CHAINS AND GRAPHS OF OSTROM PLANES
J. D. SwirT

1. In 1961, in a letter to D. Hughes, T. G. Ostrom communicated
a process that, as developed by Hughes and set forth by A. A. Albert
[1], transformed a projective plane of a particular type into another
using a coordinatizing ring of the first as a tool. This process may be
modified to make more direct use of the algebra to a point where,
indeed, it may be employed to create new rings out of old without the
mediation of a plane. On the other hand the process may be dualized
to alleviate a disadvantage of the essentially involutory nature of the
original; from a given initial plane the Ostrom process gives one new
plane; if repeated the original plane results. In the process to be
discussed below a number of planes result, and, in particular, from a
Desarguesian plane of order at least 9, three others, the Hall plane,
its dual, and a self-dual plane make a complete set. Recently, Ostrom
has published in [5] a development of his original process. We shall
refer primarily to [1] as it more directly affects the development of
the results to be presented.

2. First we establish some notation: Let 7 be a finite projective
plane coordinatized by a ternary ring R whose additive structure is a
group. For purposes of symmetry, we modify the usual notation and
denote by ¥ = - mob the line through the point (m) of L.. and the
point (0, —b). Let * be the dual of 7= and let it be coordinatized by
R* where R* is defined by b = m-xoy in R* when y = x-mobin R.
We note that, if = (and R) are such that x-mob=am — b for all
x, m, b, then R* is just the multiplicative mirror image of R and if,
further, R is commutative, R = R*.

Second we assume some additional restrictions on R (and thereby
on R* m, and 7*).

(a) The additive structure of R is that of an abelian group.

(b) R is a vector space of dimension 2 over a field K whose elements
commute with all elements of R in the standard binary multiplication
in R.

(¢) For a,beR,a,0€c K,

a(da) = (ad)a
(x + d)a = aa + da
aa + b) = aa + ab
a-Aob=ax—b=aa —b=a-ao0b.
" Received April 2, 1963,
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(These conditions are a bit more restrictive than those in [1] because
of the need for symmetry.) Note that R* automatically has all the
properties specified for R.

Third, we define a transformation of « (or of 7*), O,. The points, not
on L. may be written as (z, ¥) = (&,t + &, Yt + ¥,), t € K, X1, @, Y1, Y2 ¢ K.
This will be abbreviated when the notation will be unambiguous by
(2,23, YiYo)-

Now we introduce the mapping, a: (x,2,, ¥.¥.) LN (%Y, %9,). The
new lines of 70, will be:

(1) All lines of 7 of the forms = a,y = mx — b, me€ K, and L;

(2) The sets of points which are the images under « of lines in
7 with slope m ¢ K. (The designations of the individual points on L.
remain to be defined.) The new complex, #O,, which will be shown
to be a projective plane, is denoted by 7, (z*0, = m3). It will be
coordinatized by a system based on the axes and the unit line as given
and the following determination of slopes: Take the line ¥y = x(m,t + m,)
in 7, m, = 0. Find on it a point of the form (0m], 1m)); indeed,

t + my = mi(mit + my) = mim,t + mim, .

Hence m] = m7!, m; = mi*m, and the point exists and is unique. The
algebraic manipulations are justified by the restrictions placed on R.
Under a this point passes to (01, mim;) and we label the intersection
of the transformed line and L. by m’. The remaining points on L
are designated by the appropriate slope in K. We finish by defining
the new lines y = 2 -m'ob’ by finding the parallel class m’ and the
negative intercept d’. (The fact that there is indeed a unique intercept
is almost obvious and, further, it will be dealt with in the general
considerations of intersections in the proof that 7, is a projective plane.)

Fourth, we define a dual transformation of 7#* (or 7). This begins
with a mapping 6 of the lines: (m,m,, b,b,) —6—> (m;b,, m;b,). The new
points will be defined by considering the set of lines through a point
(2,25, ¥1y,) of 7w, 2, #+ 0. This set transformed by 6 defines the new
point. Also we will have points (%, ¥), x€ K and the points on L...
It remains to indicate the mappings of the lines of the form z = a.
We follow the dual of the former situation. Take a point in 7* of
the form (%, 00), ¢, = 0. Find a line through it with slope in K,
say 3, and negative intercept ¢ + ;. The line through the transformed
point and the special point (o) will be designated x = ;¢ + x;. Other
lines © = a are designated to conform with the points whose coordinates
are in K on the axis.

