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ON THE INVARIANT MEAN ON TOPOLOGICAL
SEMIGROUPS

AND ON TOPOLOGICAL GROUPS

EDMOND GRANIRER

Let S be a topological semigroup and C(S) be the space of
bounded continous functions on S. The space of translation
invariant, bounded, linear functionals on C(S) and its connec-
tion with the structure of S, are investigated in this paper.
For topological groups G, not necessarily locally compact, the
space of bounded, linear, translation invariant functionals, on
the space UC(G) of bounded uniformly continuous functions,
is also investigated and its connection with the structure of
G pointed out. The obtained results are applied to the study
of the radical of the convolution algebra UC(G)* (for locally
compact groups, or for subgroups of locally convex linear to-
pological spaces) and some results which seem to be unknown
even when G is taken to be the real line are obtained.

The topological semigroup S is assumed to have a separately
continuous multiplication, and C(S) is given the usual sup norm.
C(S)* will denote the conjugate Banach space of C(S). If aeS
and / is any function on S then fa is defined by fa(s) — f(as) for
seS. φeC(S)* is said to be left invariant if φ(fa) = φ{f) for each
/ in C(S) and a in S. Jcl(S) will denote the space of left invariant
elements of C(AS)*. A topological semigroup is said to be left ame-
nable as a discrete semigroup if there is a linear functional φ Φ 0
on m(S) (the space of all real bounded functions on S with the usual
sup. norm) which satisfies φ(fa) — φ(f) for each a in S and / in m(S)
and φ(f) ^ 0 if / ^ 0. An analogous definition holds for the right
amenable case. A topological semigroup is said to be amenable as a dis-
crete semigroup if it is right and left amenable as a discrete semigroup.

The following are results of I. S. Luthar [12]:
(1) If S is an abelian topological semigroup with a compact ideal

then dimJ"βi(S) = 1
(2) If G is an abelian topological group having a certain property

P (Any noncompact locally compact group or any nonzero subgroup of
a linear convex topological vector space has this property see [12]
p. 406) then dim Jcl(G) ^ 2.

We say that a subset So of the semigroup S is a left-ideal group if
So is a group when endowed with the multiplication induced from S

Received December 2, 1963. Supported in part by National Science Foundation
Grant 19869.

107



108 EDMOND GRANIRER

and ss0 belongs to So for any s in S and s0 in So. If S is also a
topological space then So c S is a compact left-ideal group if it is a
left-ideal group and a compact subset of S.

The following theorem is proved in Ch. IV of this paper:

THEOREM IV-1. Let S be a topological semigroup (with only sepa-
rately continuous multiplication and no separation axioms) containing
exactly n(Q < n < °°) compact left-ideal groups. Then dim Jcl(S) — n.

If S is abelian and contains a compact ideal then as known and
directly shown, S contains a unique group and compact ideal (see the
argument in [12] at the top of p. 404) and so dim Jcl(S) = 1, which
yields Luthar's first result.

When considering this Theorem IV-I one is tempted to conjecture
that its converse if true i.e.

(A) If S is a topological semigroup and dim Jcl(S) = n 0 < n < oof

then S contains exactly n compact left-ideal groups1.
This conjecture, even when allowing S to be a topological semi-

group with jointly continuous multiplication and S to be a Hausdorίf
regular topological space, cannot be true as the following simple ex-
ample shows:

E. Hewitt (see [22]) has constructed a regular Hausdorff space
S such that the only real continuous functions on it are the constant
functions. Define in this space S the following multiplication: ab = a
for any a, b e S. If F: S x S — S is defined by F(a, b) = ab = a and
Ua S is open then F~\U) = {(α, b); ab e U} = {(α, b); a e U} = U x S
which is surely open in S x S. Therefore multiplication in S is jointly
continuous and S is a Hausdorff regular topological space. But C(S)
is one dimensional and so C(S)* is one dimensional. Moreover, if we
define φ(f) = f(a) for each / in C(S) and some fixed ae S then φ Φ 0
is easily seen to be left invariant. Thus dim Jcl(S) = 1. But S does

1 This conjecture made by I. S. Luthar for the abelian case (see [12] p. 403) and
believed to be true by this author for completely regular topological semigroups, is
not true even for abelian topological groups. In fact let G be a pseudocompact non-
compact abelian topological group and A & translation invariant nonnegative linear
functional on C(G) such that | | A| | = 1. By Theorem 4.1 of W. Comfort and K. Ross
(see [23] G) is totally bounded and each / in C(G) is uniformly continuous and therefore
has a unique uniformly continuous extension/to the compact topological group G (the
completion of G). Conversely any feC(G) is the uniformly continuous extension of
a unique fβC(G). Define now the linear functional A on C(G) by Af= Af. It is
not hard to show now, after using heavily the Comfort-Ross theorem, that A is
translation invariant (with respect to the elements of G) nonnegative and \\ A\\ = 1.
Therefore Af= I fdm where m is the unique normalized Haar measure on G. This
shows that dim Jcl(G) — 1 while G is not compact. Many thanks are due to W. Com-
fort and K. Ross for kindly letting this author have a preprint of their paper.
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not contain any proper left ideal since Sb = S for any be S. And S
is neither a group nor is it compact (For a compact hausdorff space
S9 C(S) even separates points). Nevertheless, in certain cases, state-
ment (A) holds true. The following theorem is proved in Ch. II of
this paper:

THEOREM Π-2. Let S be a countable topological semigroup which
is left amenable as a discrete semigroup and which is a 7\ regular
topological space (and therefore completely regular).

Then dim Jcl(S) = n, n < o°, if and only if then S contains exactly
n finite left-ideal groups2.

Consider now G to be a topological group and denote by L UC(G) c C(G)
the space of left uniformly continuous functions on the group G. Let
Jul(G) c LUC(G)* be defined as:

{φ; φ(fa) = φ(f) for each / in LUC(G) and a in G) .

Also, recall that at least any abelian or solvable or locally finite group
G, is left amenable as a discrete group, (see Day [4] for these and
more examples). We can now state our next result:

THEOREM IΠ-2. Let G be a separable locally compact hausdorff
topological group which is amenable as a discrete group. Then

(1) Either dim JJ(G) = 1 or dim JJ(G) = oo and dim JJ(G) = 1
if and only if G is compact.

(2) Either dim Jcl{G) = 1 or dim Jol(G) = oo and dim Jcl(G) = 1
if and only if G is compact.

THEOREM IΠ-3. Let G be any separable (not necessarily closed)
subgroup of locally convex linear topological space. Then

(1) Either dim JJ(G) = 1 or dim JJ(G) = oo and dim JJ(G) = 1
if and only if G — {0}.

(2) Either dim Jcl(G) = 1 or dim Jcl(G) = oo and dim JJ(G) = 1
if and only if G = {0}.

From these theorems it is obvious that for both the considered groups
dim JJ(G) = dim Jcl(G) invariably holds. An example of a countable
abelian topological group in which dim JJ(G) — 1 while dim Jcl(G) = oo
is given in Ch. III. This example uses heavily the theorems on coun-
table topological semigroups obtained in Ch. II.

Separable topological groups G which are amenable as discrete groups
and have a certain property B (G has property B means that G admits

2 One cannot hope for much more than this theorem. In fact an example of a
locally compact abelian topological semigroup (with jointly continuous multiplication)
for which statement A does not hold true for any n can be given.
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a real left uniformly continuous unbounded function. Noncompact local-
ly compact groups, nonzero subgroups of locally convex linear topological
spaces and groups which admit a right invariant unbounded metric
have this property.) are considered in Ch. Ill and for them it is proved
that dim JJ(G) = 0 0 and dim J c ί (G)= 00 (see Theorem (III. 1)). It
should be remarked here, that our results neither imply, nor are im-
plied by Luthar's results in [12]. They improve Luthar's results in
the case where G is separable and either locally compact or a sub-
group of a locally convex linear topological space (and also in certain
other cases) but they do not deal at all with the non separable case.

We consider further in this paper the Banach space LUC(G)* (i.e.
the conjugate of LUC(G)). As known and easily seen LUC(G)* be-
comes a Banach algebra under convolution as multiplication (while con-
volution in C{G)* cannot generally be defined, as known). If we denote
by R(G) the radical of the Banach algebra LUC{G)* (which may not
be commutative though G is so) then the following results are obtained,
as immediate consequences of our work:

THEOREM, If G is a separable, noncompact, locally compact topo-
logical group which is amenable as a discrete group, then the radical
R(G), of LUC(G)* is infinite dimensional (see Theorem III-6)

Combining this theorem with a known result, to be found in Rudin
[15], which asserts that if G is compact abelian then C(G)* is semi-
simple one gets.

THEOREM ΠI-4. Let G be a separable abelian locally compact
topological group. Then either R(G) = {0} or R(G) is infinite dimen-
sional. Moreover R(G) = {0} if and only if G is compact3.

THEOREM IΠ-5. Let G be a separable subgroup of a locally con-
vex linear topological space. Then either R(G) — {0} or R(G) is in-
finite dimensional. Moreover R(G) = {0} if and only if G — {0}.

If we take G to be the real line R and therefore LUC(G) = UC(R)
to be the space of real uniformly continuous bounded functions on R
then the algebra UC(R)*, with convolution as multiplication, has as in-
finite dimensional radical. It is not hard to see that this holds true
also for the complex valued uniformly continuous functions on R. Even
this result for the real line seems to be unknown.

3 It can be proved that R(G) = {0} for any compact topological group G. There-
fore Theorem IΠ-4 holds true for any separable locally compact G, which is ame-
nable as a discrete group. Thanks are due to Professor M. Rajagopalan for com-
municating this fact to me.
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In the end it is a pleasure for me to thank Ranga R. Rao for the
friendly and fruitful conversations I had with him. It was in fact his
idea to use the functions {/J in the proof of Theorem IΠ-1.

Some notations. S is a topological semigroup if it has an associa-
tive multiplication and is a topological space (with no separation axioms)
and for any fixed a in S the mappings s—>as and s —>sa are continuous
from S to S. (i.e. multiplication is only separately continuous). We do
not assume that (x, y) —> xy from S x S—• S is continuous. As remarked
in [19] p. 64 the multiplicative semigroup or linear continuous operators
on a Banach space with the weak operator topology is only separately
continuous.

G is a topological group if it is a group, has a Hausdorff topology
and (x, y) —-> xy~x from G x G —> G is continuous (i.e. in this case jointly
continuous multiplication.)

If S is a set then ^(S), m(S) are defined as usual (see Day [5]
p. 28) and if S has a topology then C(S) is again defined as usual
(see introduction). We stress that we deal only with real valued
bounded functions in this paper. If X, Y are normed spaces then
X*,Y* are their respective conjugate Banach spaces and if T: X-^Y
is linear then T*: Γ* —> X* denotes the conjugate of T (see [5] pp.
14-17.)

