ON ABSTRACT AFFINE NEAR-RINGS

HARRY GONSHOR

1. Introduction. We shall limit ourselves to near-rings for
which addition is commutative. They will be known as abelian near-
rings. We assume that the distributive law (b + ¢)a = ba 4 ca holds,
but the law a(b + ¢) = ab + ac does not necessarily hold. (This is
consistent with the usual convention that the product AB of two
operators A and B stands for B followed by A, e.g., consider the.
near-ring of all mappings of a group into itself.) Our aim is to-
generalize the results of [1] and [2] to a class of near-rings which we
call abstract affine near-rings.

2. Abelian near-rings. We first define two subsets L(R) and.
C(R) of a near-ring R. (When convenient, we call these sets L and
C. L(R) is the set of all elements a€ R which satisfy a(d + ¢) =
ab + ac for all b and ¢ in R, C(R) is the set of all elements ac R
which satisfy ab = o for all b in R. Note that, in general, 0-a = 0
and (—a)b = —(ab).

ProposITION 1. L is a subring of B.

Proof. If a,be L, then

@+dx+y)=alx+y)+blx+y) =ar+ ay + bx + by
= (ax + bx) + (ay + by) = (a + b)x + (@ + by,

hence a + be L. Since 0-a =0 for all a,0e L. Also if ae L, then.
(—a)@ + 9) = —[a(x + y)] = —[az + ay] = (—ax) + (—ay)
=(—a) + (—a)y,

hence —a e L. Furthermore if a,be L, then ab(x + y) = a(bx + by) =
abx -+ aby, hence abe L. This completes the proof. Note that if R
contains an identity e, then ee L.

DEFINITION. An 7r-ideal is a subgroup closed under multiplication
on the left and right by arbitrary elements of RB. An ideal I is a
subgroup closed under right multiplication by elements of R and which.
furthermore satisfies y(x + a) —yx eI for all acl, x€ R, ycR.

PROPOSITION 2. C is an r-ideal of R.
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Proof. Ifa,beC, then(a + b)x = ax + bx = a + b, hencea + be C.
O0-2=0, hence 0¢C. If acC, then (—a)r = —(ax) = —a, hence
—aeC. If acC, then (ax)y = a(ry) = a = ax and (za)y = x(ay) =
xa. This proves the result.

ProposITION 3. LNC = 0.

Proof. Let acLNC. Let x be arbitary in R. Then a =
a(x+2)=ax + ax =a + a. Thus a = 0.

3. Abstract affine near-rings.

DEFINITION. An abstract affine near-ring R is an abelian near-
ring R which satisfies R = C + L. C can be regarded as a module
over L. If reL and acC define roa =ra. The axioms for a
module are clearly satisfied. Also if I,l,€ L, and ¢, ¢, € C, then

O+ )l + ) = ULl + ¢5) + el + ¢)
=ll+le,+e,=ULlL+1loec,+ ¢

Thus multiplication can be expressed in terms of the ring and module
operations. Conversely, let M be any left B module. We make the
group direct sum R@ M into a near-ring as follows. Let 7, r,eR
and m,, m,€ M. Define (r,, m)(r,, m,)=(r7y, 1M, + m,).

PROPOSITION 4. With this definition for multiplication R@® M is
an abstract affine near-ring with L(R@P M) = R,0) and C(RP M) =
(0, M).

Proof.

[(71, m)(1y, M) (75, M3) = (7175, T+ M) (75, M)

= (117975, T17sMg + TiMy + M)
(71, m)[(73, M)(15, M3)] = (11, M)(77s, My + M)

= 11151, T1TMy + TiMy + M) .

This verifies the associative law.

[(rs, M) 4+ (73, M) (75, Mg) = (73 + 75, My + M)(75, M)
= [(r; + r)7s, (1, + TIMs + My + M)
(71, M) (Tgy Mg) + (3 M)(75, M) = (7375, Mg + My) + (7375, T5My + My)
= (17 + 7475 1My + TyMy + My + M),

This verifies the distributive law. Hence R M is an abelian near-
ring. Furthermore,
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(71, 0)[(7a) M) + (73, My)] = (15, O)(7a + 75, My + M)
= [ry(rs + 75), Ti(my + My)]
(715 0)(73y M) + (11, 0)(75, M) = (1173 T1Mg) + (1175, T17M0,)
= (17 + 11y, TMy + TiM) |

Hence (7, 0)e L, (0, m,)(r,, my) = (0r, 0m, + m,) = (0, m,). Hence
(0,m,)eC. Since L N C = 0. This completes the proof.

We are now ready to discuss the connection with [1] and [2].
Embed M in a module M, so that R is faithful, i.e., rm = 0 for all
m e M, implies » = 0. This can always be done. If the element
(r,m)e R M is identified with the map of M, into itself defined
by ®—rx +m for all xeM,, we obtain an isomorphism of the
abstract affine near-ring and a near-ring of maps of M, into M,. (It
is easily verified that the operations are preserved.) Furthermore
each map is the sum of an endomorphism and a constant map. Thus
the near-ring considered in [2] corresponds to the special case where
M is a vector space and R is the ring of all linear transformations.

4. The Ideals in R M. Henceforth we write  + m for
(r, m). We now classify the ideals and 7-ideals of RP M. Let J
be an ideal or an r-ideal and let » + meJ. Then (r + m)0€J, i.e.,
medJd. Thus reJ. This shows that J = R, P M, where R, and M,
are subgroups of R and M respectively. If r, € R, and r€ R, then
r and rr, are in J, hence in R,. Thus R, is an ideal in RB. (Note
that an ideal is closed under left multiplication by elements of
LIRP M).) If mieM, and re R, then rm,cJ. Hence rm,c M,.
Thus M,. is a submodule of M.

At this point we consider the ideals and r-ideals separately. Let
J be an r-ideal. Let me M. Since 0cJ,m =m - -0eJ. Hence
M, = M. Thus all r-ideals have the form R, M where R, is an
ideal in R. Conversely, let J be any set of the form R, M where
R, is an ideal of R. Clearly, J is a subgroup. Let r,c¢R, r€R,
m,€ M, and me M. Then (r,+ m)(r +m)=rr+rm+mecR PM
and (r + m)(r, +m) =rr,+rm, +me R P M. Thus J is an
r-ideal.

Now let J be an ideal. Let »,€ R, and me M. Then rmeld.
Hence R.Mc M,. (Note that left multiplication by elements of M
give no new information since m(y + ) — max =0 for all me M and
2, y€ R.) Conversely, let J be of the form R,@ M, where R, is an
ideal of R and M, is a submodule of M containing R.M. Again J
is a subgroup. Let r,€ R, m,e M,, r€¢ R and me M. Then

ri+m)r+m)y=rr+rm+meR +RM+ MCROM =.J.

On the left it suffices to check with » and m separately. For r we
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may use left multiplication. Thus »(r, + m,) = rr, + rm, € R, P M,.
For m the result is automatically 0 since max = my for all z,y<c R.
Thus J is an ideal.

We have proved the following theorem.

THEOREM. The r-ideals of R M are exactly the sets of the
Jorm R, M where R, is an ideal of R. The ideals of RP M are
exactly the sets of the form R, @ M, where R, is an ideal of B and M,
s o submodule of M containing R.M. Thus every r-ideal is an
ideal.

In the special case considered in [2], M is a simple B module
and RM = M for all ideals R = 0. Thus the result there that
classifies all ideals other than (0) as those sets which have the form
R, @ M where R, is an ideal of R follows from our theorem.
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