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CONTRACTIVE PROJECTIONS ON AN g, SPACE

R. G. DouGLAS

This paper discusses the class of contractive (operator norm
one) projections on the complex &; space of a probability
measure, In particular there is a characterization of such pro-
jections and of their range spaces, and also of the closed
vector sublattices of &, and the subspaces of &; that are
isometrically isomorphic to some ¥; space. Further results
include an extension of the above results to more general
measure spaces and several results about contraction operators
on .

Let (X, .5 #) be a probability space. Let K~ denote the con-
ditional expectation for the o-subalgebra &~ of S~ A nonnegative
function ke @(X,.% ¢) is said to be a weight function for 7~ if
E7I = yr where Y, is the characteristic function of some 7€ 7.
The weighted conditional expectation E is defined to be: EY = k-E”.
For each measurable function ¢ of modulus one, let U, denote the multi-
plication operator U,f = ¢-f. Let R[P] denote the range of P. A
projection P is said to satisfy (x) if P{f|(f)-R[P] = (0)} = (0).

THEOREM 1. Awn operator P on £, is a contractive projection satis-
Jying (%) of and only if P = UzE;” Uy for some o-subalgebra 7~ of &,
wetght function k for 7~ and measurable function ¢ of modulus one.

The characterization is completed by showing that each contractive
projection splits canonically into a contractive projection that satisfies
(x) and an “arbitrary” contraction operator with certain properties.

COROLLARY. Amn operator Q on 2, ts a conditional expectation
vf and only if
)&=, @ |QQI=1, and (3) Q1 = 1.

THEOREM 3. For a subspace M of L, the following statements
are equivalent:

(1) M s the range of a contractive projection,
2) UM is a closed vector sublattice for some measurable func-
tion ¢ of modulus one, and

(3) M is isometrically isomorphic to some L, space.

LEMMA 1. Let M be a closed wvector sublattice of L, (a closed
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self adjoint subspace in which the real functions form a lattice).
Then there exists a o-subalgebra 7~ and a weight function k for
7 such that M = k-8(X, 7, t-), where (- denotes the restriction
of ¢ to 7.

An operator P defined on a Banach space is said to be a projection
if P? = P. Attention is confined to a subclass of projections. The
particular subelass under study is the class of contractive (operator
norm one) projections on an &, space. The methods developed shed
some light on general contraction operators defined on an £, space; in
particular, a relation between such operators and positive operators is
shown.

The main theorem in this paper gives a characterization of con-
tractive projections on an £, space. This result is obtained in several
steps each of which is stated as a separate proposition and the final
result is then summarized in Theorem 1. The “concrete model” of
a contractive projection is given in Proposition 1 and is the conjuga-
tion (in the group theoretic sense) of a “weighted conditional expec-
tation” by a multiplication operator where the “multiplier function”
has modulus one. It is further shown in Proposition 1 that this
“concrete model” satisfies a certain “regularity hypothesis”. In Proposi-
tion 2 it is shown that a general contractive projection splits canonically
into a “regular” contractive projection and an arbitrary contraction
with a fixed range and domain. In Propositions 3 and 4, the char-
acterization is completed.

Several corollaries to Theorem 1 are given; one of these states
that a contractive projection that takes the function 1 into 1 is a
conditional expectation. This is related to results of Moy [6],
Bahadur [1], Rota [7], and Sidak [8]. Also in the proof of Proposi-
tion 3, it is necessary to determine the structure of those closed sub-
spaces of an £, space that are also sublattices; this result is stated as
Lemma 1 and is related to results that appear in Moy [6], Bahadur
[1], and Brunk [2].

In § 3 the problem of determining which subspaces of an &, space
are the range of a contractive projection is raised. Two solutions to
this problem are given in Theorem 3. The second solution further
solves the problem of determining which subspaces of an &, space are
themselves £, spaces (in the sense of being isometrically isomorphic
to an &, space). In this sense Theorem 3 can be regarded as a “Stone-
Weierstrass type theorem” for &, spaces.

In 8§82 and 3 only 8, spaces defined relative to finite measure
spaces are considered. The extension of these results to more general
measure spaces is taken up in §4. In §5 several results about con-
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traction operators on an &, space (including a mean ergodic theorem
for such operators) are stated and proved. Finally, a few concluding
remarks appear in §6.

The results of this paper represent an extension and refinement
of certain results from the author’s doctoral dissertation which was
submitted to the Graduate Faculty of Louisiana State University in
August, 1962. The author wishes to acknowledge his indebtedness to
P. Porcelli for his guidance and assistance in preparing that disserta-
tion. The author is also grateful to the referee for many helpful
suggestions.

1. Technicalities and definitions. The standard work of Halmos
[3] will be used as a basic reference. All measures considered in this
paper are assumed to be countably additive.

Let (X, . 1) be a fixed probability space, that is, X is a set,
S is a o-algebra of subsets of X, and g is a measure defined on &
for which p#(X) =1. &, = &(X, & 1) will denote the usual Banach
space of complex valued integrable functions defined on X, in which
two functions are regarded as equal if they are equal almost every-
where relative to p, and in which the norm of a function f is defined
to be ||fI| :5 |f|dp. Hereafter, the relation f =g will be inter-
preted to meanx that the functions f and ¢ are equal almost every-
where relative to g, and the relation S = T, to mean that p(SN7T") +
p(8'NT)=0. The relations of inequality and containment will be
interpreted similarly. Further, for each subset Se.%] let ys denote
the characteristic function of S, that is, y¢(x) =1 if €S or 0 if
x ¢ S. Lastly, define the support of a measurable function f to be
the measurable subset S(f) = {x|f(x) = 0}.

