
ON ABSTRACT AFFINE NEAR-RINGS

HARRY GONSHOR

1* Introduction* We shall limit ourselves to near-rings for
which addition is commutative. They will be known as abelian near-
rings. We assume that the distributive law (δ + c)a — ba + ca holds,
but the law α(δ + c) = αδ + ac does not necessarily hold. (This is
consistent with the usual convention that the product AB of two
operators A and B stands for B followed by A, e.g., consider the
near-ring of all mappings of a group into itself.) Our aim is to
generalize the results of [1] and [2] to a class of near-rings which we
call abstract affine near-rings.

2* Abelian near-rings* We first define two subsets L(R) and
C(R) of a near-ring R. (When convenient, we call these sets L and
C. L(R) is the set of all elements aeR which satisfy α(δ + c) =
αδ + ac for all δ and c in R. C(R) is the set of all elements aeR
which satisfy άb — a for all δ in R. Note that, in general, 0 a = 0
and (—α)δ = — (αδ).

PROPOSITION 1. L is a subring of B.

Proof. If a, beL, then

(a + b)(x + y) = a(x + y) + b(x + y) = ax + ay + bx + by
= (ax + δ#) + (ay + δ#) = (a + δ)α? + (α + b)y,

hence α + δ € L. Since 0 a — 0 for all α, 0 € L. Also if α e L, then

(—α)(a + y) = — [α(a + #)] = —[ax + αy] = (—ax) + ( -
= ( - φ ? + (-a)y ,

hence —aeL. Furthermore if a, beL, then ab(x + y) = a(bx + δ#) =
abx + αδ#, hence αδ e L. This completes the proof. Note that if R
contains an identity e, then e e L.

DEFINITION. An r-ideal is a subgroup closed under multiplication
on the left and right by arbitrary elements of R. An ideal I is a
subgroup closed under right multiplication by elements of R and which_
furthermore satisfies y(x + α) — yxe I for all ae I, xeR, yeR.

PROPOSITION 2. C is an r-ideal of R.
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Proof. If α, 6 e C, then (a + b)x = ax + bx = a + δ, hence α + b e C.
0 x = 0, hence OeC. If α e C , then (—α)# = — (α#) = — a, hence
—aeC. If α e C, then (α#)2/ = α(gy) = α = ax and ($α)jf = x(ay) =
xa. This proves the result.

PROPOSITION 3. L π C = 0.

Proof. Let α e L f l C . Let a? be arbitary in i2. Then α —
α(# + a?) = ax + α# — α + a. Thus α = 0.

3* Abstract affine near wrings*

DEFINITION. An abstract affine near-ring R is an abelian near-
ring R which satisfies R = C + L. C can be regarded as a module
over L. If r e L and aeC define r o a — ra. The axioms for a
module are clearly satisfied. Also if lx l2 € L, and clf c2 € C, then

(ii + cx){l2 + c2) = ?!(?, + c2) + d(Z2 + c2)
= kh + ϊA + Ci = lλl2 + ho c2 + cx

Thus multiplication can be expressed in terms of the ring and module
operations. Conversely, let M be any left R module. We make the
group direct sum R © M into a near-ring as follows. Let rlf r2eR
and m19 m2 e M. Define (r19 m^){r2y m2)^{rλr2, rλm2 + mx).

PROPOSITION 4. tyith this definition for multiplication R 0 M is
an abstract affine near-ring with L(i ϊφΛί) = R, 0) and C ( J B © M ) =
(0, M).

Proof.

[(r19 mOίr,, w,)](r8, m8) = (nr2, r^+mjin, m3)

, m3)] = (rx, mj(r2rz, r2mz + m2)

This verifies the associative law.

[(rlf mτ) + (r2, m2)](r3, mz) = (r2 + r2, mx + m2)(r3, m3)
= [(^i + ^ 2)n, (^i + r2)ms + m1 + m2]

(r^m^r^m,) + (r2, m2)(r3, m3) = (^rβ, r * + mx) + (r2r3, r2m3 + m2)
= (^rβ + r2rd, r1mz + r2m3 + m1 + m2).

