DEGENERATE ELLIPTIC EQUATIONS

R. M. REDHEFFER AND E. G. STRAUS

Let B denote a region of Euclidean n space, with points $x = (x_1, x_2, \dots, x_n) \in B$, and let u = u(x) be such that each partial derivative, u_i , is a differentiable function of x. If

$$\sum a_{ij}(x)u_{ij} + g(|\operatorname{grad} u|) \ge 0$$
 and $(a_{ij}) \ge 0$,

then appropriate conditions on (a_{ij}) and on the function g ensure that u satisfies the maximum principle. That is, the inequality $u \leq m$ on ∂S implies $u \leq m$ in S for every constant m and every compact set $S \subset B$.

For example: Let g(s) be positive, continuous and increasing for s>0, and let

$$\int_0^1 \frac{ds}{g(s)} = \infty$$
 .

Suppose there exists a function $c(x) \in C^{(2)}$ such that, for $x \in S$,

$$\inf \sum a_{ij}(x)c_i(x)c_j(x) > 0$$
, $\inf \sum a_{ij}(x)c_{ij}(x) > -\infty$.

Then the maximum principle holds [1].

If g(s) = o(s) the weaker condition [2]

$$\inf \sum a_{ij}(x)c_{ij}(x) > 0$$

suffices; for example, let (a_{ij}) be continuous and nonvanishing. Even when g(s) = o(s), the maximum principle fails if (a_{ij}) vanishes at one point. But if g(s) = 0, a great many zeros can be allowed, and that is the reason for this note.

We shall establish:

THEOREM 1. Let u be a $C^{(2)}$ solution of $\sum a_{ij}(x)u_{ij} \geq 0$, where $(a_{ij}) \geq 0$. Suppose that the set of points $x \in B$ where $(a_{ij}) = (0)$ has no interior points. Then u satisfies the maximum principle.

The proof depends on the following lemma.

LEMMA 1. Let $u \in C^{(2)}$ in a bounded region B, and let $u \in C^{(0)}$ be in the closure, \overline{B} , of B. Let \widetilde{B} be a dense subset of B. If $\sup_{x \in B} u > \sup_{x \in \partial B} u$ then there exists a quadratic polynomial $\theta(x)$ with arbitrarily small coefficients so that $(\theta_{ij}) > 0$ and $u + \theta$ attains

Received April 19, 1963.

its maximum in \tilde{B} .

Proof. Choose h>0 so small that $\sup_{\partial B} (u+h|x|^2) < \sup_B (u+h|x|^2)$. Then the function $v=u+h|x|^2$ attains its maximum at a point $x_0 \in B$. The function $w=v-(h/2)|x-x_0|^2$ has x_0 as a unique maximum point and satisfies $(w_{ij}(x_0))=(v_{ij}(x_0))-hI \le -hI < 0$ and therefore $(w_{ij}(x))<0$ in a neighborhood $N:|x-x_0|<\delta$. The surface S:z=w(x) is strictly concave for $x \in N$, while for $x \notin N$ we have $w(x) \le w(x_0)-h\delta^2/2$. Since the tangent plane of S at x_0 is horizontal and its direction varies continuously in N, there is a neighborhood $N_1 \subset N$ of x_0 so that tangent plane of S at any point $x_1 \in N_1$ lies entirely above S, except at the point x_1 itself.

Choose $x_i \in N_i \cap \widetilde{B}$. Then function $w(x) - w(x_i) - \sum_i w_i(x_i)(x^i - x_i^i)$ is negative everywhere in the closure of B except at x_i . Thus, the function

$$heta(x) = h |x|^2 - rac{1}{2} h |x - x_0|^2 - \sum_i w_i(x_1) (x^i - x_1^i)$$

has the desired properties, since $(\theta_{ij}) = hI > 0$ and we can choose h and $w_i(x_1)$ arbitrarily small.

Proof of Theorem 1. Let \widetilde{B} be the set for which $(a_{ij}) \neq 0$. If for some compact subset S of B we would have u attain its maximum in the interior of S, then according to Lemma 1 we could choose θ so that $u + \theta$ attained its maximum at a point of $\widetilde{B} \cap S$. This leads to a contradiction since $(u_{ij}) \leq -(\theta_{ij}) < 0$ at this point.

The foregoing proof makes essential use of the condition $u \in C^{(2)}$. We now assume only that u is differentiable.

A singularity is a point where one or more of the following undesirable things happen:

- (1) Some derivative u_i fails to be differentiable.
- (2) The differential inequality $\sum a_{ij}(x)u_{ij} \geq 0$ fails.
- (3) The matrix $(a_{ij}) = (0)$.
- (4) The condition $(a_{ij}) \ge 0$ fails.

A "smooth surface" is a surface of form $\phi(x)=0$, where $\phi\in C^{(2)}$ and grad $\phi\neq 0$. We can now state:

THEOREM 2. Let u be differentiable for $x \in B$, and let the singularities be contained in the union of countably many smooth surfaces. Then u satisfies the maximum principle.

The proof again depends on a small modification of u which moves the maximum outside the surfaces of singularities.

