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CHEBYSHEV APPROXIMATION TO ZERO

JAMES M. SLoss

In this paper we shall be concerned with the questions
of existence, uniqueness and constructability of these poly-
nomials in % -+ 1 variables (%, %5, ---, %1, ¥) of degree not
greater than n, in z; and m in y which best approximate
zero on I, X I, X -+ X Ltyy, I, =[—1,1], in the Chebyshev
sense,

It is a classic result that among all monic polynomials of degree
not greater than n there is a unique polynomial whose maximum over
the interval [—1, 1] is less than the maximum over [—1,1] of any
other polynomial of the same type and moreover it is given by T,.(z) =
2= cos [n are cos x], the normalized Chebyshev polynomial.

Our method of attack will be to prove a generalization of an in-
equality for monic polynomials in one variable concerning the lower
bound of the maximum viz. max_,.,., |P.()| = 2" where P,(x) is
a monic polynomial of degree not greater than n. The theorem will
show that the only hope for unigqueness is to normalize our class of
polynomials. This is done in a very natural way viz. by considering
only polynomials, if they exist, of the form:

(0‘1) P(xly x2y R mk: y) = Am(xly ) xk)ym
+ A, (- .)ym—l 4 oeee Ao(. <)
for which A,(x, @, ++-,x,) is the best polynomial approximation to

zero on I, X I, X «++ X I,. Thus if k=1, we consider only polynomials
of the form:

(0.2) P(xy, y) = T(@)y™ + A, (@)y™ ™ + - + Afx) .

We find in the case of (0.2) that there is a unique best polynomial
approximation and it is given by T,(x,)T,.(y). Thus we can consider
the question of existence, uniqueness and constructability of a polyno-
mial of the form:
(0.3) P(x,, 2, 9) = Tnl(xl) Tn2(x2)ym

+ A, (@, x)Y" T A e 4 Ay, a,)
that best approximates zero. We find in this case there is a unique

best polynomial approximation and it is given by Tnl(wl) Tnz(xz)f’m(y).
Continuing in this way we shall show that the question is meaning-
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ful in general and that there is a unique best polynomial approxima-
tion to zero of the form (0.1) given by T,,l(wl)i’”z(xz) cee Tnk(xk)f’m(y).

The uniqueness and constructability are the most surprising results,
since as Buck [1] has shown, F'(x,y) = xy has amongst those polyno-
mials of the form

(@, Y) = @ + (@ + y) + a2’ + )
infinitely many polynomials of best approximation which are given by:

afi+Bf,, a=0, B8=0, a+B=1

where
1 1
( —_ 2 2 ,
Sz, y) = 5 (@ + 9’ — T
S, y) ——x+y——; (oc“r’y“)———‘l1 .

We shall finally normalize the polynomials in a different way and
show by construction, the existence of a polynomial, of best approxi-
mation in this class. However in this case the question of uniqueness
remains open.

1. NoOTATION. Let #,, %, -+-, %, be positive fixed integers. Let
o be the finite set of vectors {(x.;, s, **+, ®4;,)}, Where J,, Js, + -+, Ji
are integers with 0 =<4, 7,07, =< Ny, +++, 0 = J, < n,; and where
also —1=2,;=<1,-1=sa,;,=1,:--,-1=%,;, =<1 and no two of
the »,; are the same, no two of the wx,;, are the same, ---, no two
of the w,; are the same. Let Q(z,y) = Q(x,, ®, --+, %, ¥) be any
polynomial in x, 2, --+,2, and y of degree=n,+ty,+ +++ +n, +m—1
where @ is of degree < n, in z,,s =1,2, ---, k and of degree < m in
Y. Let m be the set of all such polynomials. Thus if Q(x,y) is in 7«

Q@, y) = pu(®)Y™ + Ppa(@)Y" ™ + o+ + Do)
where p,(x) is a polynomial in %, 2,, +--, x, of
degree = n, +ny+ +++ +m, — 1

and p,(x), 0 =< s =< m — 1, are polynomials of degree < n,+ n,+ <+« + n,
in ®, %, +++, 2,. Let

Alp,;w, 0] = rrilnir; | 71072+« o BfE — Du(@gy Tyy =2+, T) |
x

which does not depend on the particular @, but only on the class
and the leading coefficient polynomial of .
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THEOREM 1. If Q(x,y) ts any polynomial im w and if o is any
.set of the type described above then

max | @iy <. Y™ — QXy, Ty, + 0+, X, ¥) | = Alp,; T, 01207 .
—1szgs1
—1=5y<1

Proof. Assume not. Then there exists a @*(x,y) in 7 and a set
.0 of the type described such that:

max |apwye ... wpry™ — Q*(x, v) | < Alp,,; 7, 0]217"
—1szg=s1
—1=sy=1

.consider the polynomial:
Pz, y) = apage -« - aiky™
— Q*(x, y) — [eray -+ - 23 — p,@)] T ()
where p,(x) is the coefficient of y™ in Q*(x, ¥) and where
(1) T (y) = 27T, (y) = 2™ cos [m arc cosy] .

