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ON THE INVARIANT MEAN ON TOPOLOGICAL
SEMIGROUPS
AND ON TOPOLOGICAL GROUPS

EDMOND GRANIRER

Let S be a topological semigroup and C(S) be the space of
bounded continous functions on S. The space of translation
invariant, bounded, linear functionals on C(S) and its connec-
tion with the structure of S, are investigated in this paper.
For topological groups G, not necessarily locally compact, the
space of bounded, linear, translation invariant functionals, on
the space UC(G) of bounded uniformly continuous functions,
is also investigated and its connection with the structure of
G pointed out. The obtained results are applied to the study
of the radical of the convolution algebra UC(G)* (for locally
compact groups, or for subgroups of locally convex linear to-
pological spaces) and some results which seem to be unknown
even when G is taken to be the real line are obtained.

The topological semigroup S is assumed to have a separately
continuous multiplication, and C(S) is given the usual sup norm.
C(S)* will denote the conjugate Banach space of C(S). If aeS
and f is any function on S then f, is defined by f,(s) = f(as) for
seS. peC(S)* is said to be left invariant if o(f,) = @(f) for each
fin C(S) and a in S. J,(S) will denote the space of left invariant
elements of C(S)*. A topological semigroup is said to be left ame-
nable as a discrete semigroup if there is a linear functional ¢ # 0
on m(S) (the space of all real bounded functions on S with the usual
sup. norm) which satisfies ¢(f,) = @(f) for each a in S and f in m(S)
and o(f) =0 if f=0. An analogous definition holds for the right
amenable case. A topological semigroup is said to be amenable as a dis-
crete semigroup if it is right and left amenable as a discrete semigroup.

The following are results of I. S. Luthar [12]:

(1) If S is an abelian topological semigroup with a compact ideal
then dim J,I(S) =1

(2) If G is an abelian topological group having a certain property
P (Any noncompact locally compact group or any nonzero subgroup of
a linear convex topological vector space has this property see [12]
p. 406) then dim J U(G) = 2.

We say that a subset S, of the semigroup S is a left-ideal group if
S, is a group when endowed with the multiplication induced from S
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and ss, belongs to S, for any s in S and s, in S,. If S is also a
topological space then S, S is a compact left-ideal group if it is a
left-ideal group and a compact subset of S.

The following theorem is proved in Ch. IV of this paper:

THEOREM IV-1. Let S be a topological semigroup (with only sepa-
rately continuous multiplication and no separation axioms) containing
exactly n(0 < m < o) compact left-ideal groups. Then dim J,I(S) = n.

If S is abelian and contains a compact ideal then as known and
directly shown, S contains a unique group and compact ideal (see the
argument in [12] at the top of p. 404) and so dim J,I(S) = 1, which
yields Luthar’s first result.

When considering this Theorem IV-I one is tempted to conjecture
that its converse if true i.e.

(4) If S is a topological semigroup and dim J,I(S) =7 0 < n < oo,
then S contains exactly n compact left-ideal groups'.

This conjecture, even when allowing S to be a topologlcal semi-
group with jointly continuous multiplication and S to be a Hausdorff
regular topological space, cannot be true as the following simple ex-
ample shows:

E. Hewitt (see [22]) has constructed a regular Hausdorff space
S such that the only real continuous functions on it are the constant
functions. Define in this space S the following multiplication: ab = a
for any a,beS. If F:S x S— S is defined by F(a,b) = ab = & and
Uc S is open then F7Y(U) = {(a, d); abe U} = {(a,b);a e U} = U x S
which is surely open in S x S. Therefore multiplication in S is jointly
continuous and S is a Hausdorff regular topological space. But C(S)
is one dimensional and so C(S)* is one dimensional. Moreover, if we
define @(f) = f(a) for each f in C(S) and some fixed a€ S then ¢ # 0
is easily seen to be left invariant. Thus dim J,I(S) = 1. But S does

1 This conjecture made by I. S. Luthar for the abelian case (see [12] p. 403) and
believed to be true by this author for completely regular topological semigroups, is
not true even for abelian topological groups. In fact let G be a pseudocompact non-
compact abelian topological group and A a translation invariant nonnegative linear
functional on C(G) such that || A|| = 1. By Theorem 4.1 of W. Comfort and K. Ross
(see [23] G) is totally bounded and each fin C(G) is uniformly continuous and therefore

has a unique uniformly continuous extension f to the compact topological group G (the
completion of G). Conversely any f e C(G) is the uniformly continuous extension of
a unique f€C(G). Define now the linear functional A on C(G) by Af=Af. It is
not hard to show now, after using heavily the Comfort-Ross theorem, that A is
translation invariant (with respect to the elements of G) nonnegative and || A]| = 1.
Therefore Af= | fdm where m is the unique normalized Haar measure on G. This

shows that dim J.l(G) =1 while G is not compact. Many thanks are due to W. Com-
fort and K. Ross for kindly letting this author have a preprint of their paper.
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not contain any proper left ideal since Sb =S for any beS. And S
is neither a group nor is it compact (For a compact hausdorff space
S, C(S) even separates points). Nevertheless, in certain cases, state-
ment (A) holds true. The following theorem is proved in Ch. II of
this paper:

THEOREM II-2. Let S be a countable topological semigroup which
is left amenable as a discrete semigroup and which 18 a T, regular
topological space (and therefore completely regular).

Then dim J,I(S) = m, n < o, if and only if then S contains exactly
n  finvte left-ideal groups?.

Consider now G to be a topological group and denote by LUC(G) < C(G)
the space of left uniformly continuous functions on the group G. Let
J UG c LUC(G)* be defined as:

{p; @(f.) = @(f) for each fin LUC(G) and « in G} .

Also, recall that at least any abelian or solvable or locally finite group
G, is left amenable as a discrete group. (see Day [4] for these and
more examples). We can now state our next result:

THEOREM III-2. Let G be a separable locally compact hausdorff
topological group which is amenable as a discrete group. Then

1) FEither dim JUG) = 1 or dim J,I(G) = o and dim J,I(G) =1
of and only if G is compact.

(2) FEither dim JJU(G) =1 or dim J,I(G) = © and dim JIG) =1
of and only +f G is compact.

TueoreEM III-3. Let G be any separable (not mecessarily closed)
subgroup of locally convex linear topological space. Then

(1) Either dim J U(G) =1 or dim J U(G) = © and dim J,I(G) =1
of and only 1f G = {0}.

(2) Either dim JU(G) = 1 or dim J(G) = © and dim JU(G) =1
iof and only +f G = {0}.

From these theorems it is obvious that for both the considered groups
dim J,l(G) = dim J,I(G) invariably holds. An example of a countable
abelian topological group in which dim J,l(G) = 1 while dim J,l(G) = o
is given in Ch. III. This example uses heavily the theorems on coun-
table topological semigroups obtained in Ch. II.

Separable topological groups G which are amenable as discrete groups
and have a certain property B (G has property B means that G admits

2 One cannot hope for much more than this theorem. In fact an example of a

locally compact abelian topological semigroup (with jointly continuous multiplication)
for which statement 4 does not hold true for any = can be given.
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a real left uniformly continuous unbounded function. Noncompact local-
ly compact groups, nonzero subgroups of locally convex linear topological
spaces and groups which admit a right invariant unbounded metrie
have this property.) are considered in Ch. III and for them it is proved
that dim J,l(G) = o and dim J (G) = o (see Theorem (III. 1)). It
should be remarked here, that our results neither imply, nor are im-
plied by Luthar’s results in [12]. They improve Luthar’s results in
the case where G is separable and either locally compact or a sub-
group of a locally convex linear topological space (and also in certain
other cases) but they do not deal at all with the non separable case.

We consider further in this paper the Banach space LUC(G)* (i.e.
the conjugate of LUC(G)). As known and easily seen LUC(G)* be-
comes a Banach algebra under convolution as multiplication (while con-
volution in C(G)* cannot generally be defined, as known). If we denote
by R(G) the radical of the Banach algebra LUC(G)* (which may not
be commutative though G is so) then the following results are obtained,
as immediate consequences of our work:

THEOREM. If G is a separable, noncompact, locally compact topo-
logtecal group which is amenable as a discrete group, then the radical
R(G), of LUC(G)* ts infinite dimensional (see Theorem I111-6)

Combining this theorem with a known result, to be found in Rudin
[15], which asserts that if G is compact abelian then C(G)* is semi-
simple one gets.

THEOREM III-4. Let G be a separable abelian locally compact
topological group. Then either R(G) = {0} or R(G) is infinite dimen-
stonal. Moreover R(G) = {0} if and only +f G ts compact®.

THEOREM III-5. Let G be a separable subgroup of a locally con-
vex limear topological space. Then either R(G) = {0} or R(G) s in-
finite dimenstonal. Moreover R(G) = {0} if and only if G = {0}.

If we take G to be the real line R and therefore LUC(G) = UC(R)
to be the space of real uniformly continuous bounded functions on R
then the algebra UC(R)*, with convolution as multiplication, has as in-
finite dimensional radical. It is not hard to see that this holds true
also for the complex valued uniformly continuous functions on R. Even
this result for the real line seems to be unknown.

3 It can be proved that R(G) = {0} for any compact topological group G. There-
fore Theorem III-4 holds true for any separable locally compact G, which is ame-
nable as a discrete group. Thanks are due to Professor M. Rajagopalan for com-
municating this fact to me.
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In the end it is a pleasure for me to thank Ranga R. Rao for the
friendly and fruitful conversations I had with him. It was in fact his
idea to use the functions {f,} in the proof of Theorem III-1.

Some notations. S is a topological semigroup if it has an associa-
tive multiplication and is a topological space (with no separation axioms)
and for any fixed @ in S the mappings s — as and s — sa are continuous
from S to S. (i.e. multiplication is only separately continuous). We do
not assume that (x, ¥) — xy from S X S— S is continuous. As remarked
in [19] p. 64 the multiplicative semigroup or linear continuous operators
on a Banach space with the weak operator topology is only separately
continuous.

G is a topological group if it is a group, has a Hausdorff topology
and (z, y) — 2y from G X G — G is continuous (i.e. in this case jointly
continuous multiplication.)