If A a S then 1Λ is the function whose value is one an A and zero
otherwise (when no ambiguity may arise, 1 will denote the constant
one function on S, i.e. 1̂ ). If A, B are subsets of S then A — B will
invariably mean the set of points of A which are not in B.

If / is a function on S and aeS then fa, fa are defined by
(fa)(s) — f(as) and (fa)(a) = f(sa) for each s in S. A linear manifold
(which means the same as a linear subspace or in short a subspace)
L c m(S) is left invariant if / α e i for each / e L. In this case φ e L*
is left invariant if φ(fa) — φ{f) for each f in L and a in S. If L
contains the constant functions then φ e L* is called a mean if <p(f) ^ 0
for / ^ 0 in L and <£>(ls) = 1. φeL* is called a finite mean of L*
if there is a finite subset {αx, , an} c S, and nonnegative α ,̂ , αn

with Σai = 1 such that φ(f) = Σ?=i<**/(<*<) for each / e i .
If S is a topological semigroup then Jcl(S) = {φe C(S)*; φ(fa) —

φ{f) for each fe C(S) and ae S} and Jl(S) = {^e m(S)*; φ(/α) = φ{f)
for each fem(S) and αeS}. For "left-ideal group" or "compact left-
ideal group" see the introduction. A finite left ideal group is a left
ideal group which contains a finite number of elements. If X is a
Banach space and Y c X a subspace then we write dim Y — n if Y
is n dimensional, 0 ^ n < oo, and dimY=: co if 7 is not finite
dimensional.
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If X is a Banach space with conjugate space X* then the w*
topology in X* (sometimes called the X topology of X*) is defined
as in Day [5] p. 17.

A nonempty class F of subsets of a set S is called a field (σ-field)
if it is closed under complementation and under the operation of taking
finite (countable) unions.

II* The invariant mean on countable topological semigroups

The main theorem of this chapter is Theorem 2. The main tool
for its proof is Theorem 1. The proof of Theorem 1 uses basically
the same idea as the proof of Theorem (5.1) of [6], It yields though
a simpler proof even for the discrete case than Theorem (5.1) of [6].

DEFINITION 1. Let S be a semigroup. Define la: m(S) —> m(S) by
laf=fa for any a in S. If L o cm(S) is a left invariant manifold
then define li:L0—+L0 by lif=fa for any a in S and/inL 0 . Denote
in this case Sfa = ZJ: m(S)* -* m(S)*, £fa° = (£α

0)*: Lo* — L* and

jQl(S) = {φe L*; j£fa°φ = φ for each seS} .

THEOREM 1. Let S be a left amenable semigroup and LQ(zm(S)
be a left invariant linear manifold containing the constants. Assume
that there is a sequence {sn}~ c S such that

{φ e L*; Sf.\ψ = φ, n = 1, 2, . . •} - JQl(S) .

If dim Jol(S) < oo then each left invariant mean φeL* is aw*-
sequential limit of finite means, in other words there is a sequence of
finite means φn in Z/o* such that φ(f) = linv_>oo φn(f) for each fe Lo.

REMARK 1. If we do not assume the existence of a countable
sequence {sn}cS as above then the theorem does not remain true as
is shown by the following example: Let G be an abelian compact
hausdorff nonseparable topological group and let LQ = C(G). Then
dim Jol(G) — 1. Let φoeL$ be the left invariant mean represented by
the normalized Haar measure on G. Assume that <po(f) = limTO_>oo φn{f)
for each feC(G) where φn are finite means i.e., φn{f) = Σjkj=ιajf(Qj}
where aj9 gβ and k depend on n, aά ^ 0 and Σ as — l

If we call σ(φn) = {gl9 , gk}, then A = \Jn=i σ(<Pn) is countable
and therefore the group generated by A is countable and therefore
the closure of this group, say Gθ9 is a closed separable subgroup of
G. Since G is nonseparable G Φ Go. But if fe C(G) satisfies f(g) ^ 1
for g e Go then φn{f) ^ 1 since σ(<pn) c Go. Therefore <po(f) ̂  1 which
shows by [8] p. 248 that μ(G0) — 1 where μ is the normalized Haar
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measure on G. But if a e G and agG0 then aG0 Π Go — 0 and so
1 = μ(G) ^ μ(aG0) + μ(G0) — 2, which is a contradiction.

Thus the above theorem is not true if we do not assume the
existence of the above sequence {sj. This is the reason why Luthar,
in his theorem about the uniqueness of the invariant mean on an
abelian semigroup, see [11] and this author, in proving the theorem
about the finite dimensionality of the set of invariant means on a
semigroup, (see [6]), had to handle first the case in which the semi-
group was countable and only afterwards, by using arguments involv-
ing much more the algebraic properties of semigroups, to handle the
uncountable case (which is not yet proved in its due generality).

Proof of the Theorem. Let φ0 e Lo* be a left invariant mean. Let
ψem(S)* be a norm preserving extension of φ0. Since 1 G L 0 and φ0

is a mean one has: 1 = || φQ || = φo(l) = ψ(ϊ). But \\ψ\\ = 11 φ0 II and
so 1 = \\ψ\\ = ^(1). This implies as known that ψ(f) ^ 0 if / ^ 0.
(In fact if / e m ( S ) , U / ^ 0 , would be such that ψ(f)< 0 then
|| 1 - f\\ ^ 1 and || ψ || ^ ψ(l - /) = ψ(l) - ψ{f) > 1) and therefore
ψ is a mean. If v is a left invariant mean on m(S) then φ[ — v 0 ψ
is a left invariant mean on m(S) (see Day [4] p. 526-527 and p. 529
Cor. 2) which is an extension of φQm In fact, if fe Lo then (v 0 ψ)(f) =
v(h) where h(s) = ψ(lsf) = φo(l8f) = ζP0(/) Thus h(s) is constant on
S and takes only the value φo(f). Hence v(h) = <po(f), since y is a
mean. (We notice that we could have applied an invariant extension
theorem of R. J. Silverman see [16] in order to get immediately the
existence of φ[ but we prefered the above simple argument).

Let now {φ'a} be a net of finite means in m(S)* such that wMim* φ'Λ =
φ[ and limΛ \\£fΛφ'Λ - φ'Λ\\ = 0 for each s in S. (see [6] p. 44, (5.8)*).
If φ^eLt is the restriction of ^ to Lo then since l im Λ ^(/) = φΌ(f)
for each fem(S) we get that limΛ <pΛ(/) = φo(f) for each / e L 0 and
thus w*-\imφa = φ0 (in Lo*). Moreover if / G L 0 and | | / | | ^ 1,

- - φ.)f\ = I y . ( β / - /) I = I φUhf- f) I
* - φ«)f\ ^ \\Sf.φ'Λ - φ'« || — 0

for each s in S. This implies that limΛ || Sf8°φa — φa\\ = 0 (where the
norm now is that of Lo*) for each s in S.

Let now S(φ0,1/n) = {cpe Lo*; || φ — φQ \\ < 1/n} and let Vn be a
sequence of convex tί;* neighborhoods of φ0 which are w*-closed such
that Vn+1 c Vn f or n = 1, 2, and

c s(φ0, i-) ΓΊ

The choice of such Fw's is possible since Jol(S) is finite dimensional
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(see [6] p. 44 (5.5)* and p. 45). There is now an ar

n such that a ^ af

n

implies \\Sf.\φa - φa \\ < 1/n for i = 1, 2, , n.
Since φ0 is a w* limit point of the net {<ρα} there is an an ^ α^

such that φa>n e V"w. Write <pαn = <pw and let ψ0 be some w*-limit point
of the net {φn}. The set of means of Lo* can be written as

Π {φeL*; || φ || ^ 1 and φ(/) ^ 0}

and so is w* compact. This shows the existence of such a ψ0 (and so

ψ0 is even a mean). Moreover, if feLQ \\f\\ ^ 1 and s3- is fixed then

to)/1 ^ \^fs°(ψo - φjf\

n - <Pn)f\

If ε > 0 is given then there is an n0 ^ i such that l/n0 < ε/3 and
therefore for n ^ n0, \\JSf8]φn — φn II < s/3 Since ψ0 is a w*-limit
point of {<7?w}, there is an ^ ^ n0 such that | (τ/τ0 — φni)l°SJf\ < ε/3 and

(φn — to)/1 < e/3. Thus Sfs]ψ0 = to for each i and using the as-
sumption of our theorem we get that ψQe Jol(S). But ψQ is also a
w* limit point of the sequence {φn}7=k c VΛ. Since V* is ^ * closed
ψ oe Vk for each fc. Thus < ôe Vk Π JOΪ(S) c S(^o, 1/fc) n Joί(S). This
shows that || τ/r0 — φQ II < 1/& for each k and so φ0 — ψQ. Therefore
the sequence {φn} c L* has the unique i(;*-limit point φ0. Therefore
\imn__>oo φn(f) — Φo(f) for each feL (see [6] p. 43 and replace there
m(G) by Lo). This finishes the proof of our theorem.

REMARK 2. Jol(S) coincides with the linear manifold spanned by
the left invariant means in JQl(S). Since if φeJol(S) and ψem(S)*
is any extension of φ and if v is any left invariant mean of m(S)*
then φ' = v Q ψe m(S)* is a left invariant extension of ^ e Jol(S) (see
begining of proof of the preceeding theorem). But by [6] p. 55 foot-
note 5 there are left invariant means φ[, φ'2 in m(S)* such that φ' =
aφ[ — βφ'2. If φi is the restriction of φ\ to Lo then φ = O ^ Ί — /S<̂ 2

and ψi are left invariant means of Lo*.

DEFINITION 2. If X is a topological space then A c X is called a
Z-set if A = {α; /(α?) = 0} for some fe C(X), Fx will denote the field
generated by the Z-sets and BΣ is the σ-field generated by the insets
(or the σ-field of Baire subsets of X).

LEMMA 1. Let S be a countable topological semigroup which is
left amenable as a discrete semigroup. If the set of left invariant
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elements of C(S), Jcl(S), is finite dimensional then each left invariant
mean φ0 of C(S)* can be represented by a regular countable additive
measure m0 on Bs.

Proof Let <peC(S)* be a left invariant mean. Taking in the
previous theorem Lo = C(S) we get that there is a sequence of finite
means {φn} such that l\mn_>ooφn(f) = φ(f) for each feC(S).

If a e S then let ma be the countable additive measure defined on
Bs by: ma(B) = 1 if and only if ae B. ma is regular and countably
additive and since any finite mean can be represented by a linear com-
bination of mα's we get that φn are represented by countable additive
regular measures mn on Bs. Thus for each feC(S)

φo(f) = lim \fdmn .

