H be the set of all elements of T
which are joined to P but to no element of S. Clearly H contains Q.
Moreover, | H \ = /(0), and /(0) satisfies (4.22). Hence if if = {P} U #,

(4.23) \K\^n-{d- l)\d - 2) .

We claim that K is a clique. Indeed, every element of H is joined
to P. Therefore, if iΓ contains two distinct vertices A, B not joined
in G, then P, S [J {A, B} is a claw of order d + 1, contrary to hypo-
thesis. In view of (4.23), the clique K is major. Therefore, if Kr is
any maximal clique containing K, then if' is a grand clique containing
the edge {P, Q}. This completes the proof of Lemma 4.6.

Proof of Lemma 4.7. We first note that

•(4.24) ?(d - 1) - 1 = (<Z - l)\d - 2) + d(d - l)(d - 2) .

Hence the inequality n > g(d — 1) implies the inequality (4.20), If P
is any vertex of G, there exists, by Lemma 4.5, at least one claw
P, S of order d with vertex P. We denote the d vertices in S by
Alf A2, , Ad. For each i in the range 1 ^ i ^ d, we denote by Hi
the set of vertices, distinct from P and the A, for i Ψ i; which are
joined to P but to no vertex A3 for j Φ i. As the proof of Lemma
4.6 shows, P U Hi is, for each i, a major clique containing P and A{.
We denote by iΓt a grand clique containing PU Ht. Since, for f ^ i,
H{ and iϊj have no common elements, it follows from our uniqueness
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hypothesis (ii) that the only common element of K{ and K5 is P. We
wish to show that the d grand cliques Klf K2, , Kd are the only
grand cliques containing P.

We begin by recalling that P, S is a claw of order d and that
(in the notation of Lemma 4.3) the set

H=H1ΌH2[J . . . ΌHd

consists of S and of all vertices in T which are joined to exactly one
of the vertices Alf •••, Ad of S and are also joined to P. That is*
(when we take s = d in Lemma 4.3),

\H\=f(l) + d.

Moreover, since G has no cliques of order d + 1, /(0) = 0. Thus (4.11),.
(4.12), with s = d, can be rewritten as

(4.25) | H | φ

(4.26) Σ (* - !)/(*) = d(d ~ l)(d - 2) .
2

If d = 1, the summation disappears in (4.25) and the inequalities

(4.27) d[n - 1 - (d - l)(d - 2)] ^ | £Γ| ^ d[n - 1 - (d - 2)]

hold trivially. If d > 1, (4.26) yields

2 2

whence

- 2) ^ - Σ/(a?) ^ -d(d ~ 2) .

The latter inequalities, combined with (4.25), yield (4.27).
Now let us suppose that P is contained in at least one grand

clique K distinct from Kl9 K2, Kd. Then each of the d(n — 1)<
vertices (distinct from P) which are joined to P, is contained in at
most one of the d + 1 grand cliques. Moreover, Klf «« , Kd together
contain at least |JH"| of these vertices, and K, being a grand clique,,
contains at least

n - 1 - (d - l)\d - 2)

more. Therefore, by (4.27),

d[n - 1 - (d - l)(d - 2)] + n - 1 - (d - l)\d - 2) ^ d(n - 1}
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and hence (see (4.24))

n - 1 ^ (d - lY(d - 2) + d(d - ί)(d - 2) = g(d — 1) - 1 .

This yields n g g(d — 1), in contradiction to our hypothesis.
At this stage we have proved that each vertex Plies in exactly

d distinct grand cliques Ku , Kd. If Q were a vertex joined to P
but in none of Klf •• ,2£d, then, by Lemma 4.6, there would be a
grand clique K, distinct from Klf , Kd, containing P and Q. Hence
each of the d(n — 1) vertices joined to P lies in one (and only one,
by uniqueness) of Klf -—,Kd. By Lemma 4.1, no maximal clique can
have more than n elements. Consequently, each of Ku , Kd must
contain exactly n vertices. That is, each K{ is a line of G.

If K is any grand clique of G, we fix attention on a vertex P
•contained in K and use the fact, just proved, that every grand clique
containing P is a line. Hence K is a line of G. This completes the
proof of Lemma 4.7.