Then P(x, y) is a polynomial of degree < m — 1 in y and thus can be
written:

P(@,y) = ¢ua(@)Y" " + @uo@)y™ " + <o + (@)

where ¢,(x),0 < s = m — 1, are polynomials in x,, x,, -+, x, of degree
=N Ny F o+ My
Let (%, ., =+, ¥:;,) belong to o and y, be one of the points

rm .
yT:cos-T—n—, 0=r=m, r=integer.

‘Then T,(y,) = (—1)2"™ and we can show that the sign of
P[x1j19 xw'z! Tty xkfky yr]
is the same as the sign of —[al}, -+ @}¥, — P, (¥, *++, @) Toulw).

To see this note that:

| T,(y.) | | x;t]ll tte x:;ck - pm(xljl’ R xkjk) |
n

= (@1}, o0 hF, — Du(@agyy v, Xy5) [ 27
= Alp,; «, o2,

But by the assumption

max |xf1 .- Tpy” — Q*(x, y) | < Alp,; 7, o]2' ™
—1=Z2g<1
—1=sy<l

:and thus a fortiori



308 JAMES M. SLOSS

| x;’b]‘ll e x;’:;cky;n - Q*(xu'l, R xkjk, yr) l < A[pm; T, 0.]21—m .

If we fix  in 0 then P(zx, y) is a polynomial of the one variable
y and of degree =< m — 1. And as y takes on the values y, = cos (zr/m),
P(x,y) changes sign m + 1 times. Thus P(x, %) has m zeros, which
means ¢, (x) =0,¢q,_,(x) =0, -+, q(x) =0 since P(x,y) is only of
degree < m — 1.

Since 2 was an arbitrary point of ¢, then

Qs[xljly xzjz,"',xkjk]:Oy OéSéWL'—l

where 0 < 5, < 7, 0 = j2 =My, 0,0 Jr = m. But g¢,() is a polyno-
mial of degree < n, in x,, of degree < #,in x,, ---, of degree =< n, in 2,
and thus

qs[xlyxm”',xklzoy Oésém—l.

From which we see P(z,y) = 0 and thus:

XL e XY™ — Q¥ (x, y) = [27 -0 xfE — p,(2)] Tm(y) .

But clearly:

max |ap -« - ik — p, (@) || T(y) | = Alp,; 7, 012
ona
which is a contradiction and thus the theorem is proved.
Let us now consider the subset of polynomials 7w, of 7« for which
Q(z, ¥) belongs to w and p,(x) = 0. Then by the above theorem, a.
lower bound for the maximum is

Al0; 7, 0] = min | a1 - 26| < 1
¢ in o

which clearly depends on the set ¢. We shall next show that for
this subset 7,, we get a lower bound for the maximum that is in-
dependent of ¢ and moreover the lower bound is larger than A[0; x, o]
for all o, namely it is unity. In the third theorem we shall show
that unity is the best possible lower bound i.e. there is a polynomial
in 7, for which the maximum is 2™,

THEOREM 2. Let Q(x,¥y) be any polynomial in =, then

max |o7wg? « .. TREY" — QX4 Tyy o0, Ty, Y| = 2877
—1=sxg=1
—1=y<1

Proof. By contradiction. Assume there exists a Q(x, «+-, %, Y
in 7, such that:

max |axPapz -« TREY™ — QX <00, Ty, Y) | < 27
—1§x3§1
—1=y<1
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Then there exist 6,’s, 1=<s =1k, 1 >0, >0 such that:

k
max |apt e wpky™ — Q@y, 0, my, Y) | < 27 L O .
—152g=<1 s=1
—1=y=<1

Let T,(y) be given by (1) and consider the polynomial
P(xla Tty xk;y) =R XpkY™ — Q(xu e ';mk,y) —Xytece -%'ZkTm(y) .

P(x, ---,2,,%) is a polynomial of degree<m — 1 in y and of degree =,
inx, 1<s=k.
Let 0% = {(®.,, ®a,, -+ +, %i5,)} Where 7, -++,J, are integers with

0§j1§%1+1,0§j2§%2+1, "':Oéjkénk‘}‘l;
81< xlflé 1752< xzjzé 17 '..75k< xkjké 1
and the x,; are distinet, ---, the x,; are distinct.