Applying now A. D. Alexandroff's theorem (for statement and proof
see Varadarajan [17] p. 68~69 Theorem 19) there exists a countably
additive measure m0 on F8 such that

r

<P*(f) — \fdmQ for each fe C(S) .

By a known theorem m0 can be uniquely extended to a countably
additive measure on Bs. (see [17] p. 45 Thm 18). By the second
part of [17] Thm. 18 p. 45 this m0 is even regular.

REMARK 3. Applying now the uniqueness part of Alexandroff's
theorem on the representation of linear functionals by measures, (see
Alexandroff [1] or Varadarajan [17] p. 39 Thm 5) we get that for any
Z-set Zo one has mo(Zo) = inf {φo(f);f^ 1ZQ, fe C(S)}.

THEOREM 2. Let S be a countable topological semigroup which
is left amenable as a discrete semigroup and which is a Tx and
regular topological space (for definition see [10] p.113). Then dim Jcl(S)~
n, n < oo, if and only if S contains exactly n finite left-ideal groups.

REMARK 4. (a) If φ is any invariant mean on m(S) then its
restriction to C(S) is an invariant mean of C(S)*. Thus in any case
dim Jcl(S) g 1 (if S is left amenable as a discrete semigroup),
(b) Two different left-ideal groups are disjoint (each one is a minimal
left ideal).

Proof of Theorem. S being countable is Lindelof and being also
regular is normal (see Kelley [10] p. 113) We show now that any
closed F c S i s a Z-set.
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Let S - F= {su sa, •} and let fne C(S) satisfy 0 ^ fn ^ 1 and
fn(F) = 0 while fn(sn) = 1 (Uryson's lemma).

Let f(s) = Σ - i (l/2*)/»(«). Then / e C(S) and {s; f(s) = 0} - {F}.
(This is the standard well known proof that any closed Gδ in a normal
space is a Z-set).

Let φ0 be a left invariant mean on C(S) and let m0 be the regular
countably additive measure such that

<Po(f) = l/rfwo for each / e C(S) .

If S = {t19 U9 •}, then 1 = mo(S) = Σ^i^o({U). Therefere there is
some ae S (one of the ί/s) such that mo({α}) > 0. Now for any finite
subset FaS

( 1 ) mo({sF}) = inf {φo(f); f ^ lsF} = inf {φo(/s); / ^ ls^}

^ inf {φo(^); ^ ^ 1̂ } = ^Q{F) .

And the inequality is true since / Ξ> 18F implies that fs(t) = /(si) ̂  1
for teF i.e. /, ^ 1,.

Therefore if a e S satisfies mo({a}) > 0 and s e S we have mo({sa}) ^
m o(M) > 0. This shows that Sa is a finite left ideal (since mo(S) = 1).
If A c Sα is a minimal left ideal then for b e A, Ab c A and since Aί>
is a left ideal, Aδ = A. If we denote A = {bu , & }̂, the above shows
that for each pair if j , 1 ^ i, j ^ N, there is some k, 1 ^ k g iV, such
that &A = δy. Taking JP7 = {δ̂ } in the inequality (1) we get that
mo({bj}) = ^({646^) ^ wo({64}) > 0 and interchanging i and j we get that
mo({ ĵ}) = moifii}) > 0 for each bif bj in the finite minimal left ideal A,
i.e. Wo^δJ) = mo({δ2}) = = mQ({bN}). If now δ is any element of A
then mo(bA) ^ mo(^4) = NmQ({bb^). But J i c i and therefore mo(bA) =
imo({δδj) where j is the number of differents elements in bA. Thus
j — N and bA ~ A. This shows that A is a finite minimal left ideal
which satisfies for each be A that bA= Ab = A. This shows that A
is a finite left ideal group.

If se S and e is the identity of A then sA = (se)A = A since
se G A. Thus sA = A so that any finite left-ideal group is also what
is (unnecessarily) called in [6] p. 34 a (l.i.l.c). (Also, obviously, any
finite group and (l.i.l.c) is a left-ideal group.) Now the number of finite
left-ideal groups in S is less than or equal to n (where dim Jel(S) = n)
since if Au , An, An+1 would be finite left-ideal groups and we would
define φ.e C(S) by φ^f) = [l/Λ^A*)] Σ*e^/(s) where N(A^) is the num-
ber of elements of A* then as easily checked φt is a left invariant mean
on C(S) (since sAi — A* for each seS). But φu , ̂ w + 1 e C(S)* are
linearly independent. In fact if Σ i + 1 ^i^i — 0 and if we define fl on
U? + 1 Ad by //(β) = 1 for s e A{ and //(β) = 0 if s e A5 for jΦi then
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we can, by Tietze's extension theorem find an extension fteC(S) of
f . For this /< we have 0 = Σ aύψAfi) — aiψi(fi) = <%i which shows
that a{ — 0 so that dim Jcl{G) ^n + 1, which contradicts our assumption.
Thus there are at most n finite left-ideal groups in S.* If m ( l ^ m^ri)
is the number of the finite left-ideal groups in S then we get by [6]
p. 34 Thm. 3.1 and p. 36 Remark 3.2 and [6] p. 55 footnote 5
that dim Jl(S) — m where Jl(S) is the set of left invariant elements
of m(S)*. But any φe Jcl(S)aC(S)* has an extention φ' e Jl(S)am(S)*
(see beginning of proof to Thm (II.1)). Thus if φl9 , φn are n linearly
independent elements of Jcl(S) and {φ[, , φ'n} c Jl(S) c m(S)* are ex-
tensions of φlf * φn respectively then <pr

u •••, φr

n are also linearly in-
dependent in m(S)*. Since if Σ ί <*i<pl = 0 then for each / e C(S) c m(S)
we would have Σ * #*?>*(/) = 0 which would imply that ax=a2= an=0.
Therefore {φ[, , <p'n} c Jl(S) are linearly independent which shows that
m ^ n and S contains exactly n finite left-ideal groups.

REMARK 5. We also proved at the end of this theorem that
•dim Jcl(S) = n implies dim Jl(S) — n where S is countable and left
amenable as a discrete semigroup. That this does not hold true for
noncountable S is shown by the following example: Let G be an
abelian compact Hausdorff topological group which is not finite. Then
by Theorem B of [6] p. 32 we get that dim Jl(G)= ^ while dim Jel(G) = l
(The Haar measure is unique). In other words the restriction of the
infinite dimensional space Jl(G)(zm(G)* to C(G) forms an one dimen-
sional subspace of C(G)* which coincides with Jcl(G). The end of the
proof of our preceeding theorem shows that this cannot happen if G
is countable.

COROLLARY 1. Let S be a countable T1 regular topological semi-
group which is left amenable as a discrete semigroup. If S has left
cancellation then dim Jcl(G) — n (n < oo) if and only if S is finite
and is the union of n finite disjoint left-ideal groups, dim Jel(G) = 1
if and only if then G is a finite group.

Proof. At the end of the last theorem it was in fact shown that
n — dim Jcl(S) — dim Jl(S) where Jl(S) is the set of left invariant

* We could also proceed as follows: Let m, 1 ̂  m < °°, be the number of finite
left ideal groups of S and let A be a compact left ideal group of S. Then A is a
countable group and has a compact hausdorίf topology in which multiplication is
separately continuous. Hence by the theorem of Ellis (see Ellis [21] or Glicksberg-
Deleeuw [19] p.p. 64-65 and p.p. 94-96) A is a compact topological group which is
countable. Hence A has to be finite (since if m is its normalised Haar measure
then m{α}>0 for some a in A, hence m(A) — oo, if A is infinite, which cannot be.).
Therefore S contains, in our case exactly m compact left ideal groups. By Theorem
ΊV-1 of the present paper dim JO1(S) = m which finishes the proof.
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elements of m(S)*. Applying Thm E of [6] p. 49 and remembering
footnote 5 on p. 55 of [6] we get this corollary.

REMARK 6. If G is a discrete amenable group and G' c G a sub-
group then there exists a linear positive isometry from Jl{Gf) into
Jl(G) (see Day [4] p. 534). Therefore, the assumption that dim Jl(G) = n
implies that dim Jl(G') ^ n. If G is a topological group and G ' c G a
subgroup then there does not generally exist a linear isometry from
Jcl(Gf) to Jcl(G). In fact let G be a compact abelian hausdorff topo-
logical group. Then dim Jcl(G) — 1. If now G'cG is any countable
(not finite) subgroup then Gf being abelian, is amenable as a discrete
group and satisfies all the assumptions of our previous corollary. There-
fore dim Jcl{Gr) — co, which shows that there cannot exist an isometry
from Jcl{Gf) into Jcl(G). This theorem of Day was the main tool to
pass from the countable case to the uncountable case when dealing
with discrete groups (see [6] p. 46 proof of Cor (5.3)). The above
example shows that this important tool is not more available when
dealing with topological groups.

Ill* The invariant mean on separable topological groups

The main theorem of this chapter is Theorem 1. We have to
restrict ourselves to topological groups rather than topological semi-
groups since our method works only for left uniformly continuous
functions and on semigroups there may not be any uniformity at all
which is consistent with the algebraic structure.

DEFINITION 1. Let G be a topological group and ί / c G a neighbor-
hood of the identity. We say that U totally covers G if G c U<U Uat:
for some finite subset {al9 , ak) c G. (We should have said that U
left totally covers G but we drop the "left" since we do not deal at
all with the "right" case.)

We say that the topological group G has property (B) if it has
a neighborhood of the identity U such that none of its powers totally
covers G (or in other words for each n and each finite subset
K . ., ak} c G, G - Uf=i U*at Φ 0.)

REMARK 1.

(a) A noncompact locally compact group has property B since if
U is a compact neighborhood of the identity then Un is compact for
each n and so JJJU Una,i is compact and therefore does not cover the
whole of G.

(b) Any subgroup G Φ {0} of a hausdorff locally convex linear
topological space E has property B. Since if 0 Φ a e G and / is a
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linear continuous functional on E such that f(a) Φ 0 then let U —
{yeG;\f(y)\<l}. Then the nth power of U is defined by Un =
U + + U (n times). Thus if y e Un then y = uλ + + un with
Ui e U and | f(y) | ^ n. Therefore y e \Jk

ί=1 Un + gi implies that

1/(1/) I ̂  max \f(Qi)\ + n = K.

But there is a positive integer j which satisfies | f(ja) | = j . \ f(a) \ > K.
Since ja e G this implies that G is not included in \J (gi + Un) so that
G has property (B).

(C) Any topological metric group G which admits a right invariant
non bounded metric (i.e. its topology can be given by a right invariant
metric d such that for any K>0 there are a,beG satisfying d(a,b)>K),
has property B. It should be pointed out that any metric topological
group admits as known (see G. Birkhof [2] or Kakutani [9]) a right
invariant metric. Therefore the real requirement is that the metric
should be unbounded. (If G is totally bounded and metric then any
admissible invariant metric is bounded).