Finally, we find the coordinates of the still unlocated points by
referring to the corresponding lines « = %, ¥ = %,. The resulting
complex we will call 7; the corresponding transformation is Og.
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3. The next step is to show that 7, is a projective plane coordinatized
by a ternary ring R,. When this is done, the equivalent statements
for n}, mg, and 7% will be obvious by the duality of the constructions.

The counts are clearly correct. Further, a line of the (new) form
Yy =2x-mob, m¢ K, intersects another line of that form in precisely
the image point of the intersection of the two precedent lines in .

As for the intersection of such a line with one of the form ¥y =
xt — by, consider that, for a fixed (¢, each point not on L., lies on such
a line so that ¥y = « - mob intersects the » lines ¥ = x££ — b, in % points.
No intersection is on L.. It remains to be shown that no two are on
any one line. If this happened we may see that the predecessor line
would have a duplicate intersection with a line of slope in K (or undefined
slope). If

Y= Gl — b,
Y= Wyt — b,
Yo — Y = (X, — @)

Now, if (2, y2) = (&:&s 1), (¥, Y) = (€, 737,), We have

Nt + 0 — b — = [Eb 4+ & — &t — &)1
so that

Gy 7)) = (&t + &o (D + &t — EME + 70 + &t — &ot1]
Hence the two precursor points have the forms:
(67 E) = (w1, Y1)
and
[Et + 7+ & — & 88 + 7+ Ep — &) = (03, 1)
Thus the differences y, — yi = (& — &)t + (&, — &)t and
wp—wi=E-—8&8&t+ & - &L
are related by the expression:
E—&@—2)=E—& W —v) .

The intersections with lines of the form & = a can be similarly
treated. Finally, mutual intersections of unchanged lines are unchanged.

(In the calculations carried out in this part of the proof, those
done in the new plane before the final establishment of the properties
of its coordinatizing ring are based on the definitions of the special
lines in terms of R and on the restrictions on R.)

We must further show that every pair of points is on at least one
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line. The case where one of the pair is on L. was dealt with in the
original construction. If the difference of the % coordinates of the
two points is zero or if the y difference is a multiple of the z difference
by an element of K, it is possible to locate the points on one of the
special (unchanged) lines. Otherwise, look at the precursors of the

pair involved; they lie on a line whose image under « is a line containing
the specified pair.

4, The above proofs and those immediately to follow on the
properties of the new coordinatizing ring are included to indicate the
greater directness possible with the present definition of the Ostrom
transformation which, on the surface, differs greatly from that given
by Albert. It would be enough to prove that O, was simply the
combination of the transformation described by Albert with a coordi-
natization of the result differing in a comparatively minor way from
that given by him. When this difference had been shown inconsequential,
all the results in his exposition would follow. However, we believe
that the direct proofs are interesting both comparatively and in their
own rights.

The elements and operations of K are again to be found in the
coordinatizing ring R, of 7, since the lines of the Desarguesian subplane
coordinatized by K are unchanged. If welook at the algebraic implications
of the special (unchanged) lines, we see that for «,d¢c K,

a-aob=aa—>
(aa)o = a(wd)
a(a + 0) = ax + ad
(@ + b)a = aa + b

form the restrictions on R and the inheritance of slopes in K. To
establish the remaining special properties of elements of K, it is necessary
to show that aa = aa in R,. Without loss of generality, ¢ = a,t + a,,
a, # 0. On the line ¥y = xa, consider the point (¢, ¥) = (0, y,y.). Its
predecessor, (0y;, ay,) lies on a line in 7 with slope a;'t + ai'a,. That
is, since the line passes through the origin,

at + y, = yu(e't + ar'e,) = yat + y.ar'a, .
o = ya’l Y, = ¥.a'a, , multiplications in K.
Y = A5 Y, = AKX .

