DEGENERATE ELLIPTIC EQUATIONS

R. M. REDHEFFER AND E. G. STRAUS

Let B denote a region of Euclidean n space, with points & =
(2, @ +++, ®,)€ B, and let v = u(x) be such that each partial deriva-
tive, u;, is a differentiable function of z. If

> a(@)u; + g(lgradu|) = 0 and (a;;)) =0,

then appropriate conditions on (a;;) and on the function g ensure that
u satisfies the maximum principle. That is, the inequality v < m on
0S implies # < m in S for every constant m and every compact set
Sc B.

For example: Let g(s) be positive, continuous and increasing for
s§ >0, and let

S: giz) N

Suppose there exists a function c¢(x) e C® such that, for xe S,
inf >} a;(®)e;(w)ei(x) > 0, inf 3 a;;(x)e;;(x) > — oo,
Then the maximum principle holds [1].
If g(s) = o(s) the weaker condition [2]
inf > a;;(®)e;;(x) >0

suffices; for example, let (a;;) be continuous and nonvanishing. Even
when ¢(s) = o(s), the maximum principle fails if (a;;) vanishes at one
point. But if g(s) = 0, a great many zeros can be allowed, and that
is the reason for this note.

We shall establish:

THEOREM 1. Let u be a C® solution of > a;(®)u; =0, where
(a;;) = 0. Suppose that the set of points x € B where (a;;) = (0) has
no interior points. Then u satisfies the maximum principle.

The proof depends on the following lemma.

LEMMA 1. Let ueC® in a bounded region B, and let uwe C™®
be in the closure, B, of B. Let B be a dense subset of B. If
SUD,es U > SUD,cos % then there exists a quadratic polynomial 6(x)
with arbitrarily small coefficients so that (6;;) > 0 and u + 6 attains
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its maximum in B.

Proof. Choose h>0 so small that sup,, (u—+h |2|?) <supz (u+h|2|?).
Then the function » = % + h|x[* attains its maximum at a point
%,€ B. The function w =v — (h/2) | ¢ — @, |* has &, as a unique maximum
point and satisfies (w;i(%,)) = (v;;(®)) —hI < —hI < 0 and therefore
(w;;(x)) < 0 in a neighborhood N:|x — &,| < §. The surface S:z =
w(x) is strictly concave for xe€ N, while for x¢ N we have w(x) <
w(w,) — hd*/2. Since the tangent plane of S at x, is horizontal and
its direction varies continuously in N, there is a neighborhood N,c N
of x, so that tangent plane of S at any point %,€ N, lies entirely
above S, except at the point @, itself. '

Choose @, € N, N B. Then function w(x) — w(w,) — 3 w,(2.)(x — )
is negative everywhere in the closure of B except at x,. Thus, the
function

1

0(x) = h|z| — —2—h % — @' — 3 @)@ — @)

has the desired properties, since (4;;,) = hI> 0 and we can choose &
and w,(x,) arbitrarily small.

Proof of Theorem 1. Let B be the set for which (a;;) # 0. If
for some compact subset S of B we would have # attain its maximum
in the interior of S, then according to Lemma 1 we could choose 6
so that w + 6 attained its maximum at a point of BN S. This
leads to a contradiction since (u;;) = —(0;;) < 0 at this point.

The foregoing proof makes essential use of the condition ue C®.
We now assume only that w is differentiable.

A singularity is a point where one or more of the following
undesirable things happen:

(1) Some derivative u,; fails to be differentiable.

(2) The differential inequality > a;;(x)u,; = 0 fails.

(8) The matrix (a;;) = (0).

(4) The condition (a;;) = 0 fails.

A “smooth surface” is a surface of form ¢(x) = 0, where ¢ C*® and
grad ¢ = 0. We can now state:

THEOREM 2. Let u be differentiable for xe€ B, and let the
singularities be contained in the wunion of countably many smooth
surfaces. Then w satisfies the mawimum principle.

The proof again depends on a small modification of % which
moves the maximum outside the surfaces of singularities.
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LEMMA 2. Let u be differentiable in the bounded region B and
continuous in the closure of B. Let ¢*(x) be twice differentiable
with bounded ¢ and grad ¢®(x) =0 in B; k=1,2, +--.

If supyu > supy,; % then there ewists a function 0(x) twice
differentiable in B so that 6,0, 0;; are arbitrarily small in B;
;) >0 and u + 6 attains its maximum at a point of B which
does not lie on any surface ¢ (x) = 0.

Proof. We write 0 = h|x|* + 3¢, 6% () where h > 0 is chosen
so small that supz(u + k|z|®) > supsz(® + k|@[") +h and the ¢,
are determined successively as follows. Set 6 =h|x|* and 0™ =
Rl + Spacd®(@). If w4+ 6™ does not attain its maximum on
¢™*(x) = 0 then we set ¢,.; = 0. If u + 0" does attain its maximum
on ¢"*(x) = 0 then we choose ¢,.; > 0 but so small that

D) e (@) < 1,

2n+1

@) ey | $7(@) | < ——(max, (u + 0%) — max (u + %),

2n+1 ¢(k)=0
k=1,2,---,m,
h
®) Cun|$"@) | < Sy 0 [407@)] < S

for all xe B.

Since grad ¢®tY £ 0 it follows that u + 6" does not attain its
maximum on ¢“*V(x) = 0 while condition (2) guarantees that it also
does not attain its maximum on ¢*(x) =0, k=1, -+, n. Conditions
(1) and (3) guarantee the convergence of 8 to a twice differentiable
function which together with its first and second derivatives is small
for small choices of &. By condition (2) u + ¢ does not attain its
maximum on any surface ¢*(x) =0, but since |0| < h|x|?+ h it
attains its maximum in B. Finally, condition (1) makes

(0:) > 2hI — 3, c,(| 9% ) > 2RI — 2%1: nl.

The proof of Theorem 2 now proceeds exactly as the proof of
Theorem 1.

Combining the ideas of Theorems 1 and 2 we obtain the follow-
ing generalization of Theorem 1.

THEOREM 3. Let w be differentiable in B, and have continuous
second derivatives except on the wumion of countably many smooth
surfaces. If the conditions

Sa;@u; 20, (a;)=0, (a;) +(0)
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Fhold on a dense subset of B, then u satisfies the maximum principle.

Proof. According to Lemma 2 we can find a function, 6 so that
@) > 0 and w + 0 attains its maximum at a point of continuity of
(#;;). The construction in the proof of Lemma 1 therefore yields a
function # so that w + 6 + § attains its maximum at a point of the
set of points in B at which (a;;) # 0, and (4,;) + (@,;) > 0.

It is fairly obvious that these theorems are in many ways best
possible. Certainly if the set at which (@;;) = 0 has interior points
the maximum principle fails.

The integral of a singular (Cantor) function satisfies u,, =0
except at points of the Cantor set, but it need not satisfy the
maximum principle. Thus the restriction to a denumerable number
of surfaces of singularities in Theorems 2 and 3 cannot be substantially
relaxed.
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