Assume that G admits a right invariant unbounded metric d. If
e is the identity element of G then let U = {g; d(e, g) < 1}. Then for
ue Un d(e, u) ^ n. This is true for n — 1. Assume that it holds for
n — 1. If u e Un then u — u±u2 un with u{ e U. Then

d(uτu2 - un9 e) <: d{uλu2 un, u2 un) + d(u2 un, e)

^ d(uu e) + n — 1 ^ n

since c? is right invariant. If G c (J;=i £ ^ α ; then any g e G satisfies
g e Unai for some 1 ^ i ^ k and so g = va{ with v e Un. Thus

d(e, g) ^ d(e, α j + d(aif va{) ^ K + d(e, v) ^ K + w = Kλ

where K — max {d(e, α{), 1 ^ i ^ A;}. But the metric d is unbounded
and therefore there are α, 6 e G such that eZ(e, ba~x) — d{a, b) > Kx which
is a contradiction. (As we see here it is enough that d(x, y) should be
a continuous unbounded right invariant pseudometric on G and it is
not necessary that d, generates the topology of Gf

The following lemma is needed in what follows:

LEMMA 1. Let Gbe a separable hausdorff topological group having
property (B) and let {pj}T be dense in G. Then for any open sym-

4 The following example of a group with property (B) seems to have some in-

terest. Consider the space Lp(0,1), for 0 < p < 1, with the metric | x(t) — y(t) \pdt.

ί l J 0 j-i

I x(t) Ipdt is uniformly continuous and F(nx) = np \0\ x(t) \pdt -> «>
if n -> <*> and x φ 0. As known there is no nonzero continuous linear functional (or
even character) on Lp{0,1), for 0 < p < 1, and hence it is not even a locally convex
linear topological space (see M. M. Day Bull. Amer. Math. Soc. 46 (194o), 816-823).
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metric neighborhood of the identity U none of whose powers totally
cover G there exist a left uniformly continuous nonnegative function
F on G such that

4

{g; 0 ̂  F(g) ^ k} = i^tfO, k]) c U U™+*> for k = 1, 2, 3, . .
3=1 3

Proof Let {pn} be a countable dense subset of G. We define an
increasing sequence of open subsets of G in the following way:

As well known Ax = Π VAX where V ranges over all the neighborhoods
of e and therefore A1a U2plm Let

A2 = U(A1 U

We get immediately that UpΛ U Up2 c 4̂2 and UA1 c 4̂2 and

c ^ ( t ^ ^ U t/p.) c ^ 4 p! U f/3p2 c C/4^ U

Assume now that Au A2, , An have been chosen such that

Up1 U ?7p2 U Upά a Aά c A, c t / 2 ^ U ί72ip2 U U2''pά

and ί/A -̂i c A,- for each j Sn — 1 then we chose

An = tΓ(Λ^ U I7pn) .

We have that (E/pi U t/pa U E/ί>») c (i4.nβl U C/pJ c AΛ and that

, c 4 c l β c l/^A^ U Upn)

c i72[t/2(w-1)p1 u U ̂ 2(w~1)P.-i U l/2^"1^,]

c i72wp1 U U U2npn .

In short our sequence of open substs An satisfies the following

(III. 1) \JAn = G

(\jT=iUpiCi\Jn=1An and G = \jT=iUpi since otherwise there would be
some aeG such that α ί ZTp̂  for each i i.e., ̂ S C/α for each i (U is
open symetric) which cannot be since {pj is dense in G.)

(III. 2) UAu<zAu+1<z\JU*™Pi.

We can also assume that An — Aw_! Φ 0 for each n (Where for A, BaG,
A — B are the elements of A which are not in B). (Since otherwise we
would choose Anχ — Au n2 to be the first n > nx for which An — Anχ — 0
and if nk_Ύ was already chosen then let nk be the first n > nk_λ for
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which An — Anjc_1 Φ 0 . There is such a nk since Uk does not totally
cover G for any k. Obviously the sequence Ak = A%k would satisfy
(III. 1) (III. 2) in addition to Af

k - A U Φ 0 )
It is proved in A. Weil [18] p. 13 that if E is a uniform space

and V a neighborhood of the diagonal in E x E and if p0 e E then
there exists a uniformly continuous function f;E—> [0,1] such that
f(p) = 0 and f(q) = 1 f or q e E - V'(p). (where V'(p) = {qeE; (p, q) e V'}
and for AaE, Vά(A) — \JPeA V*(p)). But moreover, if we chose a fixed
sequence of symmetric neighborhoods of the diagonal (i.e., elements of
the uniformity) in E x E say VI which satisfy V^+1Vi+1(zVl (for
notation see [18] A. Weil) for n = 0, 1, 2 and 7 o ' c F ' then the
function f:E—> [0,1] can even be chosen to satisfy the condition
I /(?) ~ f(r) I < 1/2""1 whenever (p, q) e VL (see [18] p. 14). We notice
also that the sequence Vή is not dependent upon p. But the same
proof yields actually more: If V is a neighborhood of the diagonal
(a member of the uniformity) and the sequence VI is chosen as above
and if P is any subset of E then there exists a uniformly continuous
f : E - > [ 0 , 1] s u c h t h a t f{p) = 0 i f pe P a n d f ( q ) = 1 it q e E - V'{P).
Returning now to our group we consider its left uniformity i.e. the uni-
formity whose elements are all the sets of the form V — {(p, q); q e Vp}
where p, qeG and V ranges over all the neighborhoods of e. Let
Vn, n — 0, 1, 2 be a fixed sequence of symmetric neighborhoods of
e in G such that Vo = U and Vn+1Vn+1c:Vn for each n. Then VI =
{(p> Q)) Q G Vnjp) (zG x G are symmetric elements of the uniformity
which satisfy Vl+1Vl+1c:Vή (since for e a c h j ? e G (Fw'+i^»+i)(p) =
V»+i(K+i3>) c F%p = FΛp)). Therefore since F0'(Λ) = V0Ak = C/A,c A4+1

there exists a left uniformly continuous function fk:G—>[0,1] such
that /Λ(AΛ) = 0 and fk(G - UAk) - 1 which implies that fk(G - Ak+1) = 1.
Moreover if (p, q)e VL i.e. if qe Vmp then \fk(p) - fk(q) \ < 1/2*-1 for
each k.

Consider now the sequence of functions

h(g) = fk(g) + k - 1 for fc = 1, 2, 3,

We have:

and also

(III. 3)

(0 on Aτ
l ( f l r ) = ( l on G -

(1 on A2

[2 on G —

ik — 1 on

( k on

K{p) — hk(q) 1 = | fk(p) -

AJ

A3

Ah

G- A

- MQ)
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q e VmP uniformly in k. (Our sequence of symmetric neighborhoods
Vm is the same for all Ak).

Define now the required function F on G as follows:

(III. 4) F(g) =

hλ{g) for geA2

h2(g) for g e A3 — A2

hk(g) for g e Ak+1 - Ak if k ^ 2 .

Since Ak c Ak+1 and \Jn=1 Ak — G, F is a well defined and real valued
function on G which satisfies that {g: 0 ^ .F(#) g k} c Afc+2, since if
g ί Afc+2 then s f G i w - A ^ for some w > k + 2 and so

F{g) = K(g) ^ n - l ^ k + 1 .

Therefore by (III. 2) F-\[Ok]) c (J"i 2 Ui{k+2)pt. We also notice that
.F(#) is not bounded since Ak — Afc_3 ^ 0 and for ge Ak — Ak_lf F(g) =
fcfc(g) ̂  & — 1. We prove now that ί7 is left uniformly continuous:

If ε > 0 is given then there exists an m such that 2~m+2 < ε. We
shall show that for any p,qeG such that qe Vmp, | F(p) — F(q) \ < ε.
Assume therefore that q e Vmp. If p and q are both in Ak+1 — Ak for
some k ^ 2 or are both in A2 we can immediately conclude from (III. 3),
(III. 4) that: | F(p) - F(q) | - | hk(p) - hk{q) | < 1/2—1 < ε where k = 1
if p and q are both in A2.

If the above is not the case then let ϊ be the first index for which
pe A{ and j be the first index for which qe Aj. Assume that i < j .
Since q e Vmp aUpa UAi c Ai+1 (see (III. 2)) we have that j = i + 1
and q e Ai+Ί (we can assume that i ^ 2 since if i = 1 then p, q e A2

and we alredy dealt with this case). Thus p e A{ — A{_λ and

q6 Ai+1 - Ai c G - Ai and qe Vmp .

Therefore:

= hi(q) — (i — 1) + (i — 1) — h^q)
= hi(q) — hi(p) + hi^q) — h^^p)

since:

(i — 2 on Ai_i

[̂  - 1 on G - A,

and

(i — 1 on A{

I i on G — A. +1 .

Therefore, remembering that qe Vmp and applying (III. 4), we get:

F(q) - F{p) I ̂  I hi(q) - h^p) \ + | h^q) - h{

^ 1/21-1 + 1/21*"1 < ε .
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If j < i then, remembering that qe Vmp if and only if pe Vmq (Vm is
symmetric), and interchanging p and q we get that | F(p) — F(q) | < ε
for this case also.

COROLLARY. A topological group G has property B if and only
if there exists a left uniformly continuous real valued unbounded
function on G5.

Proof. If G has property B then the function F(g) of the pre-
ceeding lemma is unbounded and left uniformly continuous.

Conversely if F(g) is an unbounded left uniformly continuous
function on G there is a neighborhood of the identity u such that
I F(a) - F(b) I < 1 if b e Ua for any a9beG. We show now that if
b e Una then | F(a) — F(b) | ^ n. Assume that this is true for n. If
be Unflα then be U(Una) and so there is some ce Una such that be Uc.
Therefore | F(b) - F(c) | < 1 and so

i F ( b ) - F ( a ) I ^ I F ( b ) - F ( c ) | + | F ( c ) - F ( a ) \ ύ l + n .

Assume now now that G = U U Una{ where ai e G. If now g e G then
g G Όnai for some 1 ^ i ^ k and so | F{g) — F(a{) \ S n which implies
that

F(g) I ^ n + max

This contradicts the assumption that F(g) is not bounded.

DEFINITION 2. We denote by LUC{G)(zC{G) the norm closed sub-
space of C(G) of left uniformly continuous functions on G, i.e. fe C(G)
is in LUC(G) if and only if for each ε > 0 there is a neighborhood
of the identity, V in G such that | f(vg) — f(g) | < ε for each ve V
and g eG.