We did not need the upper bound in (4.27) for the proof of Lemma
4.7. This upper bound shows, however, that, for d > 2, the major
cliques {P} U H{ constructed in the proof are not all lines—else the
upper bound would have to be at least d(n — 1).

Now we shall state and prove three theorems—three, because the
varying hypotheses apply to different classes of graphs. We also
state (4.2), which we have tacitly assumed up until this point.

THEOREM 4.1. Let G be a pseudo net-graph of order n, degree
d, with n Ξ> d ^ 1, which is subject to the following conditions: (i) G
has no claws of order d + 1; (ii) two distinct grand cliques of G
have at most one common point; (iii) n > q(d — 1), where the poly-
nomial q is given by (4.21). Then G is the graph of one and only
one net of order n, degree d.

COROLLARY. Assume, in addition to the hypotheses of Theorem
4.1, that G is the complementary graph of a nontrivial net N of order
n, deficiency d. Then N can be imbedded uniquely in an affine plane
π of order n, and G is graph of the net complementary to N in π.

Proof. We may apply Lemma 4.7. Since every grand clique of
G is a line, we see that each vertex of G lies on exactly d distinct
lines of G. Let P be a vertex of G and let L be a line of G not
containing P. By Lemma 4.1 (i), P is joined to exactly d — 1 distinct
vertices in L. By Lemma 4.6 (which we may apply in view of (4.24))
these d — 1 vertices lie one each on d — 1 lines through P. Thus
there is one and only one line, I/, through P which is parallel to L
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(has no vertex in common with L.) If we choose any line M which,
meets L, we see that through each vertex in M but not L there
passes a unique line parallel to L. By uniqueness, no two such
parallels can intersect. Hence L determines a parallel class L con-
sisting of n lines, including L itself, each two of which are parallel.
It is now clear that the vertices of G (considered as points) and the
lines of G constitute a net of order n, degree d. Since two distinct
vertices of G are joined in G if and only if they lie on a common
line of G, we see that G is the graph of the net. The Corollary is*
immediate, in view of the discussion in § 3. This completes the proof
of Theorem 4.1 and Corollary.

THEOREM 4.2. Let G be a pseudo net-graph of order n, degree d
such that (i) G has no claws of order d + 1 and (ii) n > 2(d — I)3 ^ 0
(ami, in case d — 1, also n > 1.) Then G is the graph of one and
only one net of order n, degree d.

COROLLARY. Assume, in addition to the hypotheses of Theorem
4.2, that G is the complementary graph of a net N of order n,
deficiency d. Then N can be imbedded uniquely in an affine plane
π of order n, and G is the graph of the net complementary to N in π.

Proof. We need merely show that the hypotheses of Theorem
4.1 are verified. Hypothesis (i) of Theorem 4.2 is identical with hypo-
thesis (i) of Theorem 4.1. In view of the Corollary of Lemma 4.2,
hypothesis (ii) of Theorem 4.2 implies hypothesis (ii) of Theorem 4.1.
Since

2(d - I)3 - q(d - 1) = (d - I)2 + (d - 1) - 1 > 0 for d > 1

and

hypothesis (ii) of Theorem 4.2 also implies hypothesis (iii) of Theorem
4.1. This completes the proof.

THEOREM 4.3. Let G be a pseudo net-graph of order n, degree d-
such that n > p(d — 1), where p is the polynomial given by (4.17),
and either d — l,n > 1 or d > 1. Then G is the graph of one and
only one net of order n, degree d.

COROLLARY. Assume, in addition to the hypotheses of Theorem
4.3, that G is the complementary graph of a net N of order nΨ

deficiency d. Then N can be imbedded uniquely in an affine plane
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π of order n, and G is the graph of the net complementary to N in π.

Proof. p(0) = q(0) = 1 and

p(d - 1) - 2(d - I)3 = i{(d - l)3(d - 3) + 2(d - I)2 + 3(d - 1)} > 0

if d > 1. Thus we may apply Lemma 4.4 to get the hypotheses of
Theorem 4.2.

5. Incidence matrices. We are going to show that certain sets
of k mutually orthogonal symmetric matrices of order n2 are closely
akin to nets of order n, degree k—and thus to sets of fc — 2 mutually
orthogonal latin squares of side n. Surprising as it may seem, in
view of the coincidence of the adjective "orthogonal" in "orthogonal
matrices" and "orthogonal latin squares," we have it on the authority
of R. C. Bose that, when orthogonal latin squares are used in the
analysis of statistics, no orthogonal matrices arise such as the ones
here defined. Thus the correspondence seems to be new.