In the latter stages of the above proof, use was made of the fact
that the elements of R, are again a right vector space of dimension
two over K. This follows from the preservation of the form of the
clements in R;, the properties mentioned above, and the preservation
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of the lines with slope 1 among the inherited lines.

THEOREM 1. Under the motations and restrictions of §2, the
transformations Op and Og carry a projective plane with restricted
coordinatizing ring R into another (not necessarily distinct) projective
plane with coordinatizing ring R, or Rs having precisely the same
properties as specified for R.

THEOREM 2. Right distributivity of R implies right distributivity
of Ry; left distributivity of R implies left distributivity of Rs.

Proof. We prove the first half, leaving the remainder to follow
by duality. Consider

(@ + bym = (a;t + a; + bt + b)) (mit + m,)

where, without loss of generality m, = 0. The precursor of the point
(€1C5, Y1¥s) 18 (C1%s, C2Ys) Where ¢, = @, + by, ¢, = @y + b,. That is, ¢t + ¥, =
(¢t + y)m’ where m’ is the precursor of m. Similarly, from

am = Yt + Yy, bm = Yt + Yo, @t + Y, = (a;t + y)m' ;
bzt + Ys = (bxt + yb)m, .
Expanding all three expressions by the right distributivity of R, and
substituting the two latter in the first:
W — Ys — Ym' = (Yo — Ys — ¥o) .

But the right hand side is in K, hence so is the left. Therefore both
sides are zero. This completes the proof.

THEOREM 3. If R admits the following weak right distributivity:
(@ + a)b = ab + ab for a in K, and if the line in 7,y = &+ mob, has
the form y = xm — b, then the successor line in m,, y = x-m ob’, also
has the form y = xm’ — b'. The equivalent statement can be made
for points in ms, of R admits weak left distributivity.

Proof. Again it suffices to prove the case for 7,. For a line
Yy = am — b, where, without loss of generality, we may assume m =
m.t + m, m, + 0, we find not only m’ = m*t + m;*m,, but also &’. If

b=2"bt+ b, b =0bit + b;,
we solve:

—b;, = —=bi(mt + m,) — (bt +b,),
and find
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b = —m*b,; by = b, — mi'myb; .

Now denote by Xt + X,, the value (xt + ,) (mt + m,). Then the
point on the line:

(x1t + wz; (Xl - bl)t + Xz - bz)
becomes
(wlt + Xl - bn xt + Xz - bz)

and we must determine if this satisfies ¥y = am’ — b’. From the point
(2,2, X,X,) on the line y = ®m, we know that the point (x, X, #,X) is
on y = am’ or x,t + X, = (&t + X)m'. Then, in the present case,

am’ — b = (xt + X, — bym’ — ¥
= (xlt + Xl)m, - bl(ml_lt + ml—lmz) - (—mi—lblt + bz - mflmzbl)
= a4t + Xz - bz ’

which was to be shown. We conclude this section by stating the duality
relations which follow from the construction procedures.

THEOREM 4. Using, as before, the asterisk to denote duality:

(Tp)* = 7§, (ms)* = 7y .

5. In this section we will consider the planes related to the
Desarguesian plane by the transformations O, and Og. It is shown
in [1] that the transform of a Desarguesian plane by O, is a Hall plane.
The proof will be given in the present notation. Theorem 4 then gives
the result that the transform by Og is the dual of the Hall plane.

THEOREM 5. The transform of a Desarguesian plane by O is
a Hall plane.

Proof. For R to be the coordinatizing ring of a Desarguesian
plane, R must be a quadratic field over K. Let the equation satisfied
by t be t* = rt + s. We desire to investigate R, and to show it isa
Hall system. In [2] Hall gives three conditions in his Theorem 20.4.7.
The first two amount to requiring that the ring be a right vector
space over K; this, and more, is guaranteed by Theorem 2. The third
may be quoted verbatim: (substituting ¢ for #): For z = a + tb where,
a,beK,b+0, and w = ¢ + 2d,c,d e K, put

wz = ds + 2(c + dr) = ac + adr + ds + t(bc + bdr) .