5 This corollary is an immediate consequence of a theorem of M. Atsuji (see
Canad. J. Math. 13 (1961), p. 661) who proved that it holds true for any uniform
space. Thanks are due to K. Ross and W. Comfort for communicating it to me.
The above corollary (which is not used in what follows) gives in fact a character-
ization of what may be called "uniformly pseudocompact groups" i.e. groups for
which every uniformly continuous real function is bounded. It states: Each left
uniformly continuous real function on the topological group G is bounded if and
only if each neighborhood of the identity has some power which totally covers G
(see def. 1 of this ch.). The following example of an abelian metric group for
which every uniformly continuous real function is bounded but the group is not
totally bounded (i.e. its completion is not compact) has been given by W. W. Com-
fort and K. A. Ross in [23]. Let G = Γκ° (where T is the circle group) and define
for x = {xn}, y = {Vn} in G, x-y = {xnyn}. The m e t r i c d is defined by d(x, y) =

sup {| xn — yn I; n = 1, 2, •}. These remarks and the above corollary are given here
only for the general information of the reader and are not used later on. The
lemma preceeding the above corollary is though, used heavily in what follows.
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JJ(G) will denote the space of left invariant element of LUC{G)*.
Since LUC{G) will play the role of Lo of Theorem II-l, define l°af=fa

for a in S and / in LUC(G). Also ^ ° = (ία°)*

THEOREM 1. Seέ G be a separable hausdorff topological group
which is amenable as discrete group and satisfies property (B). Then
Jul(G) is infinite dimensional. As an immediate consequence Jcl(G)
is infinite dimensional.

Proof. We remark first that LUC(G) is a left invariant subspace
of m(G) containing the constant functions, since if feLUC(G) and
aeG then let U be a neighborhood of the identity e of G such that
I f(ug) — f(g) I < ε f or each u in U and g in G. Then | f(uag) — f(ag) | < ε
for u in U and # in G. If V is a neighborhood of e such that aVaUa
then

I (U)(vg) - (laf)(g) I = \f(avg) - f(ag) \ < ε

for each v in V and # in G which shows that lafeLUC(G).
G is amenable as a discrete group and therefore there exists a left

invariant mean μ on m(G). The restriction of μ to LUC(G) is a left
invariant mean. Therefore in any case dim Jul(G) ^ 1. Assume now
that dim Jul(G) — n where 0 < n < oo. We shall show that in this case
G has not property (B). Let {pn} be a countable dense subset of G
and let φ e LUC(G)* satisfy || φ \\ = 1 and &p\φ = ?> for w = 1, 2, .
Let αeG, then for feLUC(G), φ{l%J) = 9/and so:

But for any ε > 0 there is a neighborhood V of e such that
|/0>fj) — fid) \< e tor g in G and v e F, i.e. surely |/(vαflf) — /(α#) | < ε
whenever veV. Thus for any be Va we have that || (l°b — l°a)f\\ < ε.
Since pn is dense in G there is some pά in Vα. For this pά we can write
I (jStfφ -ψ)f\S\ φ(l°a - l%)(f) I S II (i.° - ΪJJ/H < e. This shows that
φ e JJ(G) or that {φ e LUC(G)*; £fg°φ = φ for g e G} = {9 e LUC(G)*;
Sfplφ = φ, w = 1, 2, •} Denoting Lo = LUC(G) we can apply Theorem
II-l to get that for any left invariant mean φ of LUC{G)* there exists
a sequence of finite means {φn} such that limw_>oo 9>Λ(/) = 9>(/) f° r e a c ^
feLUC(G). We choose φ as a £wo sided invariant mean on m(G).
(see [4] p. 529) This φ will be fixed till the end of the proof. Then
the restriction of this φ (which we again denote by this same φ) to
LUC(G) will be at least a left invariant mean on LUC(G). Therefore

= \xmn_>ooφn{f) for each feLUC(G) where φn is a sequence of
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finite means of LUC(G)*\ Let U be a neighborhood of e such that
none of its powers totally covers G. We may assume that U is sym-
metric (since any neighborhood of e included in U also has this pro-
perty). If i c G w e shall write φ(A) instead of φ(lΛ) (we remember
that φ(f) is defined for any / in m(G)). We shall show at first that
φ(Un) > 0 for some integer n > 0. This will immediately yield that
U2n totally covers G, which is the desired contradiction.

Define the following bounded uniformly continuous functions on
the real line:

1 - 2

0
- [ n ~ τ if n — 1 ^ x ^ n

otherwise
and

1- 2\x - n\ if n — — ^ x < ^ + —

otherwise .

Since the functions f^x), f5{χ) (or g^x), gs(χ)) have disjoint carriers
iίiΦJ the two functions /(x) = ΣΓ/»(aO and ff(s) - ΣZ9M are well
defined, their graph is plotted:

n-i

This does not imply that φ can be represented by a countably additive measure
on the Baire field of G. Consider in fact the following example: Let G be the
additive group of rationals with the metric | r2 - n | and let a be an irrational
number. Let rn be a sequence of rationals converging to a and let <mn be the point
measure concentrated at rn. Then l i n w ^ fdmn = lim^ f(rn) = Af exists for each
uniformly continuous bounded / (and equals f(a) where /is the uniformly continuous
extension of / t o the whole real line). Assume now that Af= J fdm for some coun-
tably additive real valued measure m on BG and consider the sequence of uniformly
continuous functions defined for x in G by

fn(x) =
1 - n\x - a\ \x — α <Iif

,0 otherwise.

Then fn{x) 10 for each x £ G and | fn(x) | <g 1. Therefore Afn = f /wdm -> 0 by Lebesgue's
bounded convergence theorem. But Afn = lim^o/w(r fc) = 1 for each n, which cannot
be.

If though, G would be a locally compact group then the above relation φ(f) =
lim^oo ?>„(/) would imply that φ can be represented by a countably additive measure
on BG. (see Dieudonne: Sur le produit de composition Compositio Math. 1954 p. 28).
In this particular case the proof of our theorem could be simplified.
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where f(x) is represented by the solid line while g(x) by the interrupted
line. If {an} is any bounded sequence of reals then it may easily be
proved that both Σ anfn(x) and Σ an9n(χ) are bounded uniformly con-
tinuous functions on the real line. Therefore if F(g) is the left uni-
formly continuous real valued function on the group G which satisfies.

F~\[Ok]) c Uί ί ϊ U2{k+2)

Pj (see Lemma III-l) then surely Σ anfu(F(g))
and Σ angn(F(g)) will both be bounded left uniformly continuous func-
tions on G. But since Σ i fΛχ) + Σ i Qn(χ) ^ d ^ 0 for some d > 0, for
each x ^ 0 we have that Σ fn(F(g)) + Σ 9n(F(g)) ^ d ^ 0 f or each 0
of G. Therefore φ[Σfn{F{g)) + %gu(F(g))] > 0 and so either

φ[ΣfΛF(g))]>0 or φ[Σ9«(F(g))] > 0 .

Assume therefore that <p[Σ fΛF(g))] > 0 (for the other case the
proof is similar) and define the following linear positive functionals
on the Banach space m of all the bounded real sequences {ak} (with
the sup norm):

and

where φn is the sequence of finite means of LUC(G)* which satisfies
linv_> φn(f) = φ(f) for each / in LUC(G). But for any feLUC(G).

φΛf) = Σ»=i a i f (9i) where ^ ^ O Σ ^ = 1 (and j , {# J and g{eG

depend on φn.) Therefore as is easily seen

Σ f f-\ i

where {1} e m is the sequence whose constant value is 1 and {lk} e m
is the sequence which is identically zero except at the place k where
it is 1. This shows that φ'n e Q[k] c m* where lτ is the Banach space
of all the absolute convergent real sequences {6J with norm Σ I δ< |
and Q: l1—•* if* = m* is the natural maping from the Banach space lx

into its second adjoint, (see Day [5] pp. 29-30). But lx is weakly
sequentially complete ([5] p. 33 Cor. 3) and therefore Qih] is w*-
sequentially complete in m*. (for notation see Day [5] p. 17). There-
fore we have the following situation: If n —• co then

<Pn{ak] = φ i Σ akfk(F(g)] -> φ[Z akfk(F(g))] = φ'{ak} .

Thus φ' e lλ which immediately implies that φ'{l) — Σ?=i 9>'{1*}
by definition φ'{lk) = φ[fk(F(g))]. Thus



ON THE INVARIANT MEAN ON TOPOLOGICAL SEMIGROUPS 127

0 < φ[Σ fu(F(g))] = φ'{l) = Σ <p'{U) = Σ φfu(F(g))

and since fk(F(g)) ^ 0 for each g in G and φ i> 0 we have that foi

at least one & > 0, ̂ [ΛO^to))] = c > 0. Now

{ί; Λ(t) > 0} c [k - 1, fc] c [0, fc]

and so

to; fu(F(g)) > 0} c {̂  2P(ff) e [0, &]} = F^O, k] c U p y
3=1

But we can easily find (as in elementary integration theory) a function
of the form h(g) — Σ ί ̂ ;1^(#) e m(G) such that at ^ 0 α, = 0, Alf , ^Lz_!
form a partition of {g; fk(F(g)) > 0} and Aι = G - {βf; fk(F(g)) > 0} and
0 ^ fk(F(g)) — fe(flf) < c/3. If we remember now that >̂ is defined on
all of m(G) (and we have used till now only Its restriction to L UC{G))
we can write

c = φ[fk(F(g))]

c/3 + φ[h(g)] .

Therefore (̂Λ,) > 0 which implies immediately that φ{A,) > 0 for some
l ^ i ^ l - 1 . Since A« c U*l? Um+1)

Pj we get that ^(Z72(A+2)pi) > 0
for some j" and using the fact that φ is also a ri^/^ί invariant mean
we get that φ(U2{lc+2)) > 0 (Remember that φ(A) = cp(lj = <p(li) = <p(l^-i)
for any ^ e G and A c G).

Let now V=U2{lc+2). We shall prove that V2 = C/4("+2) totally
covers G, which will contradict the assumption that no power of U
totally covers G. U is symmetric and therefore so is V and <p(V) > 0.
Assume that V2 does not totally cover G. Then we chose an infinite
sequence of elements {αj c G this way: aλ — e. Since G Φ V2^ let
α2 g F 2 ^ . Thus Va2 f) Va± = 0 (since V""1 = F ) . If au , αn_1 have
teen chosen such that Va{ Π Vaβ — 0 if i Φ j and l ^ ί , i ^ ^ — 1
then since G ̂  U Γ 1 V2aζ there is some element an £ IJΐ1 V2ait Thus
an $ V2a{ for each 1 ̂  ΐ ^ n — 1 and so Fα% Π 7 ^ = 0 for 1 ̂  i ^ w — 1.
Therefore for any n > 0

1 = <p(0) ^ ^ ( F α J + φ(Va2) + - + φ(Van) = nφ(V) .