If S is a set then [(S), m(S) are defined as usual (see Day [5]
p. 28) and if S has a topology then C(S) is again defined as usual
(see introduction). We stress that we deal only with real valued
bounded functions in this paper. If X, Y are normed spaces then
X*, Y* are their respective conjugate Banach spaces and if T: X— Y
is linear then T'*:Y* — X* denotes the conjugate of T (see [5] pp.
14-17.)

If Ac S then 1, is the function whose value is one an A and zero
otherwise (when no ambiguity may arise, 1 will denote the constant
one function on S, i.e. 15). If A, B are subsets of S then A — B will
invariably mean the set of points of A which are not in B.

If f is a function on S and acS then f,, f* are defined by
(f)(s) = f(as) and (f*)(a) = f(sa) for each s in S. A linear manifold
(which means the same as a linear subspace or in short a subspace)
L < m(S) is left invariant if f,e L for each fe L. In this case pe L*
is left invariant if ¢(f,) = @(f) for each f in I and a in S. If L
contains the constant functions then ¢ € L* is called a mean if o(f) = 0
for f=0in L and ¢(ly) = 1. @e L* is called a finite mean of L*
if there is a finite subset {a,, ---, @,} C S, and nonnegative «,, ---, &,
with Ja; = 1 such that o(f) = 33 a; f(a;) for each fe L.

If S is a topological semigroup then J,I(S) = {pe C(S)*; o(f,) =
@(f) for each fe C(S)and ae S} and JU(S) = {p € m(S)*; p(f.) = o(f)
for each fem(S) and ae S}. For ‘‘left-ideal group’’ or ‘‘compact left-
ideal group’’ see the introduction. A finite left ideal group is a left
ideal group which contains a finite number of elements. If X is a
Banach space and YC X a subspace then we write dimY == if ¥
is » dimensional, 0 <% < oo, and dimY = oo if Y is not finite
dimensional.
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If X is a Banach space with conjugate space X* then the w*
topology in X* (sometimes called the X topology of X*) is defined
as in Day [5] p. 17.

A nonempty class F of subsets of a set S is called a field (o-field)
if it is closed under complementation and under the operation of taking
finite (countable) unions.

II. The invariant mean on countable topological semigroups

The main theorem of this chapter is Theorem 2. The main tool
for its proof is Theorem 1. The proof of Theorem 1 uses basically
the same idea as the proof of Theorem (5.1) of [6]. It yields though
a simpler proof even for the discrete case than Theorem (5.1) of [6].

DEFINITION 1. Let S be a semigroup. Define [,: m(S) — m(S) by
l.f=1f, for any a in S. If L,cm(S) is a left invariant manifold
then define 1%: L,— L, by If = f, for any @ in S and fin L,. Denote
in this ecase &, = I}: m(S)* — m(S)*, &' = (I9)*: Lf — L§ and

Jl(S) = {pe L¥;, &9 = ¢ for each se S}.

THEOREM 1. Let S be a left amenable semigroup and L, m(S)
be a left invariant linear manifold containing the constants. Assume
that there is a sequence {s,}v C S such that

{pe Lf; Lo =p,m=1,2,-+-} = Jl(S) .

If dim Jyl(S) < o« then each left invariant mean @€ Lf is a w*-
sequential limit of finite means, in other words there is a sequence of
JSinite means @, in L§ such that o(f) = lim,_.. ¢.(f) for each f € L,.

REMARK 1. If we do not assume the existence of a countable
sequence {s,} © S as above then the theorem does not remain true as
is shown by the following example: Let G be an abelian compact
hausdorff nonseparable topological group and let L,= C(G). Then
dim J)l(G) = 1. Let ¢,€ L¥ be the left invariant mean represented by
the normalized Haar measure on G. Assume that ¢(f) = lim,_... p,(f)
for each fe C(G) where ¢, are finite means i.e., ¢,(f) = >k, «; f(g;)
where «;, g; and k depend on n,a; =0 and >, a; = 1.

If we call o(p,) = {9, *++, 9}, then A= U7, 0(p,) is countable
and therefore the group generated by A is countable and therefore
the closure of this group, say G, is a closed separable subgroup of
G. Since G is nonseparable G = G,. But if fe C(G) satisfies f(g) = 1
for g€ G, then ¢,(f) = 1 since d(p,) C G,. Therefore @,(f) = 1 which
shows by [8] p. 248 that #(G,) = 1 where g is the normalized Haar
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measure on G. But if aeG and a¢ G, then aG,NG, = @ and so
1= (G) = aG,) + (G, = 2, which is a contradiction.

Thus the above theorem is not true if we do not assume the
existence of the above sequence {s,}. This is the reason why Luthar,
in his theorem about the uniqueness of the invariant mean on an
abelian semigroup, see [11] and this author, in proving the theorem
about the finite dimensionality of the set of invariant means on a
semigroup, (see [6]), had to handle first the case in which the semi-
group was countable and only afterwards, by using arguments involv-
ing much more the algebraic properties of semigroups, to handle the
uncountable case (which is not yet proved in its due generality).

Proof of the Theorem. Let ¢,€ Li be a left invariant mean. Let
4 € m(S)* be a norm preserving extension of ¢, Since 1€ L, and ¢,
is a mean one has: 1= |/ gl = @y(1) = ¥(1). But ||4 ]| = | @l and
so 1 = ||+ || = 4(1). This implies as known that (f) =0 if f=0.
(In fact if fem(S),1= =0, would be such that (f) <0 then
11— =1 and [[4] = ¥(1 — f) = (1) — (f) > 1) and therefore
W is a mean. If v is a left invariant mean on m(S) then ¢ = v (O 4
is a left invariant mean on m(S) (see Day [4] p. 526-527 and p. 529
Cor. 2) which is an extension of ¢,. In fact, if fe L, then (v O ¥)(f) =
v(h) where h(s) = ¥(l,f) = @ul,f) = @«(f). Thus h(s) is constant on
S and takes only the value ¢, f). Hence v(h) = @ (f), since v is a
mean. (We notice that we could have applied an invariant extension
theorem of R. J. Silverman see [16] in order to get immediately the
existence of ¢ but we prefered the above simple argument).

Let now {¢}} be a net of finite means in m(S)* such that w*-lim, ¢, =
oo and lim, || ZpL — @l || = 0 for each s in S. (see [6] p. 44, (5.8)%).
If p,e L§ is the restriction of ¢, to L, then since lim, @iL(f) = 9i(f)
for each fem(S) we get that lim, ¢,(f) = @, f) for each fe L, and
thus w*-lim @, = @, (in L¥). Moreover if fe L, and || f|| = 1,

[(Z'Pa — Pa) | = | @alf — F) | = | pullef — £
= [(Lpe — pf| = || Lipe — Pull — 0

for each s in S. This implies that lim, || &Py — @4 || = 0 (Where the
norm now is that of L) for each s in S.

Let now S(g,, 1/n) = {pe Ly; ||p — @]l < 1/n} and let V, be a
sequence of convex w* neighborhoods of ¢, which are w*-closed such
that V,,,CcV, for n =1,2,--- and

poe Vi, N JU(S) S(@o, i) N J(S) .
n

The choice of such V,’s is possible since J,l(S) is finite dimensional
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(see [6] p. 44 (5.5)* and p. 45). There is now an «, such that « = «,
implies || /Py — @ull < 1/m for 1 =1,2, -+, n.

Since @, is a w* limit point of the net {p,} there is an «, = a,
such that ¢, € V,. Write ¢, = @, and let 4, be some w*-limit point
of the net {p,}. The set of means of L can be written as

N {peLfllell =1 and o(f)= 0}

Fery 2o

and so is w* compact. This shows the existence of such a +, (and so
Y, is even a mean). Moreover, if feL, ||f|| =1 and s; is fixed then

| (Lo — ) f| = | L0 — Pu)f |
+ [(ZPn — @I+ (@0 — ¥ S|
= (Yo — (Pn)lg,fl
+ | ZPn — @ull + [(@u — S| -

If ¢ > 0 is given then there is an 7, = j such that 1/n, < ¢/3 and
therefore for n = n, |[Z)p, — ¢.1| <¢/3. Since 4, is a w*-limit
point of {p,}, there is an n, = n, such that |(y,, — @, )0, f| < ¢/3 and
| (p, — Vo) f] < ¢/3. Thus _%;?qm,: 4r, for each j and using the as-
sumption of our theorem we get that s JJ)l(S). But 4, is also a
w* limit point of the sequence {@,}r-,C V,. Since V, is w* closed
vo€ V, for each k. Thus e V, N Jl(S) < S(py, 1/k) N JI(S). This
shows that || — @, || < 1/k for each k and so ¢, = 4. Therefore
the sequence {p,}C L has the unique w*-limit point ¢,. Therefore
lim, 5. 9,(f) = @(f) for each fe L (see [6] p. 43 and replace there
m(G) by L,). This finishes the proof of our theorem.

REMARK 2. Jyl(S) coincides with the linear manifold spanned by
the left invariant means in Jyl(S). Since if pe JI(S) and + € m(S)*
is any extension of ¢ and if v is any left invariant mean of m(S)*
then ¢’ = v O e m(S)* is a left invariant extension of @€ Jyl(S) (see
begining of proof of the preceeding theorem). But by [6] p. 55 foot-
note 5 there are left invariant means @], @; in m(S)* such that ¢’ =
ap; — Bp;. If ¢; is the restriction of ¢! to L, then ¢ = agp, — By,
and @; are left invariant means of Lg.

DEFINITION 2. If X is a topological space then A X is called a
Z-set if A = {x; f(x) = 0} for some fe C(X), Fy will denote the field
generated by the Z-sets and By is the o-field generated by the Z-sets
(or the o-field of Baire subsets of X).

LEMMA 1. Let S be a countable topological semigroup which s
left amenable as a discrete semigroup. If the set of left imvariant
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elements of C(S), JUS), is finite dimensional then each left invariant
mean @, of C(S)* can be represented by a regular countable additive

measure m, on Bg.

Proof. Let e C(S)* be a left invariant mean. Taking in the
previous theorem L, = C(S) we get that there is a sequence of finite
means {p,} such that lim, ... (f) = @(f) for each fe C(S).

If ae S then let m, be the countable additive measure defined on
By by: m,(B) =1 if and only if ac B. m, is regular and countably
additive and since any finite mean can be represented by a linear com-
bination of m,’s we get that ¢, are represented by countable additive
regular measures m, on Bg. Thus for each fe C(S)

wo(f) = lim | fim, .