It will be convenient to have a name for the matrices we study,
and we adopt the adjective "germaine" as a pseudonym for "akin."
By a germaine matrix, F, of order n2 we mean a matrix i^of n2 rows
and columns such that (i) F is symmetric; (ii) every entry on the main
diagonal of F is n — 1; (iii) every other entry of F is either n — 1
or - 1 ; (iv) F2 = n2F.

If F is a germaine matrix of order n2, then, by (iv), the matrix
E — n~2F is idempotent and, by (ii), E has trace n — 1. Since (over
a field of characteristic zero) the trace of an idempotent matrix is
equal to its rank, we see that E and F have rank n — 1. When
n = 2, there are germaine matrices of order 4 which we want to avoid,
e.g., the matrix with every entry equal to 1. This is an exception
to the general rule (which will be clear in a moment) that germaine
matrices have zero row-sums.

In order to avoid complications of notation, we begin with two
lemmas concerning one and two germaine matrices respectively.

LEMMA 5.1. Let n ^ 2 be an integer. To each enumeration
1, 2, , n2 of the n2 points of a net N of order n, degree 1 there
corresponds a germaine matrix F of order n2 defined as follows: F
has n — 1 down the main diagonal; for i Φ j , F has n — 1 or — 1 in
position (i, j) according as the points i, j of N lie or do not lie on a
line of N. Moreover, F has zero row sums. Conversely, if F is a
germaine matrix of order n2 {and if, in case n = 2, F has zero row
sums) then F arises from a net N of order n, degree 1 in the manner
indicated.
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Proof. If N is given, and if F is defined from N as described,
it is a straightforward matter to verify that F is germaine and has
zero row-sums. Conversely, let

be a given germaine matrix of order n2 (with zero row-sums in case
n = 2). Since F is symmetric, condition (iv) for a germaine matrix
may be written as

(5.1) n2fi3 = Σ fikfjk (i, 3 = 1, 2, • •, O

where & ranges from 1 to n2. Let G be a graph whose n2 vertices
are the integers 1,2, , n2. For i Φ j , let vertices i, j form an edge
if and only if fa — n — l. Since n — lΦ—1, the edges of i*7 are
well-defined, by (ii), (iii). Moreover, by (i), G is symmetric.

Our first task is to show that G is a pseudo net-graph of order
n, degree d = 1. Thus, in the sense of § 4, we must show that

(5.2) nx = n - 1 , p)1 = n-2, pi = 0 .

Consider some fixed vertex ί of G and suppose that i is joined to x
and not joined to n2 — 1 — x of the remaining w2 — 1 vertices. Taking
j = i in (5.1), and using the properties of F, we get

w«(n - 1) = (n - 1)2(1 + x) + l-(n2 - 1 - x) ,

whence

^2(w - 2) = w(w - 2)(1 + x) .

If n > 2, we get 1 + x = n, x = n — 1. In any case, the sum of the
ith row of F is

(n - 1)(1 + α>) - (^2 - 1 - x) = n(x - n + 1) ,

and this is zero precisely when x — n — 1. Therefore we have nx =
x = n — 1, whence

(5.3) nx — n — 1 , wa = n2 — w ,

where, of the n2 — 1 vertices distinct from ΐ, nx are joined and n2

are not joined to i. Next consider two distinct vertices i, i, joined
in (?. Of the n2 — 2 vertices distinct from ΐ, i let pι

L1 = 1/ be joined
to both ΐ and i . Then (since i, j are joined) p\2 = ^ — 1 — 1/ = n —
2 — /̂ are joined to i but not i, and p]x — n — 2 — y are joined to j
but not i, and p)2 — n2 — pι

Λ = n2 — 2n + 2 + y are joined to neither
i nor i . Using (5.1) for the given i, j , we get
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n\n - 1) = 2(n - I)2 + (n - 1 ) % - (n - l)(pj, + pi) + pi

= W2 + W2?/ ,

whence y = n — 2. Thus

(5.4) pl! = rc-2, pi = pi = O, pi = τ φ * - l ) .

