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ON A LINEAR FORM WHOSE DISTRIBUTION IS
IDENTICAL WITH THAT OF A MONOMIAL

R. G. LAHA AND E. LUKACS

Several authors studied identically distributed linear forms
in independently and identically distributed random variables.
J. Marcinkiewicz considered finite or infinite linear forms and
assumed that the random variables have finite moments of all
orders. He showed that the common distribution of the random
variables is then the Normal distribution. Yu. V. Linnik
obtained some deep results concerning identically distributed
linear forms involving only a finite number of random vari-
ables. The authors have investigated in a separate paper the
case where one of the linear forms contains infinitely many
terms while the other is a monomial. They obtained a
characterization of the normal distribution under the assumption
that the second moment of the random variable is finite. In
the present paper we investigate a similar problem and do not
assume the existence of the second moment.

1* We prove the following theorem:

THEOREM. Let {Xά} be a finite or denumerable sequence of in-
dependently and identically distributed nondegenerate random vari-
ables and let {a^} be a sequence of real numbers such that the sum
Σ i ajXj exists1. Let a Φ 0 be a real number such that
( i ) the sum ^ a>jXj is distributed as aXλ

j

(ii) Σaj^a2.
3

Then the common distribution of the X3 is normal.

REMARK. The converse statement is evidently true provided that
2 J a3- = a if the sum Σ i α Λ contains more than two terms or S(Xj) — 0
in case ΣJ ajXj has only two terms.

In § 2 we prove three lemmas, the third of these has some in-
dependent interest. In § 3 the theorem is proved.
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1 We say that the infinite sum Σj ajXj exists, if it converges almost everywhere.
It is known (see Loeve [3] pg. 251) that for a series of independent random vari-
ables the concepts of convergence almost everywhere and weak convergence are
equivalent.
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2* Lemmas* We denote the common distribution of the random
variable X3- by F(x) and write f(t) for the corresponding characteristic
function.

LEMMA 1. Suppose that all the conditions of the theorem except
(ii) are satisfied. Then sup,- | a3 | < | a |.

According to the assumptions we have

(2.1) Π /(α, ί) = Rat) .
j

We set bj — a3/a (j — 1, 2, •) and obtain

(2.2) Π/(M) = /(«)•
3

The lemma is proven if we show that | &, | < 1 for all j . First we
note that if | b3 \ — 1 for at least one value of j , then X3 has neces-
sarily a degenerate distribution. We consider the case where \bk\ > 1
for at least one value k. We see then from (2.2) that

which means

1 ^ I f{t) I ̂  I f(t/bk) I ̂  I f(t/bl) I ̂  . . . lim I /(ί/6;) | - /(0) = 1 .
n—*o»

Therefore | f(t) \ = 1 and the distribution of Xά is again degenerate.
We conclude therefore that

(2.3) | 6 y | < 1 ( y = l , 2 . . )

LEMMA 2. Suppose that all the conditions of the theorem, except
(ii), are satisfied then the function f{t) has no real zeros.

We first remark that the existence of the infinite sum Σ , ajXj
implies that the sequence of random variables SN = ΣΓ=JV+I

 ajXj con-
verges to zero (as N—> oo) with probability 1. It follows from the
continuity theorem that

(2.4) lim Π /(αyί) = l

uniformly in every finite έ-interval.
Let ε > 0 be an arbitrarily small number and let T be a positive

number. It follows then from (2.4) that there exists an NQ = N0(ε, T)
such that for all N ^ No the inequality
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(2.5) Π < e

holds uniformly for 11 | ^ T.
We give an indirect proof of Lemma 2. Suppose that the function
f(t) has real zeros and let t0 be one of the zeros of f(t) which is
closest to the origin. Then

Π /(Mo) = f(Q = o ,

so that either f{b3tQ) — 0 for at least one value of j or the product
is infinite and diverges to zero at the point t — t0. The first case is
impossible by virtue of (2.3) while the second contradicts the uniform
convergence of the infinite product so that Lemma 2 is proven.