Applying now A. D. Alexandroff’s theorem (for statement and proof
see Varadarajan [17] p. 68769 Theorem 19) there exists a countably
additive measure m, on Fs such that

P f) = Sfdm(, for each fe C(S).

By a known theorem m, can be uniquely extended to a countably
additive measure on Bg. (see [17] p. 46 Thm 18). By the second
part of [17] Thm. 18 p. 45 this m, is even regular.

REMARK 3. Applying now the uniqueness part of Alexandroff’s
theorem on the representation of linear functionals by measures, (see
Alexandroff [1] or Varadarajan [17] p. 39 Thm 5) we get that for any
Z-set Z, one has my(Z,) = inf {p(f); f = 1, f € C(S)}.

THEOREM 2. Let S be a countable topological semigroup which
is left amenable as a discrete semigroup and which s a T, and
regular topological space (for definition see [10] p.113). Then dimJ,I(S)=
n, n < oo, if and only if S contains exactly n finite left-ideal groups.

REMARK 4. (a) If ¢ is any invariant mean on m(S) then its
restriction to C(S) is an invariant mean of C(S)*. Thus in any case
dim JI(S) = 1 (if S is left amenable as a discrete semigroup).

(b) Two different left-ideal groups are disjoint (each one is a minimal
left ideal).

Proof of Theorem. S being countable is Lindelof and being also
regular is normal (see Kelley [10] p. 113) We show now that any
closed FFc S is a Z-set.
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Let S— F=1{s, s, -} and let f,e C(S) satisfy 0 < f, <1 and
J.(F) =0 while f,(s,) =1 (Uryson’s lemma).

Let f(s) = 27 (1/2")f,(s). Then fe C(S) and {s; f(s) = 0} = {F}.
(This is the standard well known proof that any closed G; in a normal
space is a Z-set).

Let ¢, be a left invariant mean on C(S) and let m, be the regular
countably additive measure such that

Po(f) = Sfdmo for each feC(S).

If S={t, ¢, -}, then 1 = m(S) = S, my({t}). Therefere there is
some a€ S (one of the ¢;’s) such that m,({a}) > 0. Now for any finite
subset F'cS

(1) my({sF}) = inf {p(f); [ = Lp} = inf {p(f)); [ = L5}
= inf {py(h); b = 17} = my(F) .

And the inequality is true since f = 1, implies that f,(t) = f(st) =1
for te F ie. f, = 1,.

Therefore if ac S satisfies m,({a}) > 0 and s€ S we have m,({sa}) =
me({a}) > 0. This shows that Sa is a finite left ideal (since m,(S) = 1).
If Ac Sa is a minimal left ideal then for be A, Ab < A and since Ab
is a left ideal, Ab = A. If we denote A = {b,, - - -, by}, the above shows
that for each pair %,7,1 < 4,7 < N, there is some k,1 =< k < N, such
that bb; = b;. Taking F = {b;} in the inequality (1) we get that
my({b;}) = my({bb;}) = m({b;}) > 0 and interchanging % and j we get that
my({b;}) = my({b;}) > 0 for each b;, b; in the finite minimal left ideal A,
ie. m({b}) = my({b}) = -+ = m({by}). If now b is any element of A
then my(bA) = my(A) = Nm({bb,}). But bAC A and therefore mybA) =
Jmy({bb}) where j is the number of differents elements in bA. Thus
j =N and bA = A. This shows that A is a finite minimal left ideal
which satisfies for each be A that bA = Ab = A. This shows that A4
is a finite left ideal group.

If se€S and e is the identity of A then sA = (se)A = A since
see A. Thus sA = A so that any finite left-ideal group is also what
is (unnecessarily) called in [6] p. 34 a (li.l.c). (Also, obviously, any
finite group and (l.i.l.c) is a left-ideal group.) Now the number of finite
left-ideal groups in S is less than or equal to » (where dim J,I(S) = n)
since if A,,---, A,, A,., would be finite left-ideal groups and we would
define @;€ C(S) by @i(f) = [1/N(A))] Xiie4, f(s) where N(4;) is the num-
ber of elements of A; then as easily checked ¢, is a left invariant mean
on C(S) (since sA; = A; for each se€S). But ¢, ++, p,..€ C(S)* are
linearly independent. In fact if >\*" a,;p; = 0 and if we define f/ on
Ui A4; by fi(s) =1 for se A; and fi{(s) =0 if se€ A; for j # % then
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we can, by Tietze’s extension theorem find an extension f;e C(S) of
fi. For this f; we have 0 = 3, a,p;(f;) = a;p{ f;) = a; which shows
that a; = 0 so that dim J,I(G) = » + 1, which contradicts our assumption.
Thus there are at most » finite left-ideal groups in S.* If m(1=< m < n)
is the number of the finite left-ideal groups in S then we get by [6]
p. 34 Thm. 3.1 and p. 36 Remark 3.2 and [6] p. 55 footnote 5
that dim JI(S) = m where JI(S) is the set of left invariant elements
of m(S)*. But any @ € J,I(S)CC(S)* has an extention ¢’ € JU(S)Cm(S)*
(see beginning of proof to Thm (II.1)). Thus if ¢, -, @, are n linearly
independent elements of J,I(S) and {p}, - -+, @i} C JUS) C m(S)* are ex-
tensions of ¢, -+, respectively then ¢i, ---, ¢, are also linearly in-
dependent in m(S)*. Since if >\F a;; = 0 then for each f'e C(S) < m(S)
we would have >» a;9,(f)=0 which would imply that ¢,=a,=---a,=0.
Therefore {@], « - -, @;} © JI(S) are linearly independent which shows that
m = n and S contains exactly # finite left-ideal groups.

REMARK 5. We also proved at the end of this theorem that
dim J,I(S) = n implies dim JI(S) = n where S is countable and left
amenable as a discrete semigroup. That this does not hold true for
noncountable S is shown by the following example: Let G be an
abelian compact Hausdorff topological group which is not finite. Then
by Theorem B of [6] p. 32 we get that dim JI(G)= o while dim J I(G)=1
(The Haar measure is unigue). In other words the restriction of the
infinite dimensional space JI(G) < m(G)* to C(@) forms an one dimen-
sional subspace of C(G)* which coincides with J,I(G). The end of the
proof of our preceeding theorem shows that this cannot happen if G
is countable.

COROLLARY 1. Let S be a countable T, regular topological semi-
group which is left amenable as a discrete semigroup. If S has left
cancellation then dim JUG) =n (n < o) if and only &f S is finite
and is the union of n finite disjoint left-ideal groups. dim JU(G) =1
iof and only if then G 1s a finite group.

Proof. At the end of the last theorem it was in fact shown that
n = dim J,I(S) = dim JU(S) where JI(S) is the set of left invariant

* We could also proceed as follows: Let m, 1 = m < o, be the number of finite
left ideal groups of S and let A be a compact left ideal group of S. Then A is a
countable group and has a compact hausdorff topology in which multiplication is
separately continuous. Hence by the theorem of Ellis (see Ellis [21] or Glicksberg-
Deleeuw [19] p.p. 64-65 and p.p. 94-96) A is a compact topological group which is
countable. Hence A has to be finite (since if m is its normalised Haar measure
then m{a}>0 for some a in A, hence m(4) = ~, if A is infinite, which cannot be.).
Therefore S contains, in our case exactly m compact left ideal groups. By Theorem
IV-1 of the present paper dim J,1(S) = m which finishes the proof.
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elements of m(S)*. Applying Thm E of [6] p. 49 and remembering
footnote 5 on p. 55 of [6] we get this corollary.

ReEMARK 6. If G is a discrete amenable group and G’ C G a sub-
group then there exists a linear positive isometry from JI(G') into
JUG) (see Day [4] p. 534). Therefore, the assumption that dim JI(G) =n
implies that dim JI(G') = n. If G is a topological group and G'C G a
subgroup then there does not generally exist a linear isometry from
JUG) to JU(G). In fact let G be a compact abelian hausdorff topo-
logical group. Then dim J,I(G) = 1. If now G'C G is any countable
(not finite) subgroup then G’ being abelian, is amenable as a discrete
group and satisfies all the assumptions of our previous corollary. There-
fore dim J,I(G') = o, which shows that there cannot exist an isometry
from J,I(G') into J,I(G). This theorem of Day was the main tool to
pass from the countable case to the uncountable case when dealing
with discrete groups (see [6] p. 46 proof of Cor (5.3)). The above
example shows that this important tool is not more available when
dealing with topological groups.

ITI. The invariant mean on separable topological groups

The main theorem of this chapter is Theorem 1. We have to
restrict ourselves to topological groups rather than topological semi-
groups since our method works only for left uniformly continuous
functions and on semigroups there may not be any uniformity at all
which is consistent with the algebraic structure.

DEeFINITION 1. Let G be a topological group and U — G a neighbor-
hood of the identity. We say that U totally covers G if G < UL, Ua:
for some finite subset {a, -+, a,} ©G. (We should have said that U
left totally covers G but we drop the ‘‘left’”’ since we do not deal at
all with the ‘‘right’’ case.)

We say that the topological group G has property (B) if it has
a neighborhood of the identity U such that none of its powers totally
covers G (or in other words for each n and each finite subset
{a, -, a}CcGG—-UL Ura; # @)

REMARK 1.

(a) A noncompact locally compact group has property B since if
U is a compact neighborhood of the identity then U™ is compact for
each n and so %, U"a; is compact and therefore does not cover the
whole of G.

(b) Any subgroup G =+ {0} of a hausdorff locally convex linear
topological space E has property B. Since if 0 #acG and f is a
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linear continuous functional on E such that f(a) # 0 then let U =
{yeG; | fly)| <1}. Then the n™ power of U is defined by U" =
U+ -+ + U (n times). Thus if ye U™ then y = u, + -+ + u, with
u;€ U and | f(y)| = n. Therefore ye Ui, U™ + g; implies that

| fly)| = 1rgft;}glf(gi)l +n=K.

But there is a positive integer j which satisfies | f(ja)| = .| f(a)]| > K.
Since ja € G this implies that G is not included in U (¢9; + U™) so that
G has property (B).