Finally, consider two distinct vertices i, i not joined in (?. This time
we may set

Pa. = z , P12 = P i = ^ i — s = n - 1 - z ,

ί>22 = ^2 — 1 — Pll = ^ — 2W + « .

From (5.1) we get

n\-l) = 2(n - 1)(-1) + (n - 1 ) % - (n - l)(p2

2 + p2θ + pi

= - w 2 + wa« .

Therefore 2 = 0 and

<5.5) pJ! = O, Pi = P i = ^ - l , p i = n - 2 + ( n - l ) ( n - 2 ) .

This completes the proof that G is a pseudo net-graph of order n,
degree d = 1, deficiency & = n.

Since p(0) = 0 and since d = l,n>l, we may conclude from
Theorem 4.3 that G is the graph of a net iVof order n, degree (2 = 1.
This completes the proof of Lemma 5.1.

We recall that two matrices A, B are orthogonal provided AB =
BA = 0 = the zero matrix.

LEMMA 5.2. Let n Ξ> 2 6e cm integer. To each enumeration
1, 2, , n2 of the n2 points of a net N of order n, degree 2, and to
each enumeration 1,2 of the two line-classes of N, there corresponds
an ordered pair Flf F2 of orthogonal germaine matrices of order n2,
such that, for a = 1, 2, Fa corresponds in the sense of Lemma 5.1 to
the net Na of order n, degree 1 with the same points as N and with
the lines of class a as its lines. Conversely, if Fl9 F2 is an ordered
pair of orthogonal germaine matrices, (with zero row sums, in case
n = 2) then Flf F2 arises from a net N of order n, degree 2 in the
manner indicated.

Proof. If JV is given, and if F19 F2 are defined from N as
described, then Flf F2 are germaine by Lemma 5.1, and, by a straight-
forward computation, Flf F2 are orthogonal. Now we assume, con-
versely, that Fu F2 are orthogonal and germaine. By Lemma 5.1, for
a = 1,2, Fa defines a net Na of order n, degree 1 on the points
1, 2, , n2. We let Nbe the system with the same points as iVΊ and
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N2 and with the lines of Nτ as its first parallel class and the lines of
N2 as its second parallel class. Then each line of N contains exactly
n distinct points, and each point of N lies on exactly one line of each
class. To prove that N is a net of order n, degree 2, we need only
show that two lines of distinct classes have one and only one common,
point.

If we write F1 = {aiό), F2 = (δ^ ), then, since Flf F2 are symmetric,,
orthogonality is expressed by the condition

(5.6) Σ « Λ = 0 (i,i = l,2, . . f n
a ) . .

k,

First we consider a point i and suppose that, of the ri* — 1 other
points, xn are joined to i both by a line of class 1 and a line of class-
2, x10 are joined to i by a line of class 1 but not by a line of class-
2, and similarly for x01, xm. Setting xu = x, we see that

From (5.6) with i = i, we get (since Flf F2 are germaine)

0 - (n - 1)2(1 + xu) - (n - l)($10 + $01) + a?M

= n2x .

Hence $ = 0. That is, if two lines of distinct classes have a common,
point i, then they have no other common point.

There remains the possibility that there are two lines of different
classes with no common point. Suppose that, for some i Φ j, the line
of class 1 through i and the line of class 2 through j have no common-
point. Then, from (5.6), for the given i, j, we get

0 - n(n - 1)(-1) + n(n - 1)(-1) + [(n2

a contradiction. This completes the proof of Lemma 5.2.
Now we are ready for the main theorem.

THEOREM 5.1. Let n, k be integers, with n^2,l^k^n+l.
To each enumeration 1,2, , n2 of the n2 points of a net N of order
n, degree k, and to each enumeration 1, 2, , k of the k line-classes
of N, there corresponds an ordered set

(5.7) Fl9Fi9 . . , F f c

of mutually orthogonal germaine matrices of order n2 such that, for
a = 1, 2, , k, Fa corresponds in the sense of Lemma 5.1 to the net
Na of order n, degree 1 with the same points as N and with the
lines of class a as its lines. Conversely, if (5.7) is an ordered set
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of k mutually orthogonal germaine matrices of order n2 (each with
zero row-sums, in case n — 2) then (5.7) arises from a net N of order
n, degree k in the manner indicated.