This shows that φ(V) = 0 which is a contradiction and so V2 = f/4(&+2)

totally covers G. This proves that Jul{G) is infinite dimensional. As
an immediate consequence one gets that Jcl(G) is infinite dimensional as
follows: G is amenable and so surely dim/<i(G) Ξ> 1 and dim JJ(G) ^ 1.
Assume now that dim Jel(G) — n,n < oo. We show that this implies
that dim Jul(G) g n, which cannot be.

If ψeJul{G) then it has a left invariant extension ψ" e m(G)* (see
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Remark Π-2). The restriction ψf of this f", to C(G) is left invariant
and so any ψe Jul(G) has an extension ψ'e Jcl(G). If dim Jcl(G) = n,
n < oo, and {ψlf , ψn+1} c Jul(G) would be linearly independent then
let {ψ[, , ψ'n+1} c Jcl(G) be respective extensions. Then Σ ? + 1 aiΨi = °
for some reals ai would surely imply that Σ ί + 1 aiψi(f) — 0 for any /
in LUC(G) and so at = 0 for 1 ^ i ^ n + 1. Therefore dim JJ(G) ^ n
which cannot be.*

THEOREM 2. Let G be a separable locally compact hausdorff topo-
logical group which is amenable as a discrete group. Let Jcl(G)(zC{G)*
be the space of left invariant elements of C(G)*, Jul(G) c LUC(G)* be
the space of left invariant elements of LUC(G)*. Then

(1) Either dim Jcl(G) = 1 or dim Jcl(G) = oo and furthermore
dim Jcl(G) — 1 if and only if G is compact.

(2) Either dim JJ(G) — 1 or dim JJ(G) — oo cmcZ furthermore
dim Jul{G) = 1 if and only if G is compact.

REMARK 2. (a) The reader should remember that at least any
abelian or solvable, or locally finite group is amenable as a discrete
group, (see Day [4] pp. 516-518 for these and more examples)

(b) This theorem is not known even for the real line R. It asserts
that C(i2)* ahd LUC(R)* both have an infinite dimensional subspace of
invariant elements.

Proof of theorem. G is amenable and so the restriction of any
left invariant mean to C(G) or LUC(G) is a left invariant mean of
C(G) or LUC(G). Thus dim Jcl{G) ^ 1 and dim JJ(G) ^ 1 in any case.

If G is compact then LUC(G) = C(G) as well known (see A. Weil
[18]) and there is a unique left invariant mean on C(G) (which is
represented by the normalized Haar measure on G). Thus by the
Remark Π-2 we get that dim JJ(G) = dim Jcl(G) = 1.

Assume now that dim Jul(G) = n, n < oo. Then G is compact
(since otherwise it would be noncompact locally compact and therefore
would satisfy property B and by the previous theorem would satisfy
dim JJ(G) = oo) Therefore n = 1. Thus dim JJ(G) can be either 1
or oo and dim JJ(G) = 1 if and only if G is compact. Using in the
same way the previous theorem one immediately gets the remaining
part of this theorem. Remembering that any nonzero subgroup of the

* In fact if A is any left invariant subspace of m(G) containing LUC{G) and
the space of left invariant elements of A*, then as above, dim JU1(G) ̂

dim JA1(G) which shows that Theorem III-l holds true C{G) is replaced by A. All
the following theorems involving C(G) could be shown to hold true when C{G) is
replaced by A. We could take as A, for instance, the space of all bounded Baire
measurable functions on G.
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additive group of a hausdorff locally convex linear topological space
has property (B) (see, Remark IΠ-1 (b)) and using in the same way
Theorem IΠ-1 one immediately obtains.

THEOREM 3. Let G be any separable subgroup of the additive
group of a hausdorff locally convex linear topological space. Then

(1) Either dim JJ(G) = 1 or dim Jul(G) — oo and furthermore
dim JJ(G) = 1 if and only if G — {0}.

(2) Either dim Jcl(G) = 1 or dim Jcl(G) = oo and furthermore
dim Jcl(G) — 1 if and only if G — {0}.

EXAMPLE 1. From the above theorems it follows that for separable
locally compact groups (which are amenable as discrete groups) and
for separable subgroups of a hausdorff locally convex linear topological
space dim Jcl{G) = dim JJ(G) invariably holds. We give now on ex-
ample of an abelin countable hausdorff topological group which satisfies
dim JJ(G) = 1 while dim Jcl(G) = oo . Let Gf be a compact abelian
separable metric group which is not finite and let d(x, y) be an ad-
missible invariant metric on G'. Then feLUC(Gf) if and only if /
is uniformly continuous on Gf as a metric space with the metric d.
Let {̂ 2̂, •*•} be a countable dense subset of Gr and let G be the
group generated by {g1g2y * •}• Then G is a countable Hausdorff abelian
topological group and therefore G is 2\ and regular (even completely
regular see [18] p. 13). Therefore G is amenable as a discrete group
and hence we can apply Corollary Π-2 to get that dim Jcl(G) = oo.

Consider now LUC(G). Any / in LUC(G) has a unique uniformly
continuous extension / ' e C(Gr) such that s u p ^ \f(g) \ = supff6Gί, \f'(g) |.
But any / ' € C(G') is uniformly continuous on the (compact) metric
space (Gf, d) and therefore its restriction to G is uniformly continuous
on (G, d). Thus T: C(Gr) — LUC(G) defined by (Tf)(g) = f(g) for g in G
is a positive linear isometry onto LUC(G). Therefore T*: LUC(G)* —+
C(Gf)* is an isometry. Since dim Jel{G' — 1 it will be enough to show
that T*φeJcl(G') for any φeJJ(G).

Let Va: C(G')-+C(G') be defined by l'af=fa for αe S and l°a:LUC(G)->
LUC(G) be defined by l ° β / = / β for aeS. If 0 , α e G c G ' then

WJ){g) = (Γaf)(g) = f(ag) = H(Tf)(g) .

Thus T(l'af) = Γa(Tf) if aeG. Let now φeJJ(G) and aeG then for
fe C{G') (T*φ)(l'af) = φ{Tl'J) = φillTf) - φ{Tf) - T*φ{f).

If a £ G but aeGf then there is a sequence {an} c G such that
d(ana) —* 0. Since d is an invariant metric we have that d(ang, ag) =
d(ana) —> 0 for any g in G. But any / 6 G(G') is uniformly continuous,
which means that for ε > 0 there is a δ > 0 such that if d(x, y) < δ
then I f(x) — f(y) \ < ε. If therefore %0 is such that n ^ n0 implies
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d(ana) < d then | (Va% - K)f(g) | = | f(ang) - f(ag) \ < ε. This shows that
II (l'an — lr

a)f\\ ^ 0 if w—• °° T h u s

(T*φ)(Vaf) = lim(T*φ)(l'anf) = (T*φ)f

since an e G. Therefore T*φ e Jcl(G'). As one can easily see the con-
dition that G' is metric is not essential and may easily be dropped.
Also instead of Gr being abelian we may require that G' is amenable
as a discrete group and therefore we get:

COROLLARY 1. If Gx is a compact hausdorff topological group
which is amenable as a discrete group and GaGx is any countable
(not finite) subgroup then dim Jul{G) — 1 while dim Jcl(G) — <*>.

We may remark that we take G' of the preceeding example to be
the closure of G in Gλ and we remember that Gf as a subgroup of an
amenable group is also amenable as a discrete group, (see Day [4] p.
516 (D)).

Applications: The Banach Algebra LUC(G)*. Let G be a topo-
logical group and define in LUC(G)* (where LUC(G)(zC(G) are the
left uniformly continuous functions with the sup. norm) the following
multiplication: If φ, ψ eLUC{G)* then for f e LUC{G) [φ 0 ψ](f) =
φ(y) where y(h) = ψ(l°hf) for heG. (And l°a: LUC(G) -> LUC(G) is
defined by Hf=fa for aeG). The function y belongs to LUC(G).
In fact \y(h)\ ^ \\ψ || \\l\f\\ S\\f\\ \\f\\ and so y is bounded, but more-
over, y(h) is left uniformly continuous. This is true since for any ε > 0
there is a neighborhood of the identity V such that | f(vg) — f(g) \ < ε
for each g in G and v in V. In other words || Pυf— f\\ < ε for each
v in V. Thus

I j/(iΛ) - y(h) I = I Λ / - ψllf\ = I f (ZJ*/- II f) [

for each h in (?. Therefore this multiplication is at least well defined.
But moreover, it renders LUC(G)* a Banach algebra as easily shown
and known. In fact if φ,ψeLUC(G)* and feLUC(G) then

I (φ Θ Ψ)(/) I = I φh{fllf) I ̂  || p || || tlS/ll

( w h e r e 9?Λ m e a n s ψ w i t h r e s p e c t t o t h e var iab le heG a n d H ^ i J / l l =

sup Λ e * I ψllf\). But I fl\f\ ^ || t II II β/ll ^ 11/11 II f II. The associative
law is also easily proved. In fact if λ, μ, v e LUC{G)* and fe LUC(G)
then [λ 0 (μ 0 *)](/) = λβ[(/£ 0 v)Zα

0/] = λα[^[^(ί°α/)]]. But

[(λ 0 μ) 0 y ]/= (λ 0 μ)δ[i^/] = (λ 0 JEIKV)
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where y(g) = vl°gf for each g e G. But (Vay){g) = y(ag) = v(Vagf) = v{l%f).
Therefore (λ 0 μ)y = Xa[μl°ay] = K\μb«l°af)] which implies that 0 is
associative. The distributive laws are also easily proved. The follow-
ing should be noted here: In C(G)* we cannot define the same multi-
plication as above since if φ, ψe C(G)*, fe C(G) and G is not compact
then y(h) = ψ(fh) is not generally a continuous function of h. In fact
the following nice result has been established by Chivukula R. Rao,
for groups G with an invariant metric: If feC(G) satisfies for each
O/ΓG C(G)* that ψfg — y(g)e C(G) then / is uniformly continuous (see
C. R. Rao [13] p. 17 thm 2). As an immediate consequence of our
work combined with a result proved in Rudin [15], one gets the fol-
lowing results: (Denote by R(G) the radical of the algebra LUC{G)*.)

THEOREM 4. Let G be a separable abelian locally compact haus-
dorff topological group. Then either R(G) = {0} or R(G) is infinite
dimensional. Moreover; R(G) — {0} (i.e. LUC{G)* is semisimple) if
and only if G is compact.

We need the following lemma whose proof is essentially known
(see Civin-Yood [3], p. 849)

LEMMA. Let G be a topological group and JJ(G) c LUC(G)* be
the space of left invariant elements and let

J1 = {φeJJ(G);φ(lΘ) = 0}.