This verifies the distributive law. Hence i? © M is an abelian near-
ring. Furthermore,
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(r19 0)[(r2, m2) + (r3, ra3)] = (rlf 0)(r2 + r3, m2 + m3)
= [ri(r2 + r3), rx(m2 + ra3)] .

(n, 0)(r2, m2) + (rlf 0)(r3, m3) = {rxr2y rxm^ + ( r ^ , r ^ )
= OVa + % r^m, + rxra3) .

Hence (rx, 0) e L, (0, m^fj, m2) = (0r2, 0m2 + mx) = (0, mi). Hence
(0, THJ) e C. Since L Π C = 0. This completes the proof.

We are now ready to discuss the connection with [1] and [2].
Embed M in a module Mx so that i? is faithful, i.e., rm = 0 for all
meM1 implies r = 0. This can always be done. If the element
(r, m) e i? 0 M is identified with the map of Mx into itself defined
by x —•» rx + m for all cc 6 JkΓx, we obtain an isomorphism of the
abstract affine near-ring and a near-ring of maps of Mx into Mlm (It
is easily verified that the operations are preserved.) Furthermore
each map is the sum of an endomorphism and a constant map. Thus
the near-ring considered in [2] corresponds to the special case where
M is a vector space and R is the ring of all linear transformations.

4* The Ideals in R 0 M. Henceforth we write r + m for
(rfm). We now classify the ideals and r-ideals of JB0Jlf. Let J
be an ideal or an r-ideal and let r + meJ. Then (r + m)0e J, i.e.,
mej. Thus rej. This shows that J = JBX 0 Mx where R1 and Mx

are subgroups of R and Jlf respectively. If r1eR1 and r e 12, then
r xr and rrt are in J", hence in Rx. Thus i22 is an ideal in R. (Note
that an ideal is closed under left multiplication by elements of
L(R@M).) If m1eM1 and reR, then rm1ej. Hence rm1eM1.
Thus M1. is a submodule of M.

At this point we consider the ideals and r-ideals separately. Let
J be an r-ideal. Let meM. Since OeJ, m = m OeJ. Hence
Λfi = M. Thus all r-ideals have the form Rx 0 M where Rλ is an
ideal in R. Conversely, let J be any set of the form Rx 0 M where
Rx is an ideal of R. Clearly, J is a subgroup. Let rxeRlf reR,
m1 e Mλ and me M. Then (rx + m^r + m) = r ^ + r̂ m + mxe JBX0 M
and (r + m)(rχ + mx) — rr x + rw^ + m e Rλ 0 Λf. Thus J is an
r-ideal.

Now let J be an ideal. Let r x e R λ and meM. Then r xme J.
Hence RJdcM^ (Note that left multiplication by elements of M
give no new information since m(y + x) — mx = 0 for all meM and
x, y e R.) Conversely, let J be of the form JBI 0 Mt where R± is an
ideal of R and Mx is a submodule of M containing RXM. Again J
is a subgroup. Let rxeRlf mλeMlf reR and meM. Then

(rx + mx)(r + m) = r xr + rxm + m 1eJί 1 + jRiM + M1 c i?! 0 JMi = J.

On the left it suffices to check with r and m separately. For r we
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may use left multiplication. Thus r{rx + mx) = rrλ + rm1 e Rx 0 Mx.
For m the result is automatically 0 since mx — my for all x,yeR.
Thus J is an ideal.

We have proved the following theorem.

THEOREM. The r *ideals of i? 0 M are exactly the sets of the
form Rλ@M where R1 is an ideal of R. The ideals of JS 0 M are
exactly the sets of the form Rx 0 Mλ where Rτ is an ideal of R and M%

is a submodule of M containing RXM. Thus every r-%deal is an
ideal.

In the special case considered in [2], M is a simple R module
and RXM = M for all ideals R Φ 0. Thus the result there that
classifies all ideals other than (0) as those sets which have the form
i?x 0 M where Rλ is an ideal of R follows from our theorem.
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