Proof. In view of Lemmas 5.1, 5.2, we need only treat the case
k ^ 3. In this case, for a < /2, if N is given, let NΛ β be the net of
order n, degree 2 with the same points as N and with the line-classes
a, β as its two line-classes. By Lemma 5.2, NΛ β determines the
ordered pair Fa, Fβ of orthogonal germaine matrices of order n2.
Conversely, the pair determines NΛ β. It should now be clear that the
set (5.7) determines a net N of order n, degree k. Indeed, the only
point which could be at issue is whether two lines of distinct classes
in N have a unique common point, and this follows from the fact
that each Na β is a net of degree 2. The proof of Theorem 5.1 is now
complete.

For a (non-trivial) net N of order n, degree k, deficiency d we
also define matrices Fo, F*, F^ in addition to (5.7). First we define

(5.8) F* = i:F{.
i = l

In addition, Fo (usually called J or S) is the matrix of order n2 with
every entry equal to 1, and, finally, F^ is defined by the equation

(5.9) n2l = Fo + F* + F» ,

where / is the identity matrix of order n2. We shall give a direct
description of ί1* and F^: The matrix F* has k(n — 1) down the
main diagonal and, for i Φ j, has d — 1 or — k in place (i, j) according
as the points i, j of N are joined in N (by a line of any class) or not
joined in N. By contrast, the matrix F*> has d(n — 1) down the main
diagonal and, for i Φ i, has — d or k — 1 in place (i, j) according as
the points i, j are joined or not joined in N. Clearly it is reasonable
to associate F * with the graph Gλ of N and F^ with the complementary
graph G2. We note that if N is an affine plane, so that d = 0 and
every two points of N are joined, then F^ is the zero matrix, and
F * has n2 — 1 down the main diagonal, —1 off the main diagonal.

If the graph G of the theorem which follows is the complementary
graph of the above net N, then the matrix F of the theorem is F^
(except that the words "joined" and "not joined" have been inter-
changed):

THEOREM 5.2. Let n, d, k be positive integers with

(5.10) d + k = n + 1 .



452 R. H. BRUCK

To each ordering 1, 2, , n2 of the n2 vertices of a pseudo net-graph
G of order n, degree d, deficiency k there corresponds a matrix F
of order n2 with the following properties: (i) F is symmetric; (ii)
every entry in the main diagonal of F is d(n — 1); (iii) every other
entry of F is either k — 1 or — d. (iv) F2 — n2F. Specifically y we
define F by insisting on (ii) and, for distinct vertices i, j, by putting
k — 1 or —d in place (i, j) of F according as i, j are joined or not
joined in G. The matrix F, so defined, has zero row sums. Con-
versely, if F is a matrix of order n2 with properties (i)—(iv) {and
if F has zero row-sums in case n = 2d), then F arises from a pseudo
net-graph G of order n, degree d, deficiency k in the manner indicated.

Sketch of proof. We note that, when d — 1, Theorem 5.2 is
essentially Lemma 5.1 (stated for a graph instead of a net). The
direct part of the proof is straightforward and the converse part can
be stated so a$ to reduce to the main part of the proof of Lemma
5.1 when d = 1. The only difference is that we do not claim—and,
for n small compared with d, we cannot claim—that F determines a
net. This should suffice for the proof of Theorem 5.2.

It should be observed that if the edges of the graph G of Theorem
5.2 can be partitioned into two sets so that G can be regarded as
made up of two graphs Gx, G2 on the same vertices, where Ga is a
pseudo net-graph of order n, degree dΛ (and d — dx + d2) then the
matrix F of Theorem 5.2 can be decomposed (F = Fλ + F2) into the
sum of a pair of orthogonal matrices Flf F2, where Fω is defined for
G* in the manner of Theorem 5.2. Precisely when G is a net-graph,
F can be decomposed into a sum of d mutually orthogonal germaine
matrices.

Returning again to a net N of order n, degree k, deficiency d,
and to the matrices exhibited in (5.8), (5.9), we wish to discuss briefly
point-point incidence matrices for N. First we define

(5.11) E{ = n-2F< (0 ̂  i ^ k) , E* = n~2F* , £L = n-'F^

and observe that these E's are mutually orthogonal idempotent
matrices. Moreover

(5.12) E* = ΣEiy

(5.13) I=Et + E* + E.,

(4.14) rank Eo = 1 , rank E( = n - 1 (1 ̂  i ^ k) ,

(5.15) rank E* = k(n - 1), rank E. = d(n - 1) .