Then Jλ is a two sided ideal and J? — {0}.

Proof. If μ,veJτ and feLUC(G) then y(h) = vl°hf= v(f) for
each heG i.e., y(h) = v(f) la. Therefore μ 0 v(f) = μ{v{f)ΛQ) =
v(f)μ(lG) = 0. This shows that Jl = {0}. Let now φeLUC(G)*,
veJJ(G) and feLUC(G). Then y(h) - v(f)lo(h). Thus φ 0 v{f) =
φ{y) — ΦiW'Vif)- In other words

(III. 5) φ Q v ~ c v where c — φ(lG) is a constant .

If v 6 J, c JJ(G) then (φ 0 ψ)lG =• c-v(lQ) = 0 and so φ 0 f e Jλ. There-
fore Jx is a left ideal. Moreover if a e G then

» 0 φ(Hf) = Mφ(l0Λf)) = Mφllkf).

But if we define now y(h) = φ{Hf) then (Γay)(h) = y(ah) = φ(llhf).
Therefore vh(φl°ahf) = v(l°ay) = v(y) = v(φΓhf) = v 0 φ(f) which proves
that v 0 <p is left invariant. But since l°hlG = 1G and φ(ίU^) = φ(ίo) = c,
we immediately get that v 0 φ(la) = ^(clff) = c v(lff) = 0. Therefore
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v 0 φ e Jx which finishes the proof of this lemma.

REMARK. The above lemma implies as well known that Jλ c R(G)
for any topological group G.

Proof of Theorem 4. Denote by MJ(G) the set of left invariant
means of LUC{G)* and let φoeMul(G) be fixed. Then obviously

MJ(G) - φ o = {φ-φQ,φe Mul(G)}c JxcR{G)

since φ{lβ) = 1 for each φeMJ(G). But as pointed out in the Remark
(Π-2) the linear manifold spanned by MJ(G) coincides with JJ(G).
Assume now that dim R(G) = n where 0 ^ n < oo 9 then dim JJ(G) —
dimMJ(G) < oo. This implies by Theorem (III. 2) that G is compact.
But by Rudin [15] if G is any compact abelian topological group then
C(G)* with the above defined multiplication is semisimple. Since
for compact G, C(G) = LUC(G) we get that R(G) = {0}. Therefore
either R(G) - {0} or dimR(G) = oo. And R(G) = {0} if and only if G
is compact.

THEOREM 5. If G is separable subgroup of a locally convex linear
topological space then either R{G) — {0} or dim R(G) — oo. Moreover
R(G) = {0} if and only if G = {0}.

Proof. As in the previous theorem if dim R(G) = n where 0 ^ n < co
then dim JJ(G) < oo which implies by Theorem (III. 3) that G = {0}
But if G = {0} then surely R{G) = {0}. Which finishes the proof of
this theorem.

THEOREM 6. Let G be a separable hausdorff topological group
which is amenable as a discrete group. If G has property (B) then
dim R{G) = oo.

Proof As above MJ(G) - φ0 c Jx c JS(G). But by Theorem (III, 1)
dim Jul(G) ~ co and since Mul(G) spans JJ(G), dim MJ(G) = oo which
proves this theorem.

REMARK, (a) If LUC(G)* contains two distinct left invariant
means φx and φ2 then the algebra LUC(G)* is not commutative since
ψi Θ Φz ~ Φ2 &nd Φ>2 0 <Pi = φ. Therefore if G is even a commutative
noncompact locally compact separable group, then LUC(G)* is not com-
mutative.

(b) If LCUC(G) is the Banach space of bounded complex valued
left uniformly continuous functions on G and the algebra LCUC(G)*
is defined as above then Theorems IΠ-4, IΠ-5, IΠ-6 hold true alsα
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for LCUC{G)*. Since any φeJx can be extended to LCUC(G) by
defining for f9ge LUC(G) φ(f+ ig) = φ(f) + iφ{g). If J[ c LCUC(G)*
is the set of all such extensions of elements of J1(zLUC(GY then
Jl(zRc{G) where RC{G) denotes the radical of LCUC(G)*. From here
one immediately gets that Theorem 4 holds also for the complex case.

IV* The invariant mean on semigroups containing
compact groups and left ideals

The main theorem of this chapter is Theorem IV-1. The following
lemma is essentially known and we need it in the special form appear-
ing here.

LEMMA 1. Let S be a topological semigroup which contains a
compact left-ideal group Ao. If {A*; ot e 1} is the set of all compact
left-ideal groups of S then A = (J«ei Λ» is a right minimal ideal.
Moreover if ea is the identity of the group Aa then for any ae A,
eaa = a. Also for any te S, tAa — Aa.

REMARK. Aa as groups and left ideals are minimal left ideals and
therefore are disjoint.

Proof. Let se S. Then Aas is a minimal left ideal since if
L c Aas is a left ideal and ase L with ae A* then A^s — (Aaa)s c L
(since Aω is a group). Thus Aas = L is a minimal left ideal. But
AaSaaAa for any aeAa and therefore A^sas a Aas. Since AΛs is
a minimal left ideal (Aas)as = Aas. If te S then tAa — t(e*Aa) —
(te^Aa = A& since teΛe Aai which is a group. In particular for ae Aa

as(Aas) = Aωs. In other words for any b e A^s, biA^s) = A^s — {Aas)b
holds which proves that the semigroup Aas is in fact a group. Thus
Aas is a left ideal and group which as a continuous immage of A^ is
also a compact subset of S. Therefore Aas — Aβ(Z A for some β e I.
Thus for any se S, As — LL€/ Aas c A which shows that A is a
right ideal.

Let now R be any right ideal of S and r e R. Then AΛ = r A^ c i?
for each ae I. This shows that AaR (i.e. that A is included in each
right ideal of S) and in particular that A is a minimal right ideal.
Now if ea, eβ are the identities of Aai Aβ respectively then eω eβeAβ

and

(eaeβ)(eaeβ) = e^ββie^β)) = ea(eaeβ) = e«eβ .

Thus eaeβ is an idempotent of the group Aβ and therefore eaeβ = eβ for
any a, βe I. If now ae A then ae Aβ for some /3e I and therefore
β«α = e*(eβa) = eβa = a.
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REMARK. In semigroup terminology this shows that A is the
Suschevitch kernel of the semigroup S.

If φe C(S)* then φ ̂  0 (is positive) if φ(f) ^ 0 for each / ^ 0,
feC(S). An operator T: C(S)* -> C(S')* is called positive if Tφ ^ 0
whenever φ ̂  0.

LEMMA 2. Let S be the semigroup of Lemma (IV, 1) and π; C(S)-+
C(A) be defined by (πf){a) = f(a) for a in A. Then π*: C(A)* -> C(S)*
is a linear positive isometry such that π*[Jel(A)] = Jcl(S). Moreover
π*"""1: Jcl(S) —• Jci(A) is αZso positive.

Proof, π maps C(S) onto C(A) since if JteC(A) then define
KeC(S) by

(IV. 1) h(s) = ΛM) ,

where eΛ is the identity of the group Aa for some fixed a el. lΐ se A
then by the proceeding lemma eas = s and so h(s) — h(s). Also s —» βΛs
is a continuous map from S to i (with the relative topology) since
if 0' is open in A then 0' = 0 Π A with 0 open in S and (since A is
a right ideal) {s; eωs e 0'} = {s; eΛs £ 0} which is open by the continuity
of the left multiplication. Since h e C(A) we get that h(eas) = h(s) e C(S).
We also remark that if || h \\ ^ 1 then \\h\\ ̂  1 and so π maps the unit
ball of C(S) onto the unit ball of C(A). Also if / ^ 0 then πf^O
and π(ls) = 1A. Therefore it φe C(A)* then

[ π*φ || = sup I (7Γ*<p)/| = sup | φ(πf) \
ll/ll^i fec(s) \\f\\^i fec(S)

sup
heθ(A)

Therefore π*: C(A)* —• C(S)* is a positive linear isometry into C(S)*.
We shall show that it maps Jcl(A) onto Jcl(S). If seS, aeA then
let ί ί iCίA)-^ C(A) and ί s:C(S) — C(S) be defined by: l'ah = ha and
l.f=f. for and αe A and s in S. Let ̂  = If. Then (πlaf)(b) =
(Jβ/)(6) = /(α6) = (ττ/)(α6) = (l'*(πf)){b) for each α, 6 e A. Thus ττiα/ =
lΌπfίoΐ each /G C(S) and so for any aeA and φ G J c ί ( i ) and fe C(S):

(π*φ)(laf) = φ{πlj) - φ{l'aπf) - 9>(τr/) - (π*φ)(f) .

Thus ^ ( π * ( p ) = π*<p for each α e A . If now se S and α e A then

since saeA. Thus π*: Jel(A))—> Jel(S) is a linear positive isometry
into. We prove now that π* maps Jcl(A) onto Jcl(S).

Let φeJcl(S) and let feC(S) satisfy /(α) = 0 for each α e i .
Then for α e i we have (laf)(s) = /(as) = 0, since A is a right ideal.
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Thus φ(f) = φ{lj) = φ(0) = 0. Therefore if /,, f2 e C(S) satisfy /2(α) =
/2(α) for each aeA then /x(α) — /2(α) = 0 for ae A and so φ(fx) = φ(/ 2).
In other words if Λe C(A) and he C(S) is α?ιy extension of h to all of
S then <p(ft) does not depend on the particular extension h e C(S) of
heC(A). Therefore φ'eC(A)* defined for heC(S) by

where heC(S) is any extension of h to all of S, is at least well
defined. Moreover if φ ^ 0 and A ^ O then the extension KeC(S)
defined above (IV. 1) satisfies h(s) = h(ea$) ^ 0 and so φ'{h) = φ(h) ^ 0.
This shows that if φ ^ 0 then φ ^ 0. It is easily checked that φ' is
linear. Also if \\h\\Sl then the extension defined by IV-1 satisfies
(I %|| ^ 1 and thus

This shows that <p'eC(A)*.
We show now that φ'eJel(A). Let aeA be fixed. Then

where iife is any extension, in C(S)9 of ΓaheC(A). But α e 4 o for
some aoe I and the function defined by

(IV. 2) (W(s) - (Γah)(e«os)

is a bounded continuous extension of Γah e C(A). (where eΛQ is the
identity of A Λ Q ) . And for each s e S:

l'ah(s) = (l'Ji)(eas) = h(ae»Qs) = h(as).

But if KeC(S) is any extension of h to all of S then, since A is a
right ideal, we get

h(as) =

Therefore

= (lah)(s)

where VJi is the extension defined by (IV. 2) while KeC(S) is any
extension of h. Therefore

φ'd'Jl) - φ0) = φ(lah) = φ{h) = ^'(A) .