For the o-subalgebra 7~ of & let E“ denote the conditional
expectation for 7, which is defined for f €&, as follows: E7f is the
unique .7-measurable function having the property that S E7fdp =
ST Sdp for every subset T'e 7. That such a function exTists and is
unique follows from the Radon-Nikodym Theorem. A nonnegative
measurable function £ is said to be a wetght function for 7 if
Xde;z = STxrodp for every T'e€ .7, where T, = S(k) and is a set in 9~
for which Se.&” and T,C S imply S€ .7 (The essential property is
that E“ (k) is a characteristic function; the additional hypothesis is
imposed for uniqueness considerations later on.) For a o-subalgebra
7 of & and weight function k& for .7, the weighted conditional
expectation E;” is defined to be: B = k-E~.

An example of a nontrivial non- Z-measurable weight function can

1 Note, S’ = X — S for every subset S€ <.
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be obtained as follows. Let X be the unit square [0, 1] x [0, 1], & be
the o-algebra of Lebesgue measurable subsets of X, ahd .~ be the
o-subalgebra of & consisting of sets of the form E x [0,1]. It can
be easily verified that the function k(x, y) = 2y is a weight function
for .7~ that is not .Z-measurable. Moreover, in this case S(k) = X.
This example also yields the nontrivial weighted conditional expecta-
tion E;.

Lastly, for each measurable function ¢ of modulus one (that is,
|¢(x)| = 1 for € X), the operator U, is defined as follows: Uyf = ¢f
for every f e&,. Notice that U, is an isometry on £, and that U,U;
is equal to the identity operator on £,.

All operators considered in this paper are assumed to be bounded
and linear, and to have ¥, as domain, and to have range contained in
&,. An operator P is said to be a contraction (or to be contractive)
if [|P||=1; to be positive if Pf = 0 for every nonnegative function
fe&; and to be a projection if P* = P. Let R[P] denote the range
of P (that is, R[P] = P(¥,), and R[P] the subspace {f|fe®, and
f-R[P] = (0)}. Notice that each of R[P] and RK[P] is a closed sub-
space of ¥,. A projection P is said to satisfy (x) if P{R[P]} = (0).
(This is the regularity condition referred to in the introduction.)

2. Characterization of contractive projections. In this section
the characterization of contractive projections is obtained. It is first
shown that a certain class of operators (the “concrete models”) consists
of contractive projections that satisfy (x).

ProposiTION 1. Let .7~ be a o-subalgebra of & k a weight func-
tion for .7, and ¢ a measurable function of modulus one. The operator
UzE;7 Uy is a contractive projection that satisfies (x).

Proof. The following useful equation will be derived first: () For
each .7 -measurable function %€ &, the equality S khdp = st(k)h,dp
.

holds for every Te 7.
To see this observe that the special case

Srkxsd# - Ssnrkd'u - SsnTXS(k)d# - STXS(k)XSd#

where Se . 7, follows from the definition of weight function. From
this special case it further follows that () holds for each 7 -simple
function . Now for h a nonnegative .7 -measurable function in £,
there exists an increasing sequence {h,}7-;, of nonnegative .Z-simple
functions converging pointwise to 4. The sequence {kh,};-, is also an
increasing sequence of &, functions that converges pointwise to the
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function kh, and this and the fact that
S kh,dp < S hdp = S hdpt
X X pe
implys that kh is in &, and that

S khdll = 1im S khndﬂ — lim S XS(k)hnd# = STXS(k)hd‘U
T n—oo JT n—oo JT
for every T € 9. Thus (f) has keen proved.

The case ¢ = 1 is now treated. For every fe€ &, the inequality

\Be sl = | \Berap = | BIEFldp= | | B7S g
= sup {STEffdg - STIEJ”fd;z I Te 7}
—sup{| fap | sapire s} = Iridp =171

is obtained, and thus FE,” is a contraction. Further, for every 7-
measurable function %€, the equality E”7(kh) = h)sy is a restate-
ment of (). Therefore, (E; ) = kE“(LE”) = kE” = E;7 and so E; is
a projection, Lastly, it is clear that a necessary condition for f € &[E; ]
is that fk =fE7 1 =0, and so E7f = LkE”f =0 because S(k)e 9~
and S(f) N S(k) = ¢ imply S(E“f) N S(k) = ¢. Thus E J{K[E]} = (0)
and E; is a contractive projection that satisfies (x). (It is well known
that K is a contractive projection (see e.g. |6, pp. 48-49] and [1,
pp. 565-566})).
The operator U,E;” U, is also a contractive projection:

(UzE7 Uy = UpE7 UyUgE7 Uy = UgE7 E7 Uy = UgE7 U,
and
UL Ul = [|Ugll || EZ | Us il = 1.

Moreover, because R[UE;” Uy = UzR|E;7 ], then R[UZE7 Uy| = KL E7].
Therefore a necessary condition for f e R[UzE; Uy] is that fk = 0, and
so (UiE7 U)KRIUGE; Uyly = (0). Thus UzE7 U, is a contractive
projection that satisfies (x).

Next it is shown that every contractive projection can be written
as the sum of a contractive projection having the same range space
that satisfles (x) and of a contraction that is nilpotent of order two.
This decomposition is canonical and reduces the study of contractive
projections to the study of those that satisfy (x).