To better conform with our notation and procedures, let z = mt + n,
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w=uot+ysothata=n,b=m,c=y — nwmz, d = mx. The product
is then

wz = ny — wm + wm~er + mTes + (my — ne + ar)t .
Now, if in R,, wz = (&t + y) (mt + n) = et + f, then in R:

@t +e)y(m™t+m™n)=yt + f
am~(rt + 8) + (em™ + xm™ )t + em™n =yt + f
(xm™r + em™ + amn)t + em~'s + em™'n =yt + f.
¢ =my — xr — TN
f=ams + em™n = am™'s + ny — mnwr — mn'w .

If the two expressions are examined, they are found to be identical
except for the signs on terms containing ». That is, R, is the Hall
system which results from employing the polynomial 2?4+ rx — s in
place of x* — rx — s.

It remains to determine what happens when we perform Og on
the Hall plane or O, on its dual. Except in the case where K is GF(2),
the Hall plane is distinct from the Desarguesian plane and from its
dual. Then, because of the involutory nature of the transformation,
the Oy transform of 7, cannot be the original. Also, it cannot be 74
since then the repeated transformation of the Desarguesian plane by
O would yield 7, rather than the original. Thus, either 7, is invariant
under Oy or a new plane results. We shall show that the latter is the
case and that the result is a self-dual plane which then results also
from the effect of O, on the dual Hall plane.

THEOREM 6. The result of performing first Og, then O, on the
Desarguesian plane is the same as performing first Op, then Oy and

18 a self-dual plane distinct (except im the case of order 4) from the
original plane.

Proof. We will prove that the incidence sets are the same. For
convenience, we will denote an incidence of the point (x, y) with the
line of slope m and negative intercept b (the line (m, b)) by [z, ¥, m, b],
or in our expanded notation by [, «,, ¥, ¥, m,, M., b, b,]. There are
four cases, only one of which offers any interest of difficulty.

Case I. 2z, = m,=0. Neither Oy nor O change this incidence
which refers to an unchanged line under O, and an unchanged point
of Og.

Case II. %, = 0 +# m,. For O, this involves a changed line; for
O, an unchanged point.
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[0, @5, ¥, Yay My, My, by, by]
Or [0; Yy By Yoy M, MMy, —m;'b,, b, —m myb,]
N

Os [0, ¥, @y Yo, mi*, mimy, —mi'by, b, —mim;b,] .
—_—

In the other order

[0’ wz, yly '!/2: mb mza blv b2]
OS [O’ xz; ?/1, Yo mlr m29 bl; bﬂ]
—_—

Or [0, Y1, @, Y5y M, mi My, —mi*by, b, —mi'm,b,] .
_

In the calculation of the new negative intercepts we use the fact that
both the Hall plane and its dual are linear (Theorem 3) and the property
that this sufficed for the calculation in the proof of Theorem 4. The
distributivity hypothesis was not used at this point.

Case III. m, = 0 +# x,. The calculation is precisely the same as
in Case II. For completeness we write the final incidence:

[wfly wl_lwm “‘90?1?!1, Y, — wl_lx2ylr 0, bly My, b2] .

Case IV. mx, + 0. Here we interpose a lemma: It is always
possible to choose t so that, if [«,, ., ¥, Ys, My, My, by, b,] is an incidence,
so is: [®,, —®s — Y1, Ys, My, —M,, —by, by, the plane being Desarguesian.
To prove the lemma, we note that if the characteristic is 2, there is
nothing to prove and that if the characteristic in not 2, K contains
a nonsquare so that we may assume that the equation satisfied by ¢
is * =«a, a in K. Then we know that

Yt + Yy = (@t + ) (myt + my) — (bt + b,) ,
or
Y = My, + xymy, — by Y, = TMA + Tymy, — by .
Further,

(@t — ) (+Mt — Mmy) — (=bt + b)) = (—wmy — x;m,; + b))t
+ (@ma + xym, — b)) = —yt + ¥, .