This shows that φ'eJcl(A). Moreover π V = φ. In fact if feC{S)
then (π*φ')(f) = φ'(πf) = <p(/) since / is obviously an extension of
π/eC(A). Therefore π*: JCZ(A) —> J ei(S) is a positive linear isometry
onto and positive elements in Jl(S) have positive preimages in Jcl(A)
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or in other words π*~ι: Jel(S) —> Jcl(A) is a linear positive isometry
onto.

REMARK. We notice that we do not assume any separation axioms
about the topological space A. We shall show in what follows that in
fact we can assume about A that it is even a hausdorff space (and even
that C(A) separates points).

In fact define in A the following equivalence relation: If a,be A
then a ~ b if and only if x(a) — x(b) for each xe C(A). Obviously this
is an equivalence relation but moreover ~ is even a congruence, i.e.,
if a ~ b then ca ~ cb and ac ~ be for each ce A. This is true since
for any x e C(A)

x(ca) = xc(a) = xc(b) = x(cb)

and

x{ac) = xc(a) = α;c(6) = x(bc) .

Let A' be the collection of all equivalence classes of A and for
each ae A let α' be the equivalence class containing α. Define in A!
the multiplication α' δ' = (αδ)\ Since ^ is a congurence this multi-
plication is well defined and renders A' a semigroup, (see Lyapin [20]
p. 361-362). Thus ψ: A—> A' defined by ψ(a) = a' is a homomorphism
of A onto A'. Define now in A' the quotient topology this way: Ur c A'
is open if and only if <ψ*~1(?7')cA is open. Thus ψ:A-^>Af is a con-
tinuous homomorphism and so A'a — ir{AΛ) are compact. Moreover if
a e Aa then A^ = ψ(AJ) = ψ(aAa) = ψ(a)ψ(Aa) = a!A'a and in the same
way A'ad' = A* which shows that Af

a is a group. Also if be A then
b'A* = ψφ)ψ(Ac6) — ψibAa) = ψ»(AΛ) = A^ which shows that A^ is a
left ideal.

But moreover, A! with the above defined quotient topology has
separately continuous multiplication. In fact if U' is an open set in
A' and aoe A then we have to show that 0' = {c'; a'Qc' e Uf) is open in
A' or that

0 = ψ-ψ) = \c; (αoc)' e U'} = {c; αoc e ^\Uf)}

is open in A. But since ψ is continuous ψ~~\U) is open in A and since
left multiplication by α0 is continuous, we get that {c; αoce i/r~1(C7/)} is
open in A. In the same way one shows that right multiplication in
A' is continuous. Define now the map ψ: C(Ar) —* C(A) by (ψx')(a) =
β'(^α) = a?'(αf) for each ae A. Since π/r(A) = A', ^ is a linear positive
isometry (i.e., if x' ^ 0 then <f (α?') ^ 0) into C(A). But we notice now
that each x e C(A) gives raise to an x! e C{Ar) by defining: x'(a') = a (α)
where a is any representative of the equivalence class a! e A'. Since a?
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is constant on equivalence classes, x' is well defined and x1 e C(A'),
since if V is an open set of reals then

ψ-'ia'; x\a!) e V} = {a; x(a) = x\a!) e F } = x~\V)

which is open in A since xe C(A). Also (ψx')(a) = x'(ψ(a)) — x'(a!) =
x(a). This shows that ψ: C{Af) —* C(A) is onto. It is immediate now
that A' is hausdorff. In fact if α', br e A! are such that a! Φ V then
there is an xe C(A) such that x(a) Φ x(b) i.e. cc'(α') =£ #'(&') so that
C{Af) even separates points.

LEMMA 3. ψ*: C(A)* —* C(A')* is α linear positive isometry such
Ithat ψ*[Jel(A)] = Jo^A'). 'f *~1: «/"ei(A') —> Jcί(A) is αίso positive.

Proof. Since ψ: C(A) —> C(A') is a positive isometry onto we im-
mediately get that ψ**: C(A)* —• C(A')* is a linear positive isometry.
Let now l'a.; C{A') — C{A') be given by {l'a>x'){c') = x\a'c') for each
d e A and la: C(A) —> C(A) by iαx = a;α, As known and easily checked
la(ψx') = ψ>(ϊi/ίc')> which shows that if φ e Jcl(A) then:

(φ*φ)(l'a,X
f) = φψ(l'a>v') = Φihψx') = <P(W) = ( ί V ) M

Therefore ψ*[Jol{A)](zJol(A')\.
If now φ'eJcί(A') then let φeC{Ay be defined, for xeC(A), by

φ(aj) = φ'(χr) where x' e C(Af) is given by x'(a') = x(a) for each ae A.
Then (lax)\V) = (iβa;)(&) = a?(α6) = a?'((α6)') = ^(α'6') = (&&')(&')• Thus

Therefore 9? e Jβϊ(A). But (^^ r)(α) = ^ ;(^ ;) = ^Φ) and thus

This shows that ψ*φ = φ i.e., that ψ*[Jcl{A)\ = Jci(Ar). We also
notice that if <p' ^ 0 then φ ^ 0 and so positive elements in Jl(Ar)
have positive preimages and so α/r*"1 is also positive.

REMARKS. We notice that A^ is a group which is a compact
hausdorff topological space with separately continuous multiplication
and therefore by Ellis theorem (see Ellis [21] or Glicksberg Deleeuw
[19] p. 64-65 and p. 94-96) each A* is a compact Hausdorff topological
group, (i.e. the mapping (a, b) —-• ab~λ from A^ x A'ω into A^ is con-
tinuous).

THEOREM 1. Let S be a topological semigroup (only with se-
parately continuous multiplication) and let S contain exactly n com-
pact left-ideal groups Alf •••, An. Then dim Jcl(S) = n and Jcl(S) is
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spanned by the left invariant means.

Proof. If A = U?=iΛ then π*; Jΰl{A)-> Jcl(S) is a positive iso-
metry onto (and so maps left invariant means into left invariant means).
If A! is the semigroup of Lemma (IV. 3) then φ*"1: Jcl{A') --> Jcl(A) is
a linear positive isometry onto and so it is enough to show that
dim Jcl{Af) = n and that Jel(Af) is spanned by the set of left invariant
means. We recall now that A' = U?=i A* is a Hausdorff topological
space and that A[ are compact topological groups and left ideals and
therefore disjoint. Thus A! is a compact hausdorff semigroup and
multiplication is (at least) separately continuous. In what follows we
shall drop the prime and write A, A{ instead of AJA!i-AyAi are com-
pact hausdorff. But A{ as the complement of the compact set Ui^; Aj9

is also open. Therefore lAieC(A). Hence if feC(A) then f(a) =
Σ / ( α ) W α ) f o r e a c h a e A a n d fm^At^C(A). Moreover if heC(Ai)
then h defined by h(a) — h(ae{) for each ae A is an extension of h to
all of A and heC(A). Furthermore, if h ^ 0 then h^O and if
|| λ || ^ 1 then \\h\\ ̂  1. Let π{\ C(A) -> C(A<) be defined by (πj)(a) =
f(a) for aeAi. If a e A, then let l*a: C(A4) — C(A{) be defined by l*ah = ha

for α e A ί # Also, iα:C(A)-^C(A) is defined by laf=fa for any a in
A. Let It = £fa. Then as easily checked: π{laf= liπjίoτ each fe C(A)
and α in A{.

Let now ̂ e C ^ ) * be the linear positive functional of norm one
represented by the normalized Haar measure on the compact hausdorff
topological group A{. Define φ{eC(Ay by

(IV. 3) Ψi(f) = φ[(πj) for each feC(A) .

Then we get immediately that φi ^ 0, ψi(lA) — 1 and that cpi(lAi) — 1
while ψiO^Aj) — 0 if i Φ k. Thus for any ae A{:

Ψiihf) = φ'&ilaf) = φ'JRπJ) = φ\(πj) = Ψi{f) .

T h e r e f o r e £f*q>i = cpi f o r e a c h aeA{. I f n o w ceA a n d aeA{ t h e n
j£fe<Pi = ^fc^faψi = ^fcaψi = ψi since ca e Aim Therefore φ{ is a left

invariant mean in C{A)*. Also φu —, φn are linearly independent
(since if Σ aiΦi — 0 then ak — ( Σ ̂ ^ ^ ( 1 ^ ) = 0). It remains to show
t h a t φu — ,φn span Jcl(A).

If he C(Ai) and if he C(A) is any extension of h (for instance
h(c) = h{cei) for each c e i ) then let P{(h) = K-lAieC(A). In other
words PiheCiA) equals h on Ai and 0 outside Aiβ Thus
C(A) and as easily checked:

(IV. 4) π.P.h = h for h e

and
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(IV. 5) Piπif=flAi for feC(A).

If ae A{ and h e C(Ai) then

ίO if δ ί A

Moreover,

/&(αδ) i

But αδ G A* if and only if b e Ai (if b $ A{ then δ e A3 for j" =£ i and
so αδ e Aj) and αδ g A; if and only if δ g A*. This shows that

« » » > =..»..« a b e A t

(IV. 6) P<(i;fc) = ία(PiΛ) for each A e C(A,) and a e A, .

Let φ e Jcl(A) (Z C(A)* and define f - e C ( A ) * by

(IV. 7) ψt(h) =

If αe A< then by IV-6, IV-7: ψi(l%

ah) = <p(PiHh) = φ(laPJι) =
ψi(h) which shows that ψ{ is a left invariant functional in C(A{).
Therefore, (by the uniqueness of the Haar measure) we get that i/r =
(Xicpl ίor some real number a{. Therefore if feC(A) then using IV-5,
IV-7 and IV-3 one gets:

= Σ U^if) - Σ oiiφ\{πj) = Σ aiΨi(f) .

Thus φ = Σ α ^ i which finishes the proof. As a special case one
gets the following theorem of I. S. Luthar (see [12] p. 403).

THEOREM. If S is an abelian topological semigroup which con-
tains a compact ideal then dim Jcl(S) = 1.

Proof. As in Luthar's proof if I is a compact ideal of S and
Iu , In are closed ideals of S contained in I then Ix- -Ina Π*=i /y ̂  0 .
Therefore the family jp7 of all closed ideals of S contained in / has the
finite intersection peoperty and so A — Ore** I' ^ 0 . Thus A is a
compact ideal. If ae A then a A a. A is a compact ideal and so a A = A
which shows that A is a group. If now Aλ is any other compact ideal
and group of S then AλA c A Π A1 Φ 0 and if α e A π Λ then A —
Aa — Aλa — Aλ which shows that S contains exactly one ideal and com-
pact group. Using Theorem (IV. 1) we get that dim Jcl(S) = 1 or that
C(S) admits a unique invariant mean.
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