LEMMA 2. Let u be differentiable in the bounded region B and continuous in the closure of B. Let $\phi^{(k)}(x)$ be twice differentiable with bounded $\phi_{ij}^{(k)}$ and grad $\phi^{(k)}(x) \neq 0$ in B; $k = 1, 2, \cdots$.

If $\sup_B u > \sup_{\partial B} u$ then there exists a function $\theta(x)$ twice differentiable in B so that $\theta, \theta_i, \theta_{ij}$ are arbitrarily small in B; $(\theta_{ij}) > 0$ and $u + \theta$ attains its maximum at a point of B which does not lie on any surface $\phi^{(k)}(x) = 0$.

Proof. We write $\theta=h\,|\,x\,|^2+\sum c_k\phi^{(k)}(x)$ where h>0 is chosen so small that $\sup_B(u+h\,|\,x\,|^2)>\sup_{\partial_B}(u+h\,|\,x\,|^2)+h$ and the c_k are determined successively as follows. Set $\theta^{(0)}=h\,|\,x\,|^2$ and $\theta^{(n)}=h\,|\,x\,|^2+\sum_{k=1}^nc_k\phi^{(k)}(x)$. If $u+\theta^{(n)}$ does not attain its maximum on $\phi^{(n+1)}(x)=0$ then we set $c_{n+1}=0$. If $u+\theta^n$ does attain its maximum on $\phi^{(n+1)}(x)=0$ then we choose $c_{n+1}>0$ but so small that

$$c_{n+1}(\phi_{ij}^{(n+1)}(x))<rac{h}{2^{n+1}}I$$
 ,

$$(2) \quad c_{n+1} \mid \phi^{(n+1)}(x) \mid < \frac{1}{2^{n+1}} (\max_{B} (u + \theta^{(k)}) - \max_{\phi^{(k)} = 0} (u + \theta^{(k)}),$$

$$k = 1, 2, \cdots, n,$$

$$(3) \quad c_{\scriptscriptstyle n+1} \, | \, \phi^{\scriptscriptstyle (n+1)}(x) \, | < \frac{h}{2^{\scriptscriptstyle n+1}} \, \, , \quad c_{\scriptscriptstyle n+1} \, | \, \phi^{\scriptscriptstyle (n+1)}_{\scriptscriptstyle i}(x) \, | < \frac{h}{2^{\scriptscriptstyle n+1}}$$

for all $x \in B$.

Since grad $\phi^{(n+1)} \neq 0$ it follows that $u + \theta^{(n+1)}$ does not attain its maximum on $\phi^{(n+1)}(x) = 0$ while condition (2) guarantees that it also does not attain its maximum on $\phi^{(k)}(x) = 0$, $k = 1, \dots, n$. Conditions (1) and (3) guarantee the convergence of θ to a twice differentiable function which together with its first and second derivatives is small for small choices of h. By condition (2) $u + \theta$ does not attain its maximum on any surface $\phi^{(k)}(x) = 0$, but since $|\theta| < h |x|^2 + h$ it attains its maximum in B. Finally, condition (1) makes

$$(heta_{ij}) > 2hI - \sum c_{\scriptscriptstyle k}(\mid \phi_{ij}^{\scriptscriptstyle (k)}\mid) > 2hI - \sum rac{h}{2^{\scriptscriptstyle k}}I = hI$$
 .

The proof of Theorem 2 now proceeds exactly as the proof of Theorem 1.

Combining the ideas of Theorems 1 and 2 we obtain the following generalization of Theorem 1.

THEOREM 3. Let u be differentiable in B, and have continuous second derivatives except on the union of countably many smooth surfaces. If the conditions

$$\sum a_{ij}(x)u_{ij} \geq 0$$
 , $(a_{ij}) \geq 0$, $(a_{ij}) \neq (0)$

hold on a dense subset of B, then u satisfies the maximum principle.

Proof. According to Lemma 2 we can find a function, θ so that $(\theta_{ij}) > 0$ and $u + \theta$ attains its maximum at a point of continuity of (u_{ij}) . The construction in the proof of Lemma 1 therefore yields a function $\tilde{\theta}$ so that $u + \theta + \tilde{\theta}$ attains its maximum at a point of the set of points in B at which $(a_{ij}) \neq 0$, and $(\theta_{ij}) + (\tilde{\theta}_{ij}) > 0$.

It is fairly obvious that these theorems are in many ways best possible. Certainly if the set at which $(a_{ij}) = 0$ has interior points the maximum principle fails.

The integral of a singular (Cantor) function satisfies $u_{11}=0$ except at points of the Cantor set, but it need not satisfy the maximum principle. Thus the restriction to a denumerable number of surfaces of singularities in Theorems 2 and 3 cannot be substantially relaxed.

REFERENCES

- 1. R. M. Redheffer, An extension of certain maximum principles, Monatsh. f. Math., 62 (1962), 56-75.
- 2. ——, Bemerkungen über Monotonie und Fehlerabschätzung bei nichtlinearen partiellen Differentialgleichungen, Arch. Rat. Mech. and Anal., 10 (1962), 427-457.

University of California, Los Angeles