ProrosiTioN 2. Let P be a contractive projection on %,. There
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exists a unique subset 7T,€.9” (called the support of P) such that
S(f)c T, for every feR[P| and for which R[P]= yx-2. If A
denotes the operator defined to be Af = P()s;f) for every f €, then

(1) A is a contraction,

(2) R[A]cR[P],

(3 A =0,

(4) Afxs2} = (0), and

() P — A is a contractive projection with the same range as P
that satisfies ().

Proof. Select a sequence of functions {f,};-, from the range of
P as follows: set f, = 0 and assuming that the functions {f,}7= have
been chosen, select fy such that p[S(fy) — U= S(f)] > 1/N if this
is possible or set fy =0 if it is not. Set T, = Uz, S(f.). It is
clear that T,€.%” and so it remains to prove that S(f)c T, for every
feR[P]. For each geR[P] either S(g) = T, or there is a positive
integer M for which u(S(g) — T\) > 1/M. The existence of such an
M is, however, impossible because g would have been selected as f
for some N. The alternative to this is that it was possible to select
fx# 0 for N = M, which would imply that

uryz 3 p[ser) - US|z S 1n =«

This is a contradiction and thus S(f)c T, for every feR[P]. (This
construction will be used several times in this paper. For each sub-
space M of &, the set T, obtained from this construction is called the
support of W.)

If the operator A is defined as in the statement of the proposi-
tion, then the properties attributed to it follow readily.

The operator A is unique in the sense that it is the unique operator
for which P — A is a contractive projection with the same range as P
that satisfies (x). The proof of this depends on the fact that a con-
tractive projection is determined by its range (see Corollary 3).

The structure of the closed vector sublattices of &, is determined
in the following lemma. (Note that by vector sublattice is meant a
selfadjoint subspace—that is, a subspace such that f is in it whenever
f is—for which the subspace of real valued functions forms a sub-
lattice.) This lemma is very important to the proofs that follow and
will be used also in §3. It is related to results that appear explicitly
in Bahadur [1, pp. 565-566] and Brunk [2, Theorems 4 and 5, p. 302]
and implicitly in Moy [6, pp. 51-58].

LEMMA 1. Let I be a closed subspace of &, that is also a vector
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sublattice. Then there exists a o-subalgebra 7~ of & and a weight
Sunction k for 7~ for which WM =k-2(X, 7, 1-). Moreover, the
pair (7, k) is unique. (The measure (.- is the restriction of p to.77.)

Proof. There exists a nonnegative function % € 9t such that
S(f)c S(h) for every feIM. To see this select a sequence of real
valued functions {f,}7-, from 9t as in the proof of Proposition 2,
discarding now the zero terms. The function 2 = 37, @" || fu )7 | ful
is in M and has the desired property.

If 75, ={TecS”|hyrc M}, then 7, is a o-subalgebra of .&” because
M is a closed vector sublattice of &,. Further, the following argument
shows that there exists a function ke M such that

STXSUL)d/" = Sde/‘

for every T€ . 7,,. The positive measures defined on (X, .7,) by the
indefinite integrals Sxm)d;z and Shd;z are mutually absolutely con-
tinuous. Thus there exists a _7,-measurable nonnegative function g
by the Radon-Nikodym Theorem such that ngs(h)d;z = STghd/x for every

Te . 7,. Moreover, g is the pointwise limit of an increasing sequence
{9.}7-, of 7,-simple nonnegative functions, and because the summable
function gh dominates each funection g¢,h, the sequence {g,h};_, must
converge in norm to gh. Thus gh is in I because each of the func-
tions g,k is in 2 and P is closed. Therefore, the function k = gh
is a weight function for .75, which is in 9.

Further, it can be shown readily that the o-subalgebra 77 is the
same as .7,. To see this suppose that T'e 7. Then kyrc M and so
also is each of the functions (b — nky;)*. Now because S(k) = S(k)
it follows that the sequence {(h — nky,)*}7_, converges in norm to the
function k), which must also be in 9. Thus 7"e 7, and so .9, C 7.
The proof that 77, C .77, proceeds similarly. If .7, is denoted now by
just .7, then what remains is to prove that M = kL (X, .7, ).

First, the inclusion k%,(X, 7, p-) C M is immediate. This follows
because each nonnegative f € 8(X, .7, ¢t-) is the pointwise limit of an

increasing sequence {f,}r-, of .7-simple nonnegative functions. Hence,
because

1efull = kfudp = | fdp=11s0= 171,

the function kf is summable and thus kf, converges in norm to kf.
Therefore, k%,(X, 7, 1) C M.

Assume that f is a nonnegative function in 9. Because for each
X > 0 the sequence {&,};,, where &, = [n(f — Nk)*] A k, is increasing
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and dominated by the summable function %, it converges in norm to
a function h € M. Moreover, & = k)sy i+ and thus S[(f — Mk)*] e 7~
It is now easy to see that f is the limit in norm of a sequence {kg.};-.,
where each g, is a F-simple function for which S(g,) © S(k). Thus,
because || kg, — k9.l = |l 9. — 9.|| for every n and m, the sequence
{9.}7-1 converges in norm to a function ge (X, 7, n-) and f = kg.
Therefore M C k¥,(X, .7, 1) and the proof is complete. The uniqueness
of the pair (7, k) is proved easily.

The next lemma states that the range of a positive contractive
projection is a closed vector sublattice of £, This result is isolated
as a lemma because it will be used again in § 3.

LEMMA 2. If P is a positive contractive projection, then R[P)
18 a closed wvector sublattice of L.