(C) Any topological metric group G which admits a right invariant
non bounded metric (i.e. its topology can be given by a right invariant
metric d such that for any K >0 there are a, b e G satisfying d(a, d) > K),
has property B. It should be pointed out that any metric topological
group admits as known (see G. Birkhof [2] or Kakutani [9]) a right
invariant metric. Therefore the real requirement is that the metric
should be unbounded. (If G is totally bounded and metric then any
admissible invariant metric is bounded).

Assume that G admits a right invariant unbounded metric d. If
¢ is the identity element of G then let U = {g; d(e, g) < 1}. Then for
ue U d(e, w) < n. This is true for n = 1. Assume that it holds for
n—1. If wue U™ then u = uwu, -+ u, with w,€ U. Then

AUy *++ Uy €) = A(Uglhy *++ Uy Uy *++ Uy) + AUy *++ Uy, €)
Zdu,e)+n—1=mn

since d is right invariant. If G c |J%, U"a,; then any ge G satisfies
ge U"a; for some 1 < ¢ =<k and so g = va; with ve U". Thus

d(e, 9) = d(e, a;) + d(a;, va;) = K + d(e,v) = K+ n =K,

where K = max{d(e,a;,),1 <1 =< k}. But the metric d is unbounded
and therefore there are a, b € G such that d(e, ba™) = d(a, b) > K, which
is a contradiction. (As we see here it is enough that d(x, y¥) should be
a continuous unbounded right invariant pseudometric on G and it is
not necessary that d, generates the topology of G)*

The following lemma is needed in what follows:

LEMMA 1. Let G be a separable hausdorff topological group having
property (B) and let {p;}? be dense in G. Then for any open sym-

4+ The following example of a group with property (B) seems to have some in-
terest. Consider the space Ly(0,1), for 0 < p < 1, with the metric j:l alc(t) — y(t) |»dt.
The function F'(x) = jol 2(t) |»dt is uniformly continuous and F (nx) = n? J.ol 2(t) | Pdt —> oo
if n > » and # 0. As known there is no nonzero continuous linear functional (or
even character) on L0, 1), for 0 < p <1, and hence it is not even a locally convex
linear topological space (see M. M. Day Bull. Amer. Math. Soc. 46 (194¢), 816-823).



120 EDMOND GRANIRER

metric netghborhood of the identity U nmone of whose powers totally
cover G there exist a left uniformly continuous nonnegative function
F on G such that

k+2
{90 = F(g9) = k} = F([0, k]) LiJ Ugo Jor k=1,2,3,---
Proof. Let {p,} be a countable dense subset of G. We define an
increasing sequence of open subsets of G in the following way:
A, = Up,.

As well known A4, =N VA, where V ranges over all the neighborhoods
of ¢ and therefore 4, U?p,. Let

4, = U(Al U Up,) .
We get immediately that Up, U Up,C A, and UA, C A, and

A4, cULU(A, U Up)l
c UUp, U Up,) < U*p, U Up, C Utp, U U'p, .

Assume now that A4,, A,, ---, A, have been chosen such that
Up,UUp,-+- UUp;C A;C A;CU¥p, Y Up, -+ U Up,
and UA; ,cC A; for each j < n — 1 then we chose
A,=U,.,uUp,).
We have that (Up, UUp, -+ UUp,) C(A,_,UUp,)C A, and that

UA, ,cA,cA,cU¥A, ,UUp,)
c (]2[U:c(n—1)p1 Ueer U U2 U Uz‘”'”pn]
C Uznpl U cee U Uz'npn .

In short our sequence of open substs A, satisfies the following
(I1L 1) U4, =G
n=1

(U Up,c Ui- 4, and G = Uz, Up,; since otherwise there would be
some a € G such that a ¢ Up, for each ¢ i.e., p;¢ Ua for each ¢ (U is
open symetric) which cannot be since {p;} is dense in G.)

(L. 2) UA,c A, C lj Ueivp,

We can also assume that 4, — A,_, # 0 for each n (Where for 4, BCG,
A — B are the elements of A which are not in B). (Since otherwise we
would choose 4, = 4, %, to be the first n > n, for which 4, — 4, = @
and if n,_, was already chosen then let n, be the first n > n,_, for
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which 4, — A,, , # @. There is such a n, since U* does not totally
cover G for any k. Obviously the sequence A = A, would satisfy
(III. 1) (I1I. 2) in addition to A} — A, + ©)

It is proved in A. Weil [18] p. 13 that if F is a uniform space
and V' a neighborhood of the diagonal in F X E and if p,€ E then
there exists a uniformly continuous function f: EF— [0, 1] such that
f(p)=0and f(¢)=1for ge E—V'(p). (where V'(p)={qc E; (p,q) e V'}
and for AC E, Vi (A) = U,es Vai(p)). But moreover, if we chose a fixed
sequence of symmetric neighborhoods of the diagonal (i.e., elements of
the uniformity) in E x E say V, which satisfy V,.,V..,.cCV, (for
notation see [18] A. Weil) for » =0,1,2--- and VJC V'’ then the
function f: E—[0,1] can even be chosen to satisfy the condition
| f(@) — f(r)| < 1/2™* whenever (p, q)€ V., (see [18] p. 14). We notice
also that the sequence V, is not dependent upon p. But the same
proof yields actually more: If V' is a neighborhood of the diagonal
(a member of the uniformity) and the sequence V, is chosen as above
and if P is any subset of E then there exists a uniformly continuous
J: E— [0, 1] such that f(p) =0 if pe P and f(q) =11if gqe £ - V'(P).
Returning now to our group we consider its left uniformity i.e. the uni-
formity whose elements are all the sets of the form V' = {(p, q); ¢ € Vp}
where p,q€ G and V ranges over all the neighborhoods of e. Let
Van=20,1,2--- be a fixed sequence of symmetric neighborhoods of
¢ in G such that V,=U and V,.,V,.,cV, for each . Then V! =
{p, @); g e V,p}CG X G are symmetric elements of the uniformity
which satisfy V,.,V],,CV, (since for each peG (V,. V.. )(p) =
V5 (V,.p) < V,p= V!(p)). Therefore since V/(4,)= V,A, = UA,C 4,.,
there exists a left uniformly continuous function f,:G—[0,1] such
that f.(4,) =0 and f,(G —UA,) =1 which implies that f,(G — 4,.,)=1.
Moreover if (p,q)e V,, i.e. if ge V,p then | fi(p) — fi(q)| < 1/2"* for
each k.

Consider now the sequence of functions

hi(g) = filg) + b — 1 for k=1,2,3,---
We have:

hg) = 0 on A, .

1g—wlonG—Aj

1 on 4,

ho(g) = 1

@ 2on G— A,

hulg) = k—1 on 4,

wo) = E on G— A,
and also

(IIL. 3) | (p) — k@) | = | fi(p) — fil@) | < 1/2"7
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q € VP uniformly in k. (Our sequence of symmetric neighborhoods
V. is the same for all A,).
Define now the required function F' on G as follows:

h(9) for ge A,
(I11. 4) F(g) = {hy(9) for ge A, — A,
hi(g) for ge A, — A, if E=2.

Since A, C A4,., and U,-, 4, = G, F is a well defined and real valued
function on G which satisfies that {9:0 =< F(g) = k} C A, since if
g¢ A, then ge A, — A,_, for some n >k + 2 and so

F@g=h@zn—-—1=2k+1.

Therefore by (III. 2) FF*([Ok]) c Ui U***p,. We also notice that
F'(g) is not bounded since 4, — A,_, # @ and for g A, — A,_,, F(g) =
h(g) = k — 1. We prove now that F' is left uniformly continuous:

If ¢ > 0 is given then there exists an m such that 27" < e, We
shall show that for any p, g€ G such that ge V,p, | F(p) — F(q)| < e.
Assume therefore that ge V,p. If p and ¢ are both in A4, , — A, for
some k = 2 or are both in 4, we can immediately conclude from (III. 3),
(I11. 4) that: | F'(p) — F(q)| = | he(p) — k(@) | < 1/2™* < & where k=1
if p and ¢ are both in A,.

If the above is not the case then let ¢ be the first index for which
pe A; and j be the first index for which ge 4;. Assume that 7 < j.
Since ge V,pcUpcUA, C A;,, (see (III. 2)) we have that j=14+ 1
and qe A;,, (we can assume that 4 = 2 since if ¢ =1 then p,q€c 4,
and we alredy dealt with this case). Thus pe 4, — A,_, and

gce A, — A, CcG— A, and qeV,p.

Therefore:
| F'(q) — F(p)| = hiq) — hi_+(p)
=h{g) — (G —1+ @ —1) — hi«(q)
= hi(q) — hi(p) + hi_(q) — h;_+(D)
since:
b () — {'é —2on A4, ,
1 —1on G— A
and
() — {@ —1 on A
¢ i on G—A,,.

Therefore, remembering that ge V,_,p and applying (IIL. 4), we get:

F(g)— F(p)| = [hi(q) — k(D) | + [ Ris(@) — Pis(D) |
<1/2mt 412t < e
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If 7 <1 then, remembering that g€ V,p if and only if pe V,q (V, is
symmetric), and interchanging p and ¢ we get that | F(p) — F(9)| < ¢
for this case also.

COROLLARY. A topological group G has property B tf and only
if there exists a left uniformly continuous real valued unbounded
Sunction on G°.

Proof. If G has property B then the function F'(g) of the pre-
ceeding lemma is unbounded and left uniformly continuous.

Conversely if F(g) is an unbounded left uniformly continuous
function on G there is a neighborhood of the identity w such that
|F(a) — F(b)| <1 if be Ua for any a,be G. We show now that if
be U"a then | F(a) — F(b)| = n. Assume that this is true for n. If
be U""a then be U(U"a) and so there is some c€ U"a such that be Uc.
Therefore | F'(b) — F'(¢c)| < 1 and so

| F(b) — F(a)| = [F(0) — F(o)| + [ F(e) = Fa) | =1+ n.

Assume now now that G = |J%,U"a; where a,€ G. If now ge G then
ge U"a; for some 1 <4 =<k and so | F(g) — F(a;)| = n which implies
that

[F(g)| =n + max | F'(a;)

This contradicts the assumption that F'(g) is not bounded.