LEMMA 3. Let {Xj} be a finite or denumerable sequence of in-
dependently and identically distributed nondegenerate random vari-
ables and let {a3) be a sequence of real numbers such that the sum
Σ i ttjXj exists. Let a Φ 0 be a real number such that sup^ | a3 \ < | a |.
Suppose that the sum Σ i ajXj has the same distribution as aXlf then
the common distribution of each X3 is infinitely divisible.

To prove Lemma 3 we write (2.2) in the form2

(2.6) f{t) = f(ht)f(Kt) • • • f{bNt)ΦN{t)

where

(2.7) ΦN(t)= Π fφjt)

and where N is so large that the inequality (2.5) holds. Using (2.6)
we see that

(2.8) f(t) = Π f(b)t) fi
i = l j,k=l

3>k

We repeat this process n times and obtain

(2.9) /(*) - { Π [f(b{i biΠ)

•in π [ΦΛM
U = l 3'ι+••' + 3N =n-k

Here all jk ^ 0 and (m j\ jN) — ml/jj jNl. Formula (2.9) in-
dicates that the random variable X, whose characteristic function is/(£),
is the sum of kn = Nn + Nn-λ + + N2 + N + 1 independent random

2 If the sequence {Xj} is finite then N is equal to the number of variables
so that ΦN(t) = 1.
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variables Xn,k(k — 1, 2, , kn), that is X = Σ**i -^n.* f o r every w.
Such sequences of sums of independent random variables occur in

the study of the central limit theorem, and we give next a few results
which we wish to apply.

We say that the summands Xnιk are uniformly asymptotically negli-
gible (u.a.n), if Xn>k converges in probability to zero, uniformly in k,
as n tends to infinity; this means that for any ε > 0

(2.10) lim max P(\ XnΛ | ^ e) = 0 .

It is known (see Loeve [3] pg. 302) that condition (2.10) is equi-
valent to

(2.11) lim max | / n , * ( ί ) - 1 | = 0
l^k^k

uniformly in every finite ί-interval.
Let Xntk (k = 1, 2, , kn) be, for each n, a finite set of inde-

pendent random variables and suppose that the Xnik are u.a.n. Then
the limiting distribution (as n tends to infinity) of the sums Σ*=i Xn,k
is infinitely divisible.

For the proof we refer the reader to Loeve [3] (pg. 309).
We turn now to the proof of Lemma 3 and show that the factors

of (2.9) satisfy condition (2.11).
Let e > 0 be an arbitrarily small number and T > 0. We see

from (2.5) and (2.7) that we can select a sufficiently large N such
that

(2.12) I ΦJjb) - 11 ̂  ε

uniformly in 11 | ^ T. Since | b3-1 < 1 we have

|&ί'i ••• bp*t\ < T

so that, according to (2.12),

(2.13)

uniformly in 11 \ ̂  T for the chosen value of N.
We consider next a typical factor /(&£ b£H) of the product in

the first brace of formula (2.9). Here j \ + j 2 + + j N = n and j k ^ 0
so that at least one of the j k is positive. We, show now that it is
possible to choose an n0 — no(ε, T) such that for n ^ n0

(2.14) Ύh...jjt) =

uniformly in 11 \ ̂  T.
Clearly,
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(2.15) Ίh...JίΓ{t) ^ I ( {exp [i&ίi b^tx] - l}dF(x)

{exp [iδ'i b£*tx]4-

We choose 4̂ so large that

{
\x\<Λ

(2.16)

We note that

{exp [i&fi
4

(2.17)
\x\<A

{exp [ifefi biΠx] - l}dF{x)

dF(x) 5S ± .
A Zi

Γ A .

We select now an n* = n*(ju , ;?V, T, ε) so large that for n ^ %%

the inequality

(2.18) bί" I TA £ ±

holds. This is possible in view of (2.3). There are altogether Nn

terms of the form fφi1 b^t) in (2.14) and we choose

(2.19) n0 = no(e, T) = max n*(jlf , i lV; 2\ ε)

then (2.14) follows from (2.16), (2.17), (2.18) and (2.19).
We see therefore that the set of independent random variables

Xn>k satisfies the u.a.n. condition (2.11). Therefore the distribution
of X is infinitely divisible and Lemma 3 is proven.