Proof. Because P is a positive projection, the range of P is a
closed self-adjoint subspace. Therefore, to prove that R[P] is a closed
vector sublattice of &, it is sufficient in light of the identity A Vv ¢ =
1/2{h + g + |h — g|} to prove that f*eR[P] for every real valued
feR[P]. If f is a real valued function in R[P], then because P is
positive and f+ — f =0, the inequality P(f*) = Pf =f is obtained
and thus also P(f*) = f* = 0. This implies

0= 1P =l =1PUDN = I=0

or that P(f+*) = f*. Therefore, f*eR[P] and R[P] has been shown
to be a closed vector sublattice of Z,.

PROPOSITION 3. An operator P is a positive contractive projection
that satisfies () if, and only if, there exists a o-subalgebra 7~ of &
and a weight function & for .~ for which P = E;.

Proof. That a weighted conditional expectation is a positive con-
tractive projection that satisfies (x) follows from Proposition 1. There-
fore, assume that P is a positive contractive projection. As a result
of Lemmas 1 and 2 there exists a o-subalgebra .7~ of & and a weight
function & for .7~ for which R[P] = k¥(X, 7, ¢t>). Thus because
RIE7] = kR(X, .7, 1) also and in view of equation (f), to prove
that P = E;7, it is sufficient to show that STPfdpz ST 7 fdp for
every fe&(X, % 1) and Te 7. Moreover, because each of P and
E7 is continuous and satisfies (*) and K[P] = K[E] = Xew <, to
establish this it is sufficient to show STP(ka)d,a = STE{' (kxs)dp for
every S€% and Te. 7. To see this observe first that for every
fe® and Te 7, the following identities hold:
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[ Prap = Paswsrdp + | Paw g = | PO fHip

because Psq,f) e PRIPT = (), and | By = | B Grswns)dp be-
cause E7 (Ysu-S) = 0. Now the sufficiency is obvious because the
function Y, S can be approximated by linear combinations of fune-

tions kXsu.
Assume that Se€.&” and T e 73 then k)Y, = Pk)r) = P(k)snr) and
kyp = P(k)p) = P(k)snr) because P is positive. Further, the relations

kYsar + kXsnr = k)s and 0 = STP(szan)d)u = STkXT,dﬂ = 0 imply that
[Pl dp = Plogsodp + | Plozson)ap
T T T
= STP(kXSnT)d/J .
Thus the inequality
[, tedie = Il oo |

2 || PUtens) | 2 | PUorsondp = | Pl

or S Fodp = STP(kXS)d;z holds for every T'e.o~ and Se.5 Hence
T

Szvkdy - STkxsdy + STkXS,d/J

> STP(kXS)dp + STP(ICXS/)dp > STPlcdy - Sdep

and so STkXSdﬂ - STP(lcxs)dy for every Te .o~ and Se.%? Thus for
cach Se.& the relation STP(kXS)dp - STkxsdp — STE{(kxs)d/z is
obtained for every T'e .7~ from equation (f) and therefore by the previous
remarks P = E;.

The characterization of contractive projections that satisfy (%) can
now be proved.

ProprosiTioN 4. Let P be a contractive projection that satisfies
(*). Then there exists a o-subalgebra &~ of & a weight function k
for .~ and a measurable function ¢ of modulus one such that P =
UzE;7 U,. Moreover, the pair (.7 k) is unique.

Proof. For every f €&, define the function 4(f)(x) = f(x)/| f(x)]
if f(®) # 0 or 1 if f(x) = 0. Then for every f € R[P] and nonnegative
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h €&, such that |f| = h, the following inequalities hold:
A=W = IIf — e(NHRIl = || Pf — P[O(f)R] ]
z [[FIl = I PIOORY = 1IFI = [16CNHRII .
Thus

Lf = PLOCHRL = [[F1] — [ PIO(HRI,

which implies

16CF)f — 0CHPLOCHRL = || 0CF)f 1| — [|6(F)PIO(F)RI .
This implies that

S(PIO(IR]) = SO(F)PLO(HR]) < SO(F)f) = S(f)

and also because 6(f)f =0, that 6(F)P[0(f)h] = 0. Therefore, because
every nonnegative function 4 €&, such that S(h) < S(f) can be approx-
imated by nonnegative functions h, €&, such that (1/n)h, < |f], it is
readily seen that Us7PU,sh =0 and S(Ph)  S(f) for every non-
negative € &, such that S(k&) < S(f). Moreover, this implies further
that for 2 €&, and S(h) © S(f) the inclusion S(Ph) < S(f) follows.

It is proved next that h)gy, € R[P] for every f and h in R[P].
The equation A = Ph = P(h)ss) + P(h)syy) and the fact that the
support of the function P(hYXs) is contained in S(f) implies that

hYsiry = P(hYsis)sir + PhXsir ) sy = P(hXsir)Asiry
ThuS h’XS(f)’ - P(th(f)/) because
[ BYsir |l = 1| P(AYsiry ) serr || = I P(hXsiny) | = [l AXsiy |l

implies P(hYss)Xsisyr = P(h)sisy).  Therefore his ) € R[P].

This result and an argument as in Proposition 2 show that a
sequence of functions {f,};—, can be chosen from R[P] such that
Uz, S(f.) = T, (the support of P) and such that the sets S(f,) are
pairwise disjoint. Each operator Usz;PU,, is positive on functions
supported on S(f,). Therefore UyPUys is positive on £, where ¢ =

=, 0(f,), because for each nonnegative h €L, the equality

h = ;:Jl s + hXr
shows that

(UsPUph = 3. (UPU)Wss,)

Ms

(UWPUo(fn))(hXS(f”)) =0.