DEFINITION 2. We denote by LUC(G) < C(G) the norm closed sub-
space of C(G) of left uniformly continuous functions on G, i.e. fe C(G)
is in LUC(G) if and only if for each & > 0 there is a neighborhood
of the identity, V in G such that | f(vg) — f(g)| < e for each ve V
and ge G.

5 This corollary is an immediate consequence of a theorem of M. Atsuji (see
Canad. J. Math. 13 (1961), p. 661) who proved that it holds true for any uniform
space. Thanks are due to K. Ross and W. Comfort for communicating it to me.
The above corollary (which is not used in what follows) gives in fact a character-
ization of what may be called “uniformly pseudocompact groups” i.e. groups for
which every uniformly continuous real function is bounded. It states: Each left
uniformly continuous real function on the topological group G is bounded if and
only if each neighborhood of the identity has some power which totally covers G
(see def. 1 of this ch.). The following example of an abelian metric group for
which every uniformly continuous real function is bounded but the group is not
totally bounded (i.e. its completion is not compact) has been given by W. W. Com-
fort and K. A. Ross in [23]. Let G = T™0 (where T is the circle group) and define
for x = {x.}, y = {yx} in G, z-y = {wnyr}. The metric d is defined by d(z, ¥) =
sup {|%» — yn|;m =1,2,---}. These remarks and the above corollary are given here
only for the general information of the reader and are not used later on. The
lemma preceeding the above corollary is though, used heavily in what follows.
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J.U(G) will denote the space of left invariant element of LUC(G)*.
Since LUC(G) will play the role of L, of Theorem II-1, define I2f = f,
for @ in S and f in LUC(G). Also &7° = (19)*.

THEOREM 1. Set G be a separable hausdorff topological group
which is amenable as discrete group and satisfies property (B). Then
JUG) s infinite dimensional. As an immediate consequence J,I(G)
18 wnfinite dimensional.

Proof. We remark first that LUC(G) is a left invariant subspace
of m(G) containing the constant functions, since if fe LUC(G) and
a€ G then let U be a neighborhood of the identity ¢ of G such that
I f(ug) — f(g9)| < ¢ for each w in U and g in G. Then |f(uag) — flag)| < e
for win U and g in G. If V is a neighborhood of ¢ such that aV < Ua
then

| L) (wg) — (L)) | = | flavg) — flag)| < e

for each v in V and ¢ in G which shows that [, fe LUC(G).

G is amenable as a discrete group and therefore there exists a left
invariant mean g on m(G). The restriction of p¢ to LUC(G) is a left
invariant mean. Therefore in any case dim J,I(G) = 1. Assume now
that dim J,l(G) = » where 0 < n < o. We shall show that in this case
G has not property (B). Let {p,} be a countable dense subset of G
and let o € LUC(G)* satisfy |||/ =1 and )¢ =9 for n=1,2, ---.
Let ae G, then for fe LUC(G), ¢(I;, f) = @f and so:

(e —p)f = plaf — f)
= o[l — L)1+ o5, f— f)
= o[ = 15)f].

But for any ¢ > 0 there is a neighborhood V of e such that
| f(vg) — f(g)| < ¢ for g in G and ve V, i.e. surely |f(vag) — flag)| <e
whenever ve V. Thus for any be Va we have that || (I — IDf]] < e.
Since p, is dense in G there is some p; in Va. For this p; we can write
(Zp —o)f| = |ele — BN | = ([ — )l <e This shows that
@e JUG) or that {pe LUC(G)*; &9 = ¢ for ge G} = {pe LUC(G)*;
Lo =q@,n=1,2,--} Denoting L, = LUC(G) we can apply Theorem
II-1 to get that for any left invariant mean @ of LUC(G)* there exists
a sequence of finite means {p,} such that lim,_... @,(f) = @(f) for each
fe LUC(G). We choose @ as a two sided invariant mean on m(G).
(see [4] p. 529) This @ will be fixed till the end of the proof. Then
the restriction of this ¢ (which we again denote by this same @) to
LUC(G) will be at least a left invariant mean on LUC(G). Therefore
o) = lim,_.. @,(f) for each fe LUC(G) where ¢, is a sequence of
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finite means of LUC(G)**. Let U be a neighborhood of ¢ such that
none of its powers totally covers G. We may assume that U is sym-
metric (since any neighborhood of ¢ included in U also has this pro-
perty). If ACG we shall write p(A4) instead of o(1,) (we remember
that @(f) is defined for any f in m(G)). We shall show at first that
@(U") > 0 for some integer 7 > 0. This will immediately yield that
U™ totally covers G, which is the desired contradiction.

Define the following bounded uniformly continuous functions on
the real line:

1——2’x~-<n~—1—>’ if n—1<zx=<n
fn(x)z{ 2 ,
0 otherwise
and
1
< =
_n+2

1—2(c—mn| if n—L<g
gn-'rl(x>: 2

otherwise .

Since the functions fi(z), f;(z) (or g.(z), 9;(x)) have disjoint carriers
if % # j the two functions f(z) = 20 fu(@) and g(zx) = 3¢ g.(x) are well
defined, their graph is plotted:

¢ This does not imply that ¢ can be represented by a countably additive measure
on the Baire field of G. Consider in fact the following example: Let G be the
additive group of rationals with the metric |re — 71| and let ¢ be an irrational
number. Let r, be a sequence of rationals converging to a and let m, be the point
measure concentrated at 7. Then limy—e | fdm, = limp—w f(72) = Af exists for each
uniformly continuous bounded f (and equals f(a) where Fis the uniformly continuous
extension of f to the whole real line). Assume now that Af = fdm for some coun-

tably additive real valued measure m on Bg and consider the sequence of uniformly
continuous functions defined for x in G by

l-nlz—al if |z—al §l
Su(2) = . n

0 otherwise.
Then fu(2) | 0 for each € G and | fu(x)| < 1. Therefore Afn =\ fadm -0 by Lebesgue’s
bounded convergence theorem. But A f, = limye Jn(re) =1 for each n, which cannot
be.

If though, G would be a locally compact group then the above relation ¢(f) =
limy—e a( f) would imply that ¢ can be represented by a countably additive measure
on Bg. (see Dieudonne: Sur le produit de composition Compositio Math. 1954 p. 28).
In this particular case the proof of our theorem could be simplified.
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where f(x) is represented by the solid line while g(x) by the interrupted
line. If {a,} is any bounded sequence of reals then it may easily be
proved that both > a,f.(®) and 3 a,9.(x) are bounded uniformly con-
tinuous functions on the real line. Therefore if F'(g) is the left uni-
formly continuous real valued function on the group G which satisfies.

F~Y([Ok]) c Ui U p, (see Lemma III-1) then surely 3 a, f.(F(g))
and > a,9.(F(g9)) will both be bounded left uniformly continuous func-
tions on G. But since >, f.(x) + >\, 9.(x) = d = 0 for some d > 0, for
each x = 0 we have that > f.(F'(9)) + >, 9.(F(9)) =d = 0 for each g
of G. Therefore @[3 f.(F(9) + > 9.(F'(9))] > 0 and so either

Pl f(F(g)] >0 or oS g.(F(g)] >0.

Assume therefore that o[> f.(F'(9))] > 0 (for the other case the
proof is similar) and define the following linear positive functionals
on the Banach space m of all the bounded real sequences {a,} (with
the sup norm):

Pila] = .| S afiF () |

and

#la) = 9| S af(F )]

where @, is the sequence of finite means of LUC(G)* which satisfies
lim,_s @.(f) = o(f) for each f in LUC(G). But for any fe LUC(G).

P.(f) = 2 a; f(g9;) where &; =203 «; =1 (and j, {a;} and g,€ G
depend on ¢,.) Therefore as is easily seen

Pill) = o SAF@)) = Z eufulF(9) = 3 94{L)

where {1} € m is the sequence whose constant value is 1 and {l,}em
is the sequence which is identically zero except at the place k¥ where
it is 1. This shows that ¢) € Q[I,] € m* where [, is the Banach space
of all the absolute convergent real sequences {b;} with norm >}|b;|
and Q:l,— I}* = m* is the natural maping from the Banach space I,
into its second adjoint. (see Day [5] pp. 29-30). But [, is weakly
sequentially complete ([5] p. 33 Cor. 3) and therefore Q[l,] is w*-
sequentially complete in m*. (for notation see Day [5] p. 17). There-
fore we have the following situation: If n — co then

Pulae} = @[3 a ful(F(9)] — P2 ar fulF(9))] = @' {au} .

Thus ¢’ €, which immediately implies that ¢'{1} = >, ¢'{1,}. But
by definition ¢'{1,} = o[ f,(F(g))]. Thus
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0 < olZ ful(F(9)] = {1} = Z o'{li} = X ofu(F(9)

and since f,(F'(g)) = 0 for each g in G and ¢ = 0 we have that fo
at least one k£ > 0, o[ fi,(F'(9))] = ¢ > 0. Now

{t; £ild) > 03[k — 1, k] [0, k]

and so
{g; fu(F'(9)) > 0} C {g; F(9)e [0, k]} = F[0, k] jU: U*+op; .

But we can easily find (as in elementary integration theory) a function
of the form h(g) = it a;1,,(9) € m(G) such that &; = 0 ¢, = 0, 4,,- -+, 4,
form a partition of {g; fi.(F'(g)) > 0} and A, = G — {g; f,(F(g)) > 0} and
0 = f.(F(g) — h(g) < ¢/3. If we remember now that @ is defined on
all of m(G) (and we have used till now only its restriction to LUC(G))
we can write

¢ = ol fuF ()]
= @ fillF(9)) — k()] + plh(9)] = ¢/3 + plh(g)] .

Therefore @(k) > 0 which implies immediately that ¢(4;) > 0 for some
1<+=<1-—1. Since A4,c Ui U**Vp; we get that p(U**p,) > 0
for some 7 and using the fact that ¢ is also a right invariant mean
we get that (U***») > 0 (Remember that p(4) = p(1,) = p(1%) = p(1 ,-1)
for any ge G and ACG).