Note that for x in ¢*, the sign of P(x;, «*+, %4, ¥) is the same

as the sign of —aj} --- wﬁ’,ﬁkTm(y,) for y, = cos (rnjm), r = 0,1, <+, m.

This follows from the fact that:

13
| x?fi e x%oky;n - Q(xlv ct xkr yr) | < 21—m 1_[1 6:3
s=

and the fact that:
n » ~ k " k
sy, - e @i, Tuly) | = 27 L iy, > 207 11 o3

Thus we conclude that P(x,;, ---, \;,, ¥) has m + 1 sign changes
for (@, +-+,2;,) In 0*. Let us write

P, y) = 0pi(®)y" ™ + Dpa@)y" ™ + 200+ po(T)

where p,(2), 0 =< s < m — 1, are polynomials of degree <=n, in 2,,0=s=Fk.
For each z in o*, P(x, y) has m + 1 sign changes and thus p,_.(x) =0,
DPuao(®) = 0, «+-, py(x) = 0 for each « in g*. If for (x,, ®siyy ***, Tes,)
in o*, we fix all but the first component, we get », + 2 values in o*
for which p,() = 0,0 < s =< m — 1, but these p,(x) are of degree =< n,
in @, and thus p,(x,, ¥4, ¥sjy *++, Tx;,) = 0 for all real x,. Continuing
in this way, we see that p,(x,, 2., *++, x,) = 0 for all (x,, x,, + -, x;), ®,
real. Thus:

P(xly xz; ) xk; y) = O
for all real z, and real y. Thus
ot eee ape T (y) = aft - aly™ — Q@ - v, T, Y) -

But
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max |27t -- 2T (y) | = 20"
—1szg<1
—1=5y<1

which gives a contradiction and the theorem is proved.

2. Normalization of competing polynomials and construction-
of the best polynomial. We shall now consider a subset 7(8) of the
set of polynomials m. We shall then answer the question of existence,
uniqueness and constructability of the best polynomial approximation
in the maximum norm to zero within this class 7(8) on the cube

—1=2,=<1,+++, =152, =1, -1=5y=1.

It is apparent from Theorem 1, that if we want uniqueness independent
of o, it is necessary to consider some subset of .

DEFINITION. A polynomial

Q(w’ y) = pm(xly Loy ***, xk)ym
+ pm—l(xlr xZ; A xk)ym_l + o+ po(xly Lay =, mk)

which is in # and for which
TPyt e e e o — Py, By 000 w) = T, (@) T (@) o+ T (20)

is said to be in w(B).

LEMMA. Let q(y) be a polynomial in y, let y, >y, > +++ > ¥,
be any set of real numbers for which

q¥) =0,9(%) 20,q(%) =0, --- (—D)"q(y,,) = 0.

Then q(y) has m zeros imcluding multiplicities on [Yo, Y.l

Proof. (by induction);: For m = 1 obvious. Assume theorem to-
be true for m =< k. Let y, >y, > ¥, > *++ > ¥, be any set of real
numbers such that

q¥) =0,9(y) =0, «+- (=D*q(y) = 0, (—1)*"'q(%44,)) = 0.

Case 1. q(y,) # 0 for some 1 <s=<k. Then by the induction
hypothesis ¢q(y) has s zeros on [y, v,] and has k + 1 — s zeros on
[¥., Yis1]. But q(y,) # 0 thus ¢(y) has s zeros on y, = y < 9, and thus.
q(y) has s+ (kK +1 —s8) =k + 1 zeros on [¥,, Yi+il-

Case 2. q(y,) < 0. Then unless q(y,) = 0for 1 =< s =<k we are in
Case 1 and we are finished. Therefore, assume ¢(y,) =0,1=s= k.
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We may as well assume g(y) < 0 on (¥,, ¥,) since if not then ¢(y) has
a zero there because ¢(y,) < 0, and we are finished. Also, we may as
well assume ¢(y) > 0 on (y,, ¥,) since if not and ¢(y) has no zeros on
(¥, ¥.) (f does have a zero then we are finished) then since q(y,) < 0
and q(y;) = 0, we must have that ¢(y) has 2 zeros in (y,, ¥,), continu-
ing in this way we see that we may as well assume that (—1)%q(y) < 0
on (¥,, Ys.1) for 0 < s < k. In particular (—1)*q(y) < 0 for ¥ on (¥, Yi+1)-
But by assumption (—1)**'¢(y,.,) = 0. Thus by the continuity of q(y),
we have q(y,+,) =0 and g(y,) =0 for 1=s=<Fk+1ie.q(y) has k +1
Zeros on [yo, ’!/k+1]~

Case 3. q{(y,) = 0 proof is obvious making use of Case 1.