1

£
Il
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By Proposition 3 there exists a o-subalgebra .7~ of & and a
weight function & for .7~ such that U,PU; = E;, and therefore,
since UU, = U,U; is the identity operator, such that P = U;E; U,.

The proof of the uniqueness of the pair (7 k) proceeds as follows.
Suppose P = U3;E7 U, = U3EY Uy, where 97 is a o-subalgebra of .57
h is a weight function for 97" and + is a measurable function of
modulus one. Then

SL(X, T pt5) = RUsEY Uy
= RUREY Uyl = $hU(X, 7 1)

or ¢k®(X, 7 p) = ¥he&(X, % pt-y). Now it is clear that the
support of each function in ¢kR(X, 7, p.-) is in %~ and vice versa.
Hence it follows from this observation and the definition of weight
function that &~ = 977 Further, there exists a .7-measurable func-
tion f in €, such that S(f) = S(k) and ¢k = ¥hf, which implies that
k=|8k|=|¥hf|=h|fl. Now by ()

sy = E7(k) = EZ(h | f])
=|fIE7(h) = |f] Lsay = L] Xsay
or | f| = Xsw and h = k.

REMARK. The measurable function of modulus one is not unique.
It can be easily shown that necessary and sufficient for the contractive
projections UzE;” U, and UyE;” Uy, to be equal is that ¢ be 7-
measurable.

The results of the preceding propositions are collected in Theorem 1.

THEOREM 1. Let P be a contractive projection on 8,. There
exists a unique T,€ .S such that if the operators Q and A are defined
t0 be Qf = P(Yr,f) and Af = P(Yz, f) for every f €8, then

(1) @ s a contractive projection having the same range as P
that satisfies (x); and

(2) A 1is a contraction that is nilpotent of order two for which

R[A]C R[P] and A{)r,23} = (0).
Further, there exists a o-subalgebra 7~ of & a weight function k
for 7~ such that T,= S(k) and a measurable function ¢ of modulus
one for which Q = UzE; Uy, and the pair (7, k) is unique. More-
over, an operator P = UzE;7 U, + A is a contractive projection.

COROLLARY 1. An operator Q on L, is a conditional expectation
(Q = E7 for some o-subalgebra 7~ of &) if, and only if,

1) @¥=Q,

2) Q1=1, and



454 R. G. DOUGLAS
3 el =1.

Proof. From Proposition 1 it follows that a conditional expection
satisfies (1), and (2) and (3) which are well known properties of a con-
ditional expectation. Assume that Q is an operator that satisfies (1),
(2), and (3). Conditions (2) and (3) imply that Q is positive as follows.
For every function % €, such that 1 = = 0, the inequality

N = 1Al =111 — Al
z[[QL —@Qhr|l = |[1]| = |QR[ = IL]] = [[A]]

holds and implies that ||1]] — ||Qk]| = ||1 — QR ]| or that 1 = Qh = 0.
Thus @ is positive. Further, @1 = 1 implies that the support of Q is
X and that @ satisfies (x). Therefore it follows from Proposition 3
that there exists a o-subalgebra .7~ of & and a weight function k&
for 77 suchthat @ = E7. Butl =Q1 = E71 = kE”1 = k and hence
Q = E”. Therefore Q is a conditional expectation.

REMARK. This is actually a corollary to Proposition 3. It is related
to results of Moy [6, Theorem 2.2, p. 61], Bahadur [1, Corollary 2,
p. 566], and Rota [7, Theorem 1, p. 58], Sidak [8].

COROLLARY 2. A contractive projection that satisfies (x) ts pos-
ittve, 1f and only tf, its range is a closed vector sublattice of L.

Proof. If P is a positive contractive projection, then R[P] is a
closed vector sublattice by Lemma 2. Assume that P = UzE;” U, and
R[P] is a closed vector sublattice. Then P(¢k) = @k and because k =
SUDo<o<ss 1/2{€*0k + ¢~ %0k} and each of the functions e*¢k + ¢ sk is
in the vector sublattice R[P], it follows that k € R[P] and thus Pk = k.
The same argument used in the preceding corollary can now be used
with % in place of 1 to show that P is positive.

COROLLARY 3. A contractive projection that satisfies (x) is deter-
mined by its range.

Proof. Suppose P = UzE; U, and Q = UzE? U, are contractive
projections satisfying (%) such that R[P]| = R[Q]. Then

(X, T, p15) = FhE(X, 5 1)

and as in the proof of Proposition 4 it follows that &~ = % and
k=h. Thus @y is a .7-measurable function. Now the proof given
for () also shows that ¢+ a bounded .7-measurable function and f
an 2, function implies E7(¢v:f) = ¢ E7(f). Therefore, for f in &,
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it follows that (UysB” Us)(f) = vSEZ(¥4) = $3ve B (F) = B (f)
and so (UzE; Uy) = Uzl UygEy Uy Uy = UzEY Uy.

There is a certain subclass of contractive projections which have
a very simple structure. A different characterization of these is con-
tained in the following proposition.

ProprosiTiON 5. Let P be a positive projection £, for which I — P
is also positive. Then there exists a subset T,€.%” such that Pf = ), f
for every f e &,.