Let now V = U2*#,  We shall prove that V?= U**+ totally
covers G, which will contradict the assumption that no power of U
totally covers G. U is symmetric and therefore so is V and (V) > 0.
Assume that V? does not totally cover G. Then we chose an infinite
sequence of elements {a,} C G this way: @, = e. Since G = V?a, let
a,¢ Vi, Thus Va,NVa,= @ (since V*=V). If a, -+, a,_, have
been chosen such that Va,NVa, =@ if 135 and 1=¢,7=n—1
then since G # U™ V’a; there is some element a,¢ |J?' V?a;,. Thus
a,e¢ Via, for each 1=1=<n—1and so Ve, NVa,=¢ for1<=i=<n—1.
Therefore for any n > 0

1=9(9) = p(Va,) + o(Va,) + «++ + ¢p(Va,) = np(V) .

This shows that (V) = 0 which is a contradiction and so V?* = U*#*+»
totally covers G. This proves that J,l{G) is infinite dimensional. As
an immediate consequence one gets that J,[(G) is infinite dimensional as
follows: G is amenable and so surely dim J,I(G) = 1 and dim J,I(G) = 1.
Assume now that dim J,I(G) = n,n < . We show that this implies
that dim J,I(G) = n, which cannot be.

If 4 e J,I(G) then it has a left invariant exteusion 4" € m(G)* (see
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Remark II-2). The restriction « of this ", to C(G) is left invariant
and so any + € J,I(G) has an extension ' € J I(G). If dim J,I(G) = n,
n < oo, and {y;, *+, P, C JUG) would be linearly independent then
let {4], <« +, Prni} C JU(G) be respective extensions. Then > aw, =0
for some reals «; would surely imply that >\ a,(f) = 0 for any f
in LUC(G) andso«a; =0 for 1 =7 =mn + 1. Therefore dim J,I(G) = n
which cannot be.*

THEOREM 2. Let G be a separable locally compact hausdorff topo-
logical group which is amenable as a discrete group. Let JI(G)C C(G)*
be the space of left invariant elements of C(G)*, J,UG) c LUC(G)* be
the space of left invariant elements of LUC(G)*. Then

1) Either dim JU(G) =1 or dimJUG) = o and furthermore
dim JU(G) = 1 if and only +f G s compact.

(2) FEither dim JJUG) =1 or dimJ,UG) = © and furthermore
dim J,U(G) = 1 ©f and only +f G is compact.

REMARK 2. (a) The reader should remember that at least any
abelian or solvable, or locally finite group is amenable as a discrete
group. (see Day [4] pp. 516-518 for these and more examples)

(b) This theorem is not known even for the real line R. It asserts
that C(R)* ahd LUC(R)* both have an infinite dimensional subspace of
invariant elements.

Proof of theorem. G is amenable and so the restriction of any
left invariant mean to C(G) or LUC(G) is a left invariant mean of
C(G) or LUC(G). Thus dim J,I(G) = 1 and dim J,l(G) = 1 in any case.

If G is compact then LUC(G) = C(G) as well known (see A. Weil
[18]) and there is a unique left invariant mean on C(G) (which is
represented by the normalized Haar measure on G). Thus by the
Remark II-2 we get that dim J,l(G) = dim JI(G) = 1.

Assume now that dim J,I(G) =n, n < «. Then G is compact
(since otherwise it would be noncompact locally compact and therefore
would satisfy property B and by the previous theorem would satisfy
dim J,U(G) = o) Therefore n = 1. Thus dim J,I(G) can be either 1
or o and dim J,l(G) =1 if and only if G is compact. Using in the
same way the previous theorem one immediately gets the remaining
part of this theorem. Remembering that any nonzero subgroup of the

* In fact if A is any left invariant subspace of m(G) containing LUC(G) and
J41(G) the space of left invariant elements of A* then as above, dim J,1(G) <
dim J41(@) which shows that Theorem III-1 holds true C(G) is replaced by A. All
the following theorems involving C(G) could be shown to hold true when C(@) is
replaced by A. We could take as A, for instance, the space of all bounded Baire
measurable functions on G.
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additive group of a hausdorff locally convex linear topological space
has property (B) (see, Remark III-1 (b)) and using in the same way
Theorem III-1 one immediately obtains.

THEOREM 3. Let G be any separable subgroup of the additive
group of a hausdorff locally convex limear topological space. Then

(1) FEither dim JUG) =1 or dim J,UG) = « and furthermore
dim J,U(G) = 1 if and only +f G = {0}.

(2) Fither dim JUG) =1 or dim JUG) = « and furthermore
dim JU(G) = 1 ©f and only +f G = {0}.

ExAMPLE 1. From the above theorems it follows that for separable
locally compact groups (which are amenable as discrete groups) and
for separable subgroups of a hausdorff locally convex linear topological
space dim J,l(G) = dim J,l(G) invariably holds. We give now on ex-
ample of an abelin countable hausdorff topological group which satisfies
dim J,I(G) = 1 while dim Jl(G) = «. Let G' be a compact abelian
separable metric group which is not finite and let d(x, y) be an ad-
missible invariant metric on G'. Then fe LUC(G') if and only if f
is uniformly continuous on G’ as a metric space with the metric d.
Let {g.9;, +--} be a countable dense subset of G’ and let G be the
group generated by {g.0., ---}. Then G is a countable Hausdorff abelian
topological group and therefore G is T, and regular (even completely
regular see [18] p. 13). Therefore G is amenable as a discrete group
and hence we can apply Corollary II-2 to get that dim J,I(G) = .

Consider now LUC(G). Any f in LUC(G) has a unique uniformly
continuous extension f’e C(G’) such that sup,eq | f(g)| = sup,ee | f'(9) .
But any f'e C(G’) is uniformly continuous on the (compact) metric
space (G, d) and therefore its restriction to G is uniformly continuous
on (G, d). Thus T: C(G") — LUC(G) defined by (Tf)(g) = f(g9) for gin G
is a positive linear isometry onto LUC(G). Therefore T*: LUC(G)* —
C(@)* is an isometry. Since dim J,/(G' = 1 it will be enough to show
that T*p e JU(G') for any @ e J UG).

Let 1: C(G")— C(G’) be defined by I, f=f, for a € S and 1): LUC(G)—
LUC(G) be defined by I2f= f, for ac S. If g,ac G G then

TN = )9 = flag) = LTI Q) .

Thus T, f) = IXTf) if aeG. Let now @€ J,l(G) and a€ G then for
FeC@) (T*p)(le f) = (Tl f) = p(LTF) = p(Tf) = T*p(f).

If a¢G but ae G then there is a sequence {a,} © G such that
d(a,a) — 0. Since d is an invariant metric we have that d(a,g, ag) =
d(a,a) — 0 for any ¢ in G. But any fe C(G’) is uniformly continuous,
which means that for ¢ > 0 there is a § > 0 such that if d(x,y) <é
then |f(x) — f(y)| < e. If therefore n, is such that n = %, implies
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d(a,a) < & then | (I, — 1)) f(9)| = | f(@.9) — f(ag)| < e. This shows that
I (t:, — LfIl—0 if n— oo, Thus

(T*@)(e f) = lim (T*@)(le, f) = (T*p)f

since a,€ G. Therefore T*pec J,I(G'). As one can easily see the con-
dition that G’ is metric is not essential and may easily be dropped.
Also instead of G’ being abelian we may require that G’ is amenable
as a discrete group and therefore we get:

COROLLARY 1. If G, s a compact hausdorff topological group
which is amenable as a discrete group and GC G, 18 any countable
(not finite) subgroup then dim J,U(G) = 1 while dim J I (G) = .

We may remark that we take G’ of the preceeding example to be
the closure of G in G, and we remember that G’ as a subgroup of an

amenable group is also amenable as a discrete group. (see Day [4] p.
516 (D)).

Applications: The Banach Algebra LUC(G)*. Let G be a topo-
logical group and define in LUC(G)* (where LUC(G)c C(G) are the
left uniformly continuous functions with the sup. norm) the following
multiplication: If @, e LUC(G)* then for fe LUC(G) |o O +](f) =
o(y) where y(h) = (% f) for he G. (And 1 LUC(G)— LUC(G) is
defined by If = f, for aeG). The function y belongs to LUC(G).
In fact {yR) | = [[v I BSI = [[¥ |l fll and so ¥ is bounded, but more-
over, y(h) is left uniformly continuous. This is true since for any ¢ >0
there is a neighborhood of the identity V such that | f(vg) — f(9)| < e

for each g in G and v in V. In other words ||If — f|| < ¢ for each
vin V. Thus

ly(wh) — y(k) | = | Yl f — US| = [Pl f — L)
=YL= D=L — < llvlle
for each ~ in G. Therefore this multiplication is at least well defined.
But moreover, it renders LUC(G)* a Banach algebra as easily shown
and known. In fact if @, € LUC(G)* and fe LUC(G) then
e OWN | =1ob ) = Pl i Al

(where @, means @ with respect to the variable he G and ||l f|| =
supsee | Y0 fD). But B f1 = v G = 1A 114 ll. The associative
law is also easily proved. In fact if A, ¢, ve LUC(G)* and fe LUC(G)
then [A © (2 © V)I(f) = N[t © VRF] = N[00 F)]]. But

[ O Ov]f=00OmEST= 00O M)
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where y(g) = vl; f for each g € G. But (lLy)(9) = y(ag) = v(le, /) = v(l5le f)-
Therefore (A O )y = N Jplly] = Nl (W1 f)] which implies that (& is
associative. The distributive laws are also easily proved. The follow-
ing should be noted here: In C(G)* we cannot define the same multi-
plication as akove since if ¢, 4 € C(G)*, fe C(G) and G is not compact
then y(h) = +(f,) is not generally a continuous function of 2. In fact
the following nice result has been established by Chivukula R. Rao,
for groups G with an invariant metric: If fe C(G) satisfies for each
g€ C(G)* that ¥f, = y(g) € C(G) then f is uniformly continuous (see
C. R. Rao [13] p. 17 thm 2). As an immediate consequence of our
work combined with a result proved in Rudin [15], one gets the fol-
lowing results: (Denote by R(G) the radical of the algebra LUC(G)*.)

THEOREM 4. Let G be a separable abelian locally compact haus-
dorff topological group. Then either R(G) = {0} or R(G) is infinite
dimensional. Moreover; R(G) = {0} (i.e. LUC(G)* ts semistmple) 1f
and only tf G 1s compact.

We need the following lemma whose proof is essentially known
(see Civin-Yood [3], p. 849)

LEMMA. Let G be a topological group and J UG LUC(G)* be
the space of left tmvariant elements and let

J, = {pe JUG); p(1s) = O} .
Then J, is a two sided ideal and J: = {0}.