THEOREM 3. There exists a unique @*(x, y) in 7(8) such that

max | xpuy? <« - kY™ — Q¥(w, y) |
—1=2gsS1
—1=y=1

is a minimum. Moreover:

Qw,y) = =T, @) T @)« T, (@) To(w) + 21232 -+ - wpay™ .

Proof. Euxistence by construction. Let the ¢ of Theorem 1 be
the special set of vectors

0(8) = {(®us, Bajyy **+, xka’k)}
where
Tyj, = €08 (JiTT/M), Dajyy +* +, Tig, = €08 (JaT/m)
0=5=1,0=7,=m, -, 027, =0 .

Then

Alp,., n(8), 6(B)] = xﬂli?g) | 27172 < o o 7E — P, (@, Tgy + -, @) |
= ;:;gliar(ls) l Tnl(xl) Tnz(ml) te Tnk(xk)‘

= 9l-mQl—my .., Ol-ny |
Thus by Theorem 1

max | Ptz « . TpEY™ — Q(, Y) | = 21721 v e 217QIT
—1§x]-§1
—~15y<l

But the polynomial
Q*(x, y) = apayr « -+ afry™ — T, @) Toy(@) + -+ T, (@) Toulw)
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clearly belongs to 7(8) and

max | xap2 . gey™ — Q*(x, y) | = 2022 L0 21TQT |
—1=zg4=1
—1l=sy<1

Thus Q*(x, y) is a best approximation from the set 7(5)

Uniqueness. Let Q*(x,y) in 7w(B) be a polynomial of best
approximation and let

P(x,y) = iy -« afry™ — Q*(, y) — T,@) -+ T, (@) To(v)
= [@713t <+ o 2fr — Du(@)]Y" — Pua(@)Y™TH — -+ D)
— T (@) To(s) <+ T, (20) To(w)
= Qua®)Y" T+ Q@)Y A e+ (@)

where q,,_.(%), « <+, g(x) are polynomials of degree < s, in z, 0<s=<k
since @*(x, y) is in w(B).

Let o* = (xf, xF, -+, x}) be a fixed but arbitrary element of a(5).
Then we claim that P(x*, y) has m zeros including multiplicities in
[—1,1]. To see this let y, = cos (sw/m), 0 = s = m, then since

lx;knlx;knz cee x,’f”ky’" _ Qx(x*’ y)i é o1—m9l~ng , ., Ql—ny91—m s
P@*, y) =0, P(x*,9) 20, ++- (=1)"P(x*, y,) = 0.

By the lemma P(x*,y) has m zeros counting multiplicities for —1 <=y <1.
Thus P(x*, y) has m zeros but is only a polynomial of degreem — 1,
thus P(z*, y) = 0. But this holds for all x* in o(8), thus P(z,y) = 0
and the theorem is proved.
We could formulate Theorem 3 in the following way. Let w(k),
k=1, be the set of polynomials of the form

Q@, Y) = Pu(@sy *++, TP+ Dpea(@)TTT 4 =00 + Do)

which is of degree < n, in z,, 1 = s =< k and for which p,(x, +-- 2,) is
a polynomial that best approximates zero, if such exists, on the cube
LxLx--xI,I,=[-1,1],1<s k.

Theorem 3 alternate. For k= 2,3,4 --+, the following is true:
Statement k. 7w(k — 1) is not empty and there exists a unique
M (%, 4, <<+, %y, Tpay) in w(k) such that:

max l Mk(xly x?, ) xkr xk+1) \
—1=Szg<1
—~1sy=<1

is a minimum. Moreover:
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M (%, @y, ==+, Ty Biir) = Tnl(xl)Tnz(xZ) cee Tnk(xk) Tnkﬂ(xknﬂ) .
Proof. Obvious.
Finally we wish to prove:

THEOREM 4. There exists a monic polynomial
P(xlv ey Lpy y) - xinl te x;:kym - Q(xly *e 0y Xy, y)

where Q(x, y) belongs to m, that best approximates zero on the cube
I X I X «ee X Iy, I, =[—1,1]. The polynomial is

apt oo ape T (y) .

Proof. By Theorem 2

max | P(x,, ««-, x5k, 4)| = 2™,
—1=5g=s1
—1=y=<1

But ¢M ... x;‘kTm(y) is a monic polynomial of the correct form with

max |am -ee T (y)| = 2™,
—1=2g=s1
—1=y<1

Thus the theorem is correct.
The question of uniqueness in this case is an open one.
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