Proof. Set k = P1; then each of £k and 1 — &k is a nonnegative
function. Further set # =k A (1 — k); then

0=(I—Pk=I—Pk—h)+I— Ph,

where each of the functions (I — P)(k — h) and (I — P)k is nonnega-
tive. Thus (I — P)h = 0 and similarly P» = 0. Therefore k N (1 — k) =
h = Ph + (I — P)h = 0 and thus S(k) N SA — k) = ¢.

If f is assumed to be any nonnegative function in £, then nk =
P(f A nl) for every integer % because nl = f A nl. Thus Pf = Ysw/,
because S(Pf)c S(k), S[{I — P)f1cSA — k), and Pf+ (I — P)f = /.
Therefore Pf = Ysu S for every fel.

ReMARK. This proposition is also valid for positive projections on
LAX, ), for 1 £ p < oo,

The following further characterization of this class of projections
on 2,(X,.%, i) for p # 2 can be obtained as a corollary to Proposition
5 using a result due to Lamperti [5, Corollary 2.1, p. 460]: Let P be
a projection on 2, such that [|f||2 = || Pfll5 + [|(I — P)f||5 for every
f €8, Then there exists a subset T,€.9” such that Pf = ), f for
every f €%,.

3. The range of a contractive projection. In this section the
problem of what subspaces of ¥, are the range of a contractive projec-
tion is raised and solved. Two characterizations are given; for each,
the problem of determining the subspaces that are the range of a
positive contractive projection is first considered, and then the more
general case is reduced to it. An obvious necessary condition is that
the subspace be closed.

PROPOSITION 6. A subspace is the range of a positive contractive
projection if, and only if, it is a closed vector sublattice of %,.

Proof. That the range of a positive contractive projection is a
closed sublattice of &, is a result of Lemma 2.
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If the subspace M if assumed to be a closed vector sublattice of
&, then by Lemma 1 there exists a o-subalgebra &~ of & and a
weight function & for .7~ for which M = k¥(X, 7, t-). Thus M =
E7 (%(X, & 1)) and the proposition is proved.

PropoSITION 7. A subspace M is the range of a contractive
projection if, and only if, there exists a measurable function ¢ of modulus
one for which U, is a closed vector sublattice of £,.

Proof. If P is a contractive projection and It = P(¥,), then N =
(U3QUy)(R,) for some measurable function ¢ of modulus one and pos-
itive contractive projection Q; thus U, M = Q(¥, is a closed vector
sublattice of ¥, by Proposition 6.

If for a subspace It and measurable function ¢ of modulus one,
the subspace U, is a closed vector sublattice of £, then by Pro-
position 6, there is a contractive projection P for which P(%,) = U,MN.
But then M is the range of the contractive projection UzPUs,.

ProposITION 8. A subspace is the range of a positive contractive
projection if, and only if, there exists a positive isometrical isomor-
phism from some R, space onto it.

Proof. If the subspace It is the range of a positive contractive
projection, then M = k¥(X, 7, p-) for some o-subalgebra 7~ of &
and weight function & for 7. Further, the mapping from 8(X, .7, ¢t-.)
to (X, & p) that takes a function 2 to kh is in view of equation (T)
a positive isometrical isomorphism onto 9%, where g, is the measure
defined on .7~ by the indefinite integral Sxm,,)d;tf.

Assume that (Y, %, v) is a measure space and that @ is a positive
isometrical isomorphism from ¥(Y, %, v) onto the subspace M. The
proof of the proposition is completed by showing that M is self-adjoint
and fredk for every real valued feM. Since LY, %, v) is self-
adjoint and @ takes real valued functions onto real valued functions,
M is self-adjoint. Further, if the function f eI and is real valued,
then f = @{[@7f]*} — @{[@7'f]}, where each of @{[@~'f]*} and @{[@~'f]"}
is nonnegative. Moreover, the equality

AN =1No7 1l =~ FT Il + 27 f 17|l
=l o{[@7F 1} + [[2{[2~F T}

implies that f+ = @{[@~*f]*} and thus f*e .

PROPOSITION 9. A subspace is the range of a contractive projec-
tion if, and only if, it is isometrically isomorphic to some %, space.
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Proof. It is clear that a subspace WM is isometrically isomorphic
to U, M for each measurable function ¢ of modulus one. Therefore,
it follows from Propositions 7 and 8 that the range of a contractive
projection is isometrically isomorphic to an &, space.

Assume that (Y, %, v) is a finite measure space and @ is an iso-
metrical isomorphism from 2(Y, %, v) onto the subspace M. Set h = O1
and let 7" denote the composite map Usyp@ from 8(Y, Z, v) onto Uy dt.
(Recall that 0(h) = /| h|.) Then for every nonnegative f € (Y, %, v),
the equality ||f + 1|l = |||l + ||1]| implies that

WZf + ZL = 1ZF[ + [[#1]] .

Thus because #1 = 6(h)h is nonnegative and S(¥'f) < S(h), the func-
tion Zf is nonnegative and ¥ is a positive isometrical isomorphism from
LY, Z, v) onto UszzM. Therefore it follows from Propositions 7 and
8 that M is the range of a contractive projection.