Proof. If p,ved, and fe LUC(G) then y(h) = vl} f= v(f) for
each heG ie., y(h) =v(f)-1s. Therefore 1O v(f) = p(f) 1y =
()l = 0. This shows that J?={0}. Let now @e LUC(G)*,
ve JUG) and fe LUC(G). Then y(h) = v(f)1e(h). Thus ¢ O v(f) =
o(y) = P(1a)-v(f). In other words

(I11. 5) @ (v =c-v where ¢ = p(1,) is a constant .

If ve J,c JU(G) then (p D )le = ¢-v(1s) = 0 and so @ (D) € J,. There-
fore J, is a left ideal. Moreover if a € G then

v O ple f) = vilelilef)) = vilplan f) -

But if we define now y(h) = @(I}f) then (Ly)(h) = y(ak) = (13, f).
Therefore v,(l5, f) = v(ly) = v(y) = v(pl} f) = v ® o(f) which proves
that v (O ¢ is left invariant. But since I315 = 15 and o(I%1¢) = o(1e) = ¢,
we immediately get that v & @(le) = v(cle) = ¢-v(1s) = 0. Therefore
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v () @€ J; which finishes the proof of this lemma.

REMARK. The above lemma implies as well known that J, © R(G)
for any topological group G.

Proof of Theorem 4. Denote by M,I(G) the set of left invariant
means of LUC(G)* and let ¢,e M,I(G) be fixed. Then obviously

MUG) — @ = {p — @0, p e MUG)} C J, C R(G)

since ¢(1z) = 1 for each e M,I(G). But as pointed out in the Remark
(II-2) the linear manifold spanned by M,I(G) coincides with J,UG).
Assume now that dim R(G) = n» where 0 = n < oo, then dim J,I(G) =
dim M, (G) < oo. This implies by Theorem (III. 2) that G is compact.
But by Rudin [15] if G is any compact abelian topological group then
C(G)* with the above defined multiplication is semisimple. Since
for compact G, C(G) = LUC(G) we get that R(G) = {0}. Therefore
either R(G) = {0} or dim R(G) = . And R(G) = {0} if and only if G
is compact.

THREOREM 5. If G s separable subgroup of a locally convex linear
topological space then either R(G) = {0} or dim R(G) = . Moreover
R(G) = {0} 2f and only +f G = {0}.

Proof. As in the previous theorem if dim B(G)=mn where 0 < n < co
then dim J,l(G) < o which implies by Theorem (III. 3) that G = {0}.
But if G = {0} then surely R(G) = {0}. Which finishes the proof of
this theorem.

THEOREM 6. Let G be a separable hausdorff topological group
which 18 amenable as a discrete group. If G has property (B) then
dim R(G) = oo,

Proof. As above M, I(G) = ¢, J, R(G). But by Theorem (III, 1)
dim J,U(G) = o and since M,UG) spans J U(G), dim M, I(G) = o which
proves this theorem.

REMARK. (a) If LUC(G)* contains two distinct left invariant
means ¢, and @, then the algebra LUC(G)* is not commutative since
P, O @, = @, and @, O @, = @. Therefore if G is even a commutative
noncompact locally compact separable group, then LUC(G)* is not com-~
mutative.

(b) If L,UC(G) is the Banach space of bounded complex valued
left uniformly continuous functions on G and the algebra L ,UC(G)*
is defined as above then Theorems III-4, III-5, I11-6 hold true also
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for L, UC(G)*. Since any @ecJ, can be extended to L,UC(G) by
defining for f, ge LUC(G) o(f + 19) = o(f) + ip(9). If J) c L,UC(G)*
is the set of all such extensions of elements of J,< LUC(G)* then
J! © R(G) where R,(G) denotes the radical of L ,UC(G)*. From here
one immediately gets that Theorem 4 holds also for the complex case.

IV. The invariant mean On semigroups containing
compact groups and left ideals

The main theorem of this chapter is Theorem IV-1. The following

lemma is essentially known and we need it in the special form appear-
ing here.

LeMMA 1. Let S be a topological semigroup which contains a
compact left-ideal group A,. If {A,; eI} is the set of all compact
left-ideal groups of S then A = Uwe; Au 18 ¢ right minimal ideal.
Moreover if e, is the identity of the group A, then for any ac A,
e, = a. Also for any te S, tA, = A,.

REMARK. A, as groups and left ideals are minimal left ideals and
therefore are disjoint.

Proof. Let se¢S. Then A, is a minimal left ideal since if
Lc Ass is a left ideal and ase L with ae A, then A,s = (A.,a)sC L
(since A, is a group). Thus A,s = L is a minimal left ideal. But
AssaC A, for any ae A, and therefore A,sasC A,s. Since A,s is
a minimal left ideal (A.s)as = A,s. If te S then tA, = t(e,A.) =
(ten)A, = A, since te, € A,, which is a group. In particular for ac A4,
as(A.s) = A,s. In other words for any be A,s, b(A.s) = Aus = (A,.8)b
holds which proves that the semigroup A,s is in fact a group. Thus
Ays is a left ideal and group which as a continuous immage of A, is
also a compact subset of S. Therefore A,s = AgC A for some Bel.
Thus for any se S, As = Use; AusT A which shows that A is a
right ideal.

Let now R be any right ideal of S and re¢ R. Then A4,=rA,C R
for each awe I. This shows that A R (i.e. that A is included in each
right ideal of S) and in particular that 4 is a minimal right ideal.
Now if e,, ¢; are the identities of A,, As respectively then e,-eze A4,
and

(eatp)(€ntp) = eu(ep(€atp)) = €4(Cats) = €utp .

Thus e.es is an idempotent of the group Ag and therefore e,eg = ¢z for
any «,Bel. If now ac A then ac A, for some Bc I and therefore
€.0 = e,(ept) = e = d.
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REMARK. In semigroup terminology this shows that A is the
Suscheviteh kernel of the semigroup S.

If peC(S)* then ¢ =0 (is positive) if »(f) =0 for each f =0,
feC(S). An operator T:C(S)* — C(S")* is called positive if Tp = 0
whenever ¢ = 0.

LEMMA 2. Let S be the semigroup of Lemma (IV, 1) and 7: C(S)—
C(A) be defined by (nf)(a) = f(a) for a in A. Then 7n*: C(A)* — C(S)*
18 a linear positive tsometry such that w*[JI(A)] = JI(S). Moreover
a7 JU(S) — JI(A) s also positive.

Proof. w maps C(S) onto C(A) since if he C(A) then define
ke C(S) by

aIv. 1) h(s) = h(eas)

where ¢, is the identity of the group A, for some fixed e l. If sc A
then by the proceeding lemma e,s = s and so A(s) = h(s). Alsos— e,
is a continuous map from S to A (with the relative topology) since
if 0’ is open in A then 0’ = 0N A with 0 open in S and (since A is
a right ideal) {s; e,s€ 0’} = {s; e,s € 0} which is open by the continuity
of the left multiplication. Since ke C(A) we get that h(e.s) = h(s) € C(S).
We also remark that if ||| = 1 then |2 =< 1 and so 7 maps the unit
ball of C(S) onto the unit ball of C(A4). Also if f=0 then 7f =0
and 7(ls) = 1,. Therefore if @€ C(A)* then

lm*p||= sup [(7*@)fl= sup [o(xf)]
11f11=1 fec(s) 11111 fEC(S)
- ||h||ss1uhpecm e[ =llell .

Therefore n*: C(A)* — C(S)* is a positive linear isometry into C(S)*.
We shall show that it maps J,l(A) onto J,I(S). If s€S,ac A then
let l;: C(A) — C(4) and I,: C(S)— C(S) be defined by: l;h = h, and
l.f=f, for and a€ A and s in S. Let & = 1. Then (zl,f)() =
(L. F)(B) = f(ab) = (mf)(ab) = (LU(xf))(b) for each a,bec A. Thus wl,f =
liwf for each f€ C(S) and so for any ac€ A and @€ J,I(A) and f e C(S):

(T*)(a f) = p(l, f) = @llanf) = p@f) = (@ p)S) -
Thus .&(7*p) = 7*p for each ac A. If now s€ S and a€ A then
L(mrp) = L(LUTrp)) = L (TFp) = T

since sa€ A. Thus n*: J,l(A)) — J,I(S) is a linear positive isometry
into. We prove now that 7* maps J,l(4) onto J,I(S).

Let pe JU(S) and let fe C(S) satisfy f(a) =0 for each ac A.
Then for a€ A we have (I,f)(s) = f(as) = 0, since A is a right ideal.
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Thus o(f) = o(l,f) = p(0) = 0. Therefore if f,, f; € C(S) satisfy fi(a) =
fia) for each a € A then fi(a) — fi{a) = 0 for ac A and so ¢(f) = o(f).
In other words if he C(A) and ke C(S) is any extension of h to all of
S then ¢(k) does not depend on the particular extension e C(S) of
he C(A). Therefore ¢’ € C(A)* defined for ke C(S) by

@'(h) = p(h)

where ne C(S) is any extension of 7 to all of S, is at least well
defined. Moreover if @ =0 and % =0 then the extension Ze C(S)
defined above (IV. 1) satisfies A(s) = h(e,s) = 0 and so ¢'(h) = @(h) = 0.
This shows that if ¢ = 0 then ¢’ = 0. It is easily checked that ¢’ is

linear. Also if |[A]| <1 then the extension defined by IV-1 satisfies
|h|| =1 and thus

[Py =lem) | = eIkl = [lo]l.

This shows that ¢’ € C(4)*.
We show now that ¢’ € J,[(4). Let a€ A be fixed. Then

#' (L) = (k)

where ,l;\f; is any extension, in C(S), of llhe C(4). But ac 4, for
some «,€ I and the function defined by

1v. 2) (h)(s) = (k) ew,s)

is a bounded continuous extension of [,i€ C(A). (where €q, is the
identity of A,). And for each seS:

Th(s) = (Uuh)(0ays) = h(aeqs) = h(as) .

But if ke C(S) is any extension of % to all of S then, since 4 is a
right ideal, we get

h(as) = h(as) = (L.h)(s) .
Therefore
Th(s) = (LE)(s)

where i{:}f is the extension defined by (IV. 2) while ke C(S) is any
extension of h. Therefore

o' (k) = p(Iih) = p(lJe) = p(h) = @'(h) .