Since f(t) is an infinitely divisible characteristic function, it admits
the Levy-Khinchine representation

(2.20) ln/(ί) = ίat- βf/2 eitx - 1 -
itx

J+0\

1 +
itx

-dG(x)

1 + or
1 + -dG(x)

where a and β are real numbers, β *zθ, and where G(x) is a non-
decreasing, right-continuous function such that G(— oo) = 0 and G(+co)
— K < co. Let now f(t) be the characteristic function of an infinitely
divisible symmetric distribution, so that f(t) — f( — t). In this case one
sees after some elementary transformations of the integrals in (2.20)
that

(2.21) G(x) + G(-x - 0) - C

for all x Φ 0. Using (2.20) and (2.21) we see that the characteristic
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function of a symmetric infinitely divisible distribution admits the
representation

(2.22) ln/(ί) = -βtf/2 + [+~(cos tx - l)±±l£dH(x)
J+o χ2

where

(2.22a) S(,) = I * " * ' * C f 0 Γ ί C > °
' (0 for x < 0 .

Thus H(x) is a non decreasing, right-continuous, bounded function
and H(x) and G(x) determine each other uniquely.

3* Proof of the theorem* We introduce the function

(3.1) g(t) = f{t)f(~t)

and conclude from (2.2) that the relation

(3.2) Π fir(δyt) - 9(t)
3

holds for all real t. Here g(t) is the characteristic function of a sym-
metric distribution and is therefore a real and even function. It is no
restriction to assume that

(3.3a) 0 ^ 6 , < l (j = l,2, . . . )

where

(3.3b) Σ δj ̂  1 .
3=1

According to (2.22) we have then the representation

(3.4) In g(t) = -βtf/2 + (°° (cos tx - 1)1 + X"dH(x)

where β ^ 0 and where Jϊ(ίc) is a nondecreasing, right-continuous and
bounded function. We use (3.4) and (3.3b) and obtain from (3.2) the
relation

(3.5) Σ Γ (cos bjtx - l)λ±J^.dH(x)
H J + O x2

= K— + (°° (cos tx - \)λ±J^dH{x) .
2 J +o cc2

where
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We define the sequence {ψv(ί)} by

(3.6) ψy(t) = Σ Γ (cos bjtx - l)λ±J^dH(x)

so that

(3.7) l im ψy(t) = ψ(t) = K— + Γ (cos tx - I ) 1 + x" dH{x)
v->~ 2 J+o χ2

for every real ί.
Since ψ(t) is the characteristic function of an infinitely divisible

distribution it follows that K S 0, so that we conclude from assump-
tion (ii) that K •=• 0 and ΣΓ=i 6| = 1-

By a change of the variable of integration in (3.6) we obtain

ψy(t) = Γ (cos tx - l ) l ± f ί Γ Σ ^ ^ d ί r ( α ? / 6 y ) ] .
J+o x2 Li=i 1 + $2 J

We write

„ , x (Γ Γ± ̂ pζ-dHiy/bj)] for α; > 0
(3.8) iϊvW = jJ+oϋ=i 1 + /̂2 -1

(θ for x < 0 .
Therefore we have, for every v,

(3.9) ψv(ί) - [+00(cos tx - λ±J^
J+0 XΔ

It follows then from (3.7) and (3.8) that

(3.10) lim Hv(x) = H(x)

for every x which is a continuity point of H(x). The proof is carried
in the same way in which the convergence theorem is proven (see
Loeve [3] pp. 300-301).

In view of (3.3a) we have

/ + V

i) ^ b) (j = 1,2, . . . )

so that we conclude from (3.8) that

(3.11) Hv(x) ̂  ± m

for all v.
It follows from (3.10) and (3.11) that
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for all x > 0 which are continuity points of H(x).
Using equation (3.3b) we obtain

(3.12) %

Since H(x) is a nondecreasing function, we see from (3.3a) that

(3.13) H(x) <ί ff ( |-) .

It follows from (3.12) and (3.13) that

for every x > 0 which is a continuity point of H(x). Therefore

H(x) = iϊ(+oo) = C

for x > 0. We now turn to equation (3.4) and get

(3.14) lnflf(ί) = -/Sf/2 .

The statement of the theorem is an immediate consequence of (3.1)
and of Cramer's theorem.
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