Assume that (Y, %, v) is a measure space and @ is an isometrical
isomorphism from (Y, %, v) onto IN; then v is totally o-finite. If v
were not totally o-finite, then there would exist an uncountable set of
nonzero functions {fu}ees in (Y, Z, v) such that

| fa + Fell = I[fa — Fell = [l full + [[fell

for every distinet pair of @ and 5 in A. But then

| 2(Fa) + (fe) | = || (Fa) — O(fe)
= l2(f) | + [[@(f) Il

which implies S(@(f.)) N S(@(fp)) = ¢ for every distinct pair o and 8 in
A, which is impossible since 9 is a subspace of £,(X, & 1) and p is
finite. Thus, v is totally o-finite and there exists a finite measure & on
(Y, %) such that £(Y, Z, v) is isometrically isomorphic to &Y, %, &).
Therefore there is an isometrical isomorphism from (Y, %, &) onto IM
and the proposition is proved.

These results are summarized in the following two theorems.

THEOREM 2. For each subspace M of L, the following statements
are equivalent:

(1) M is the range of a positive contractive projection,

2) M is a closed vector sublattice of ¥, and

(3) there exists a positive tsometrical tsomorphism from some
Q, space onto M.

THEOREM 3. For each subspace W of &, the following statements
are equivalent:
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(1) M is the range of a contractive projection,

2) UM is a closed vector sublattice for some measurable func-
tion ¢ of modulus one, and

8) M is isometrically isomorphic to some £, space.

4. Extension to general measure spaces. The results about
contractive projections on an ¥, space defined for a probability measure
can be extended quite satisfactorily to the case of a totally o-finite
measure. With the use of an isometrical isomorphism, information
about contractive projections for the totally o-finite case can be obtained
from the results in §§2 and 3.

In certain special cases a more direct attack is appropriate. Let
(X, . 1) be a totally o-finite measure space; then there exists a
probability measure v defined on & that is equivalent to g (that is,
2 and v are mutually absolutely continuous). Let  denote the Radon-
Nikodym derivative dy/dy, that is, + is the unique positive measurable

function for which the equality Ssa/fdu = Ld‘u holds for every Se .o

Then the map ¥ that takes a function f e ®(X, . & ¢) to the function
far is a positive isometrical isomorphism from £,(X, .&; p) onto £,(X, & v).

If P is a contractive projection on 2,(X, & ), then ¥P¥* is a
contractive projection on ¥(X, .55 v) and thus is susceptible to the
analysis of §§ 2 and 3. An attempt at using this analysis on P directly
will not succeed in general, because it is impossible to define the condi-
tional expectation for certain o-subalgebras of .&” in the usual manner.
The hypothesis needed on a o-subalgebra in order that the conditional
expectation can be defined is that the restriction of y to the o-algebra
be locally o-finite. If it can somehow be ascertained that the o-sub-
algebra involved in the study of a givnn contractive projection P satisfies
this condition then the characterization P = UzE, U, + A is valid. Fur-
ther, in any case the conclusions of Theorems 2 and 3 remain valid and
Lemma 1 can be stated as follows: a subspace M of L(X, & ) is a
closed vector sublattice if, and only if, there exists a o-subalgebra .7~
of & and a weight function %k for .~ with respect to v such that

m= WX, v, .
ap

If (X, .5 ) is just assumed to be a measure space, then informa-
tion about contractive projections on £,(X, & ) can be obtained using
the results of §§2 and 3 and the preceding remarks, but the statement
of precise theorems is difficult. The following remarks give an indica-
tion as to how results about the totally o-finite case can be applied to
a more general measure space.
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If P is a contractive projection on £,(X, & 1) and f € R[P], then
u restricted to S(f) is totally o-finite. Moreover, if P satisfies (*) the
subspace M = X5/ 8u(X, & 1) is a reducing subspace of P, that is,
P c M and PR, O M8, EM]. Further, it is still true (although
the proof is technically more difficult) that an arbitrary contractive
projection can be decomposed into a regular part and an arbitrary
part. Therefore, in a sense, the study of a contractive projection on
2(X, .o 1) can be reduced to the study of contractive projections on
totally o-finite ¥, spaces. Difficulties arise in trying to assemble the
information obtained to give global information. The problem of “sets
of measure zero” becomes acute and only in certain cases can it be
resolved satisfactorily.

REMARK. There have been attempts at generalizing the concept
of conditional expectation to the contexts just considered (see e.g., [2,
Theorem 2, pp. 300-301]). This is achieved by choosing certain of the
properties of conditional expectation and then showing the existence
of an operator having these properties. These results appear, however,
to be relevant to the study of contractive projections only in those
instances where the preceding procedure already yields satisfactory
results.

The preceding procedure is actually applicable in a more general
context. Let (X,.S”) be a measurable space and M(X, .&”) denote the
Banach space of finite complex valued measures defined on .5/ in which
the norm of a measure is defined to be the total variation. Let P be
a contractive projection defined on M(X,.&”), and v be a measure in
M(X, s”) for which Py =yvy. Assume that R(X, & |v|) has been
identified as a subspace of M(X, .$”) in the obvious way. Then the
containment P{8(X, & v} C8(X, . |v|) can be obtained from the
results of §§2 and 3. Moreover, M(X, &) can be written as the direct
sum of normal subspaces (a subspace N of M(X, . S”) is said to be
normal if it is a closed vector sublattice having the further property
that 7€ N and &e€ M(X, ") such that |n| = |&]| implies £ € N) such
that all of the subspaces but one are reducing and can be identified
as an &, space and the remaining subspace is the “complement of the
support of P”. Further, if & P] is now defined to be the subspace
of M(X, &) consisting of measures that are singular relative to each
measure in R[P], then K[P] is the “complement of the support of P”.
It is clear, however, that the possibility of being able to organize
global results in this context is extremely remote.