This shows that ¢’ € J,l(4). Moreover 7*¢p’ = @. In fact if fe C(S)
then (7*@")(f) = @'(zf) = @(f) since f is obviously an extension of
nf e C(A). Therefore *: J,I(A) — JU(S) is a positive linear isometry
onto and positive elements in JIU(S) have positive preimages in J,I(A)
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or in other words #*7":J,I(S)— J,l(A) is a linear positive isometry
onto.

REMARK. We notice that we do not assume any separation axioms
about the topological space A. We shall show in what follows that in
fact we can assume about A that it is even a hausdorff space (and even
that C(A) separates points).

In fact define in A the following equivalence relation: If a,bec A
then a ~ b if and only if x(a) = #(b) for each x € C(4). Obviously this
is an equivalence relation but moreover ~ is even a congruence, i.e.,
if a ~b then ca ~ c¢b and ac ~ bc for each cc A. This is true since
for any xz e C(A)

x(ca) = x,(a) = x,b) = x(cb)
and
2(ac) = x°(a) = x2°(b) = x(bc) .

Let A’ be the collection of all equivalence classes of A and for
each a € A let @' be the equivalence class containing «. Define in A’
the multiplication «’-b" = (ab)’. Since ~ is a congurence this multi-
plication is well defined and renders A’ a semigroup. (see Lyapin [20]
p. 361-362). Thus +: A — A’ defined by +(a) = @’ is a homomorphism
of A onto A’. Define now in A’ the quotient topology this way: U’ c A’
is open if and only if v U’)C A is open. Thus : A— A’ is a con-
tinuous homomorphism and so A, = v(4,) are compact. Moreover if
a€ A, then A, = ¥(A,) = y(ad,) = y(a)y(A,) = ¢’ A, and in the same
way ALa' = Al which shows that A), is a group. Also if b€ A then
b’ AL, = P (b)y(As) = (bA,) = 4(A,) = A, which shows that A, is a
left ideal.

But moreover, A’ with the above defined quotient topology has
separately continuous multiplication. In fact if U’ is an open set in
A’ and a,€ A then we have to show that 0" = {¢’; a;¢’ € U’} is open in
A’ or that

0= 470" ={¢; (a0) € U} = {¢; ac € (U}

is open in A. But since « is continuous 4 *(U) is open in A and since
left multiplication by a, is continuous, we get that {c; a,c € +(U’)} is
open in A. In the same way one shows that right multiplication in
A’ is continuous. Define now the map +: C(4") — C(4) by (¥z')(a) =
2'(ya) = x'(a’) for each ae A. Since y(A) = A', ¥ is a linear positive
isometry (i.e., if «’ = 0 then +(z') = 0) into C(A). But we notice now
that each x € C(A) gives raise to an 2’ € C(4’) by defining: #'(¢’) = x(a)
where o is any representative of the equivalence class a’€ A’. Since x
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is constant on equivalence classes, « is well defined and «' € C(4’),
since if V is an open set of reals then

v Ha's @' (@) e V} = {a; 2(a) = 2'(¢)) € V} = a7(V)

which is open in A since xz€ C(A). Also (va')(a) = 2'(y(a)) = «'(a') =
2(a). This shows that +: C(A’) — C(A4) is onto. It is immediate now
that A’ is hausdorff. In fact if o', b’ € A’ are such that o’ ## b then
there is an x€ C(A) such that x(a) = «(b) i.e. 2'(a’) = 2’'(b’) so that
C(A’) even separates points.

LEMMA 3. %: C(A)* — C(A')* is a linear positive isometry such
Sthat JH[JUA)] = JUA). ¥ JUA) — JUA) is also positive.

Proof. Since +r:C(A)— C(A’) is a positive isometry onto we im-
mediately get that *: C(4A)* — C(A')* is a linear positive isometry.
Let now I..:C(A')— C(A") be given by (l.2')(c') = x'(a’¢c’) for each
ceA and [,: C(A)— C(A) by l,x = x,, As known and easily checked
l(y2'y = J(l,.2"), which shows that if @€ J,l(A) then:

(F*p)(lea') = p(le’) = p(lgra’) = p(ya) = (P @) (@) .

Therefore *[J,I(A)] < JI(A)].

If now @' € J,I(A') then let o€ C(A)* be defined, for zc C(A), by
@p(x) = @'(¢') where a'e C(4’) is given by «'(¢') = z(a) for each aec A.
Then (l,2)' (") = (l,2)(b) = x(ab) = «'((ad)’) = «'(a'd’) = (l,.2")(d"). Thus

P(ler) = ¢ (L)) = @'(lia) = @) = p() .
Therefore @ € J,l(A). But (y2')(a) = #'(a') = x(a) and thus
(P p)@) = p(¥2') = p(x) = @'() .
This shows that +*p = ¢’ i.e., that J*[J,UI(4)] = JU(A"). We also

notice that if @ =0 then @ = 0 and so positive elements in JI(A")
have positive preimages and so +** is also positive.

REMARKS. We notice that A] is a group which is a compact
hausdorff topological space with separately continuous multiplication
and therefore by Ellis theorem (see Ellis [21] or Glicksberg Deleeuw
[19] p. 64-65 and p. 94-96) each A, is a compact Hausdorff topological
group. (i.e. the mapping (a, b) — ab™ from A} x Al into A, is con-
tinuous).

THEOREM 1. Let S be a topological semigroup (only with se-
parately continuous multiplication) and let S contain exactly n com-
pact left-ideal groups A, -+, A,. Then dim J US) = n and J,IU(S) s
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spanned by the left imvariant means.

Proof. If A= U, A4; then n*:JI(A)— J,I(S) is a positive iso-
metry onto (and so maps left invariant means into left invariant means).
If A’ is the semigroup of Lemma (IV. 3) then **: J,I(A") — J,I(A) is
a linear positive isometry onto and so it is enough to show that
dim J,l(A) = n and that J,l(A’) is spanned by the set of left invariant
means. We recall now that A’ = UUr., A} is a Hausdorff topological
space and that A; are compact topological groups and left ideals and
therefore disjoint. Thus A’ is a compact hausdorff semigroup and
multiplication is (at least) separately continuous. In what follows we
shall drop the prime and write A, A; instead of A’, A}-A, A, are com-
pact hausdorff. But A; as the complement of the compact set U, 4;,
is also open. Therefore 1, € C(A). Hence if feC(A) then f(a) =
Zf(azlAi(a) for each aceA and f-1,€C(A). Moreover if he C(A)
then h defined by h(a) = h(ae;) for each a€ A is an extension of A to
all of A and heC(A). Furthermore, if A =0 then % =0 and if
|A|l =1 then ||h]| 1. Let m;: C(A) — C(A,) be defined by (7, f)(a) =
f(a) for ac A;. If ac A, then let li: C(A,) — C(A,) be defined by lik = h,
for ac A;. Also, l,: C(A) — C(A) is defined by I,f = f, for any a in
A. Let lf = .&,. Then as easily checked: «;l, f=lir, f for each f e C(A)
and a in A,.

Let now ;€ C(4,)* be the linear positive functional of norm one
represented by the normalized Haar measure on the compact hausdorff
topological group A,;. Define ¢, € C(A)* by

V. 3) P f) = @i(m.f)  for each fe C(4).

Then we get immediately that ¢; = 0, p(1,) =1 and that ¢,(1,) =1
while @;(1,,) =0 if 4 = k. Thus for any ac A;:

il f) = @il f) = pillimi f) = @i f) = o f) .

Therefore .&p; = @; for each ac A;. If now ce A and a<c A; then
Fp, = L, = Lo, = @; since cac A;. Therefore ¢, is a left
invariant mean in C(A)*. Also @, -, », are linearly independent
(since if > a,p; = 0 then a;, = (3 a;9,)(1,,) = 0). It remains to show
that @, ++ -, @, span J,I(A).

If heC(A4,) and if heC(A) is any extension of & (for instance
h(c) = h(ce;) for each ce A) then let Pi(h) = ﬁ-lAzeC(A). In other
words Phe C(A) equals b on A; and 0 outside A;. Thus P;: C(4,) —
C(A) and as easily checked:

V. 4) 7 Ph = h for he C(A,)

and
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(IV. 5) Pz, f= fl, for feC(A).
If ac A, and he C(A,) then
Pillah)(®) = {?lf;h)(b) — h(ab) iﬁ Zij :
Moreover,

0 if abg A,

But abe A; if and only if be A; (if b¢ A, then be A; for j + 1 and
so abe A;) and ab¢ A; if and only if b¢ A,. This shows that

(IV. 6) P,(lin) = 1(P;h) for each he C(4;) and ac A, .
Let pe JU(A)c C(A)* and define +; € C(4,)* by
(Iv. 7 vi(l) = p(Pih) .

If ac A; then by IV-6, IV-7: +(lih) = @(P;lih) = (I, P:h) = @p(P:h) =
Yr{h) which shows that +;, is a left invariant functional in C(4,).
Therefore, (by the uniqueness of the Haar measure) we get that «; =
;o) for some real number «,. Therefore if fe C(A) then using IV-5,
IV-7 and IV-3 one gets:

P(f) =2 p(fly) = 2 (P, f)
= 2 9T f) = 2 api(mi f) = X aipi( f) .

Thus @ = >, a;p; which finishes the proof. As a special case one
gets the following theorem of I. S. Luthar (see [12] p. 403).

THEOREM. If S is an abelian topological semigroup which con-
tains a compact ideal then dim JIU(S) = 1.

Proof. As in Luthar’s proof if I is a compact ideal of S and
L, ---, I, are closed ideals of S contained in I then I,---I,Cc N'-, I; # @.
Therefore the family F of all closed ideals of S contained in I has the
finite intersection peoperty and so A = Nyer I’ # @. Thus A is a
compact ideal. If ae A then aA C A is a compact ideal and so a4 = A
which shows that 4 is a group. If now A, is any other compact ideal
and group of S then AACANA, # @ and if ac AN A, then 4 =
Aa = A,a = A, which shows that S contains exactly one ideal and com-
pact group. Using Theorem (IV. 1) we get that dim J,I(S) = 1 or that
C(S) admits a unique invariant mean.
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