Next let
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be k + 2 rational numbers and define the point-point incidence matrix

(5.16) A(x,y19 - ;yk,z) = (a(i,j))

of order n2 as follows: a(i, i) = x for all i; if i Φ j , and if the points
ΐ, i of N lie on a line of class a, a(i, j) — ya; if i Φ j , and if the
points i, j " are not joined in N, a{i, j) = s. We may express the F's
and J5"s in terms of A{x, y19 -- ,yk,z) for suitable choices of x9 the
y's and 2. Specifically, we get Fo by taking #, the y's and # all equal
to 1. We get Fa(l ^ a f^ k) by taking x = ya — n •— 1, z — — 1 and
2/β = —1 for β φ a. And we get Fw by taking α? = d(n — 1), yrt =
—d (1 ^ a ^ fc) and « — fc — 1. Conversely, we may easily verify that

(5.17) A(x, yu--, yky z) - XE0 + g

where

X - x + (n - 1)?/* + d(n -

(5.18) Yi = x + nyi-y*-dz, (i ύ i ^ k)

(5.19) »* = Σ»*.
t = l

Since the ΐ/'s are mutually orthogonal idempotents of known ranks,
we see at once that the characteristic roots of A(xlf yl9 , yk9 z) are:
X of multiplicity 1; (for 1 ^ i ^ fc) Γΐ of multiplicity n — 1; α?ιcϊ ^
o/ multiplicity d(n — 1).—For certain choices of x9 the y's and £,
some of these roots coincide; then their multiplicities must be added.

The results of the preceding paragraph may be used to show that
a conjecture originally advanced by Harary and later disproved by
Bose (along the present lines), is quite impossible to repair. We re-
call that, for any finite symmetric graph G with s vertices 1,2, , s,
the adjacency matrix of G is a matrix of order s with 0 down the
main diagonal, and with 1 or 0 in non-diagonal position (i, j) according
as the vertices i, j are joined or not joined in G. Harary's conjecture
was that (to within an isomorphism) a finite symmetric graph was
determined by the characteristic roots of its adjacency matrix, taken
with their multiplicities. However, if Gιt G2 are the graph and the
complementary graph of the net N of the preceding paragraph, the
adjacency matrix of Gλ comes from (5.16) by taking x = z = 0 and
all y's equal to 1, and the adjacency matrix of G2 comes by taking
x = 0, z — 1 and all y's equal to 0. In either case, the characteristic
roots and their multiplicities depend only upon nt k and d. Let us
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concentrate on Gx and note, from Theorem 4.3, that, if n > p(k — 1),
Gλ uniquely determines N. It follows that, for n > p(k — 1), there
are precisely as many graphs G1 as there are nets N. However, even
in the special case k = 3, corresponding to a single latin square, the
number of nets of order n, degree k increases astronomically with n.
(Cf. Hall [7].)

Finally, we wish to mention line-point incidence matrices, again
for the same net N. With each line L of the net N we associate a
row-vector of n2 columns, having 1 or 0 in column i according as point
ί lies or does not lie on L. With the aίh line class of N we associate
a matrix Ma of n rows, n2 columns, the rows of Ma being those for
the lines of class α, in any order. Finally, we define M to be the
matrix of kn rows, n2 columns, given by

M2
(5.20) M =

Then M is the line-point incidence matrix of N. We merely wish to
note that, where Aτ denotes the transpose of matrix A,

(5.21) M*MΛ = nE« + nE«, 1 g a ^ k ,

(5.22) MTM = knE0 + nE* .

As a consequence, the germaine matrices of Theorem 5.1 bear a simple
relationship to the matrices M^MΛ.

6. Remarks and examples. In [4] we assigned to each non-trivial
non-degenerate net JV of order n, degree k (and deficiency d) a numerical
invariant Φ(N) with properties like Euler's totient. In particular, a
necessary condition for the existence for a transversal to N is that
Φ(N) = 1. (Consequently, by Theorem 4.3, Φ(N) = 1 if n > p(d - 1).)