We make the obvious one-one correspondence between the two sets of
indices for this case and carry out the now familiar caleculations on
the original incidence for O, followed by Oy, and on the incidence with
the four minus sign for Oy followed by O,. The end result is the
derived incidence:

[, @7y, — 27, Yo — 7 TY, MY, —mT by, mitmy, by —mIimb,] .
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Thus the theorem is proved and the structure of the new self-dual
plane explicitly revealed by defining its incidence matrix in terms of
that of the Desarguesian plane. This is the best we could hope to de
since the plane is clearly not linear.

The question naturally arises: What is the relationship of these
planes to the Hughes planes? For order 9, they are identical. Indeed
the ring Ry, is precisely the ring given from the construction of Hughes
in [4] and reproduced explicitly in [3]. For higher orders it will follow
from as yet unpublished work of Ostfom that they are distinet. It is
to be noted that these planes do not depend on an odd order and also,
there is always only one of these planes for any order while there are
two distinct Hughes planes for 117, 232, 29% 59°,

6. What is the general situation for planes with rings of the
prescribed type? If we take such a plane and its dual and proceed
to form the successive O, and Oy transformations we get parallel
structures or graphs which have no more than two joins from each
point and which are, hence, rings or chains. If a self-dual plane occurs
the parallel structures merge. The structures will be closed loops unless
a plane is left invariant under the transformation. The general possible
structures of these graphs are not known. It is possible to formulate
a number of possible hypotheses such as that each graph is a ring or
lozenge having two self-dual planes but direct calculation seems impossible
except for such simple cases as the Desarguesian case considered in the
previous section.

What part has the restriction to finite orders played? The sole
explicit use was in the first proof where a finitistic counting argument
was used to prove that a changed line intersected an unchanged line.
This argument can be replaced by other conditions such as actually
calculating the intersection where the ring is simple enough. Thus, of
course, this method of deriving the Hall plane extends to the infinite case.

The situation for the self-dual plane is a bit more complicated.
Since the unique solution is calcuable in fields of all even powers of
all primes, we could, perhaps appeal to local-global theorems but the
direct proof is more satisfying. We will carry out the proof for the
intersection of lines of the form y = x6 — d, § in K, with lines y =
x-mob, m not in K, in a field quadratic over K where t* = «. The
other possible cases will be seen to be essentially similar. Under the
conditions we seek an incidence in the new plane of the form:

[wlr xm xla - dl! w23 - d2’ ml) mz: blr bz] .

In carrying this incidence back to the Desarguesian plane, two possi-
bilities arise depending on a possible solution with x, = 0. If such a
solution exists, the corresponding incidence in the Desarguesian plane is:
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[0, —d,, ., 2.0 — dy, M, mim,, —mby, by —mimyb,] .
If not, we have:
[7, 0 — daTt, —@r'®,, o', d, — dymi, —mh,, mTim,, b, —miimob,] .
The first case leads to the equations in the field:
mx, = b, — dy; omx, = m,d, — m,d, — mb, + myb, ,
with a consequent solubility condition:
my(d, — b)) + (0 —my) (d, —b)=0.
The second case to the equations:

(5 - mz)xl + mx, = b1 + dl
bym, + bd — mb, — md)x, + mdx, =a + bd, .

The determinant of this system is just m, times the expression which
must be zero in the first case and the two possibilities are complementary.
Incidentally, although the uniqueness did not depend on finitistic
arguments, it is clearly revealed in the computation. If b, + d, =0,
a + bd, = a — b? # 0 since a cannot be a square. Thus we have the
theorem:

THEOREM 6’. Theorem 6 is true as stated, without recourse to
the tnitial restriction to finite orders, for any system beginning with
a Desarguesian plane coordinatized by a quadratic field (i.e. a simple
quadratic extension of a subfield).

It is an open question whether the finiteness assumption is necessary
at all. No other proof of the intersection property is known; the proof
in [1] is essentially similar to the one given here.

The type of purely algebraic proof used in Theorems 2, 3 and 5
illustrates the possibility of divorcing the transformation from the plane
and considering it only as a ‘twist’ employed on a given ring.
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