It was remarked in [4] that the necessary condition Φ(N) = 1 was
not sufficient for the existence of a transversal, but this statement
seems to have been missed. Accordingly, we remark here that if N
is the net of the latin square

(6.1)
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then Φ(N) = 1 but N has no transversals.—This example recently dis-
proved a conjecture and stopped a computer program.

If G is the complementary graph of the net of (6.1), then G has
order n = 6, degree d = 4, deficiency fc = 3, and G has no lines what-
ever. For other examples of this type, we need the MacNeίsh number,
M(ri), of the positive integer n: If n is a prime-power, M(n) = n.
If n is a product of prime-powers involving distinct primes, then M(ri)
is the least of these prime powers. MacNeish showed that, for every
positive integer n ^ 2, there is at least one set of M(n) — 1 mutually
orthogonal latin of side n (thus, a net of order n, degree M(n) + 1)
and he conjectured (incorrectly) that there could be no more. In [4],
using a direct product construction essentially due to MacNeish, we
showed rather more: For each positive integer n there exists at least
one net N of order n, degree k = M(n) + 1, deficiency d = n — M{ri),
for which Φ(N) = M(n) > 1. Such a net N, of course, has no trans-
versals. Thus, if G is the complementary graph of N, G is a pseudo
net-graph of order n, degree D(n) = n — M(n) with no lines whatever.
If n is a prime-power, D(n) = 0 and the result has no interest. If
-n = PQ where P is a prime-power, Q is prime to P, and P is the
least prime-power dividing n, then ikf(w) = P and n/D(n) = Q/(Q — 1).
Hence, for Q large, D(n) is close to n. For example, D(20) = 16.
Thus these examples are of little help with the theorems of §§ 3, 4,
though they do show that some conditions are necessary.

We call attention to other examples briefly discussed in §3.
The results of the present paper, especially Theorems 3.1 and

Theorems 4.1, 4.2, 4.3, suggest that a further study of pseudo net-
graphs of order n, degree d subject to

{6.2) d > 1, n > d + 1, (d - I)2 < n ^ p(d - 1)

would be rewarding. We offer the following:

Conjecture. Every pseudo net-graph of order n, degree d,
deficiency k, subject to (6.2), is either the graph of a net of order
n, degree d or the complementary graph of a net of order n, degree
k or both.

When d = 2, (6.2) yields n = 4, whence k = 3. As Shrikhande
shows, there are just two pseudo net-graphs of order 4, degree 2,
deficiency 3. One comes from the plane of order 4 and is thus both
a net-graph and a complementary net-graph. The other is not a net-
graph but is the complementary graph of the net of order 4, degree
S defined by the cyclic group of order 4. The situation for d > 2 is
completely unknown to the author, except for n S 7.
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One of the difficulties in dealing with pseudo net-graphs is the
lack of a method of forming a "direct product" of two of them in
such a way as to end up with a pseudo net-graph. The direct product
of two nets (and hence of two net-graphs) of the same degree is
easily defined (cf. [4]) but uses the existence of line-classes. This
construction is unavailable for pseudo net-graphs. The direct-product
construction for nets of the same degree allows a direct-product con-
struction for complementary net-graphs of the same deficiency—but
here we require too much knowledge of the nets to permit a gener-
alization.

ADDENDUM. Dale Mesner, in his unpublished Ph. D. thesis ("An
investigation of certain combinatorial properties of partially balanced
incomplete block experimental designs and association schemes, with
a detailed study of designs of Latin squares and related topics,"
Michigan State University, 1956) has results allied to Theorem 4.3.
Essentially, he proves Theorem 4.3 with the hypothesis n > p(d — 1)
replaced by a stronger hypothesis n > d0. Here we may define d0 to
be the greatest integer in the largest of the real roots obtained from
the quadratic equations

( I ) 4α2 - (d - l)(9d2 - U + Ί)x + (d - l)2(9d2 - 9d + 7) = 0,

(II) 2dx2 - (dB - 2d* + 3d" - d2 - 2d + l)x

- (d6 - 3d5 + 3d4 + 2d3 - 3d2 + d + 1) = 0 .

With a little labor we may verify the inequalities

Jd4 - d3 < p(d - 1)< d0 < id4 , d ^ 2 ,

which show that Mesner's result is close to Theorem 4.3 but not as
sharp.
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