5. Contractions on £,(X, . ¢). Certain arguments used in the
proofs of 8§82 and 3 are applicable in the more general context of a
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contraction operator defined on an £, space. The results obtained with
the applicable argument are now stated.

ProposiTION 10. If (X, & 1) is a finite measure space and A is
a contraction on 8,(X, .5 p¢) for which Al =1, then A is positive,
AR(X, & M C8(X, & 1) and || Al = 1.

Proof. That A is positive follows from the proof of Corollary 1
and the rest is now obvious.

ProrosiTioN 11. If (X, .% p) is a totally o-finite measure space,
A is a contraction on £,(X, .95 ¢) and T, is the support of the sub-
space {f | Af =f}, then A{Yz,®(X,.% )} C 1r," (X, (1) and there
exists a measurable function ¢ of modulus one such that U;AU, is
positive on X -8,(X, & ).

Proof. This result follows from the first three paragraphs of the
proof of Proposition 4 in which only the fact that Pf = f is used.

ProposITION 12. If (X, % 1) is a measure space, A is a contrac-
tion on 8,(X, & 1), and f is a function for which || Af|| = || f|| # 0,
then the operator UzznAUyy, is positive on Ys,% (X, & p).

Proof. If ||Af|| = I|f]|l, then for each nonnegative function &€
8(X, & 1) for which |f| = h, the inequality

WA= 10O = IIf — 0D = | Af — A@GHB) |
z [|AS1 = 1 A@HOR || = I1F 1] — [16(H)R |l

implies that
HAS — A@HL || = | AFI] — [ A@()R) |]

or that Uz AUy sk is positive. The proposition now follows.

ProposITION 13. If (X, . p¢) is a measure space and A is a pos-
itive contraction on 2,(X, & [ M (X, &)], then the subspace of fixed
points {f| Af = f}H{v| Av = v}] is a closed vector sublattice.

Proof. This result follows using the proof of Lemma 2.

Using techniques developed in this paper it is possible to prove the
following Mean Ergodic Theorem for contractions on £,(X,.&; p). It is
a generalization of a theorem of Kakutani [4, Theorem 9, p. 534] and
like it, is proved using the Yoshida-Kakutani Mean Ergodic Theorem.
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PropOSITION 14. Let (X,.%; 1) be a measure space, A be a con-
traction on 2,(X, .5 p), A, denote the operator (1/n) >."= A7, and M
denote the normal subspace of &,(X,.&; p) generated by the subspace
{f1Af =r}. Then for every hec IR, the sequence {A4,h};_; converges
in norm to Pf, where P is the unique contractive projection defined
on M having range {f| Af = f}.

Proof. If f and h are functions in 2,(X, .5 p) for which Af = f
and |f| = |h|, then the sublemma that appears in the first paragraph
of the proof of Proposition 4, shows that |f| = | Ak|, and so |f| = | A,h|
for n =1,2,3, -+« Thus, it follows from the Yoshida-Kakutani Mean
Ergodic Theorem [10, Theorem 1, p. 192] that the sequence {A,f}7-,
is a norm Cauchy sequence. Further, if {4,fy}r-i is & norm Cauchy
sequence for each function fy, N =1, 2, 3, where f converges in norm
to a function f, then {4,f};-, is also a norm Cauchy sequence. There-
fore, for every h in the normal subspace 9t generated by the subspace
{fIAf = f}, the sequence {A4,h}>, is a norm Cauchy sequence. More-
over, it is obvious that the map that takes a function 2eI to the
limit function is the contractive projection defined on M that has range
{(f1Af=rh

This proposition is also valid for contractions defined on M (X, .&°);
that is, for a contraction A, the sequence {(1/n) >\7=; Av}y., is a norm
Cauchy sequence for every v in the normal subspace of M(X, .&”)
spanned by the subspace {&] A& = &}.

6. Concluding remarks. Although only complex &, spaces have
been considered in this paper, the results are also valid for real %,
spaces.

With the aid of a lemma stating that a contractive projection on
a Hilbert space is Hermitean and with the Spectral Theorem for
Hermitean operators it can be shown that the “universal model” of a
contractive projection on a Hilbert space is multiplication by a char-
acteristic function. Similarly, it is an easy exercise to prove using
Theorem 1 that the “universal model” of a contractive projection on
&, that satisfies (%) is a conditional expectation followed with multi-
plication by a characteristic function.

The class of contractive projections on an &, space is related to
certain special projections on £.. Let (X, & 1) be a probability space.
If Pis a contractive projection on £,(X, & ¢), then the adjoint operator
P* is a contractive projection on 2.(X, . ). (Recall that P* is the
unique operator on 2.(X, & p) = &H(X, & p) that satisfies the relation

S (Ph)gdp = S h(P*g)dp for every he (X, & p) and g € 8.(X, & p).)
X X
If P = U3E; Uy, then because the conditional expectation is self adjoint
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on &(X, .S 1) (see e.g. [1, Corollary 2, p. 566]), it follows that P*g =
UzE 7 (k¢g) for every ge8.(X, & p). If P is positive, then P*g =
E“(kg) is an averaging operator on 2.(X, .~ y), that is, P*f-P*g =
P*(f-P*g) for every f and ¢ in 2.(X, & ). Further, if E7(k) =1,
then P* is a conditional mean in the sense of Wright [9, p. 199].
Although all conditional means are not obtained in this way, in general,
this is an interesting subclass of conditional means.

Added in proof. The proof of the following corollary to Theorem
1 is immediate:

COROLLARY 4. Let P be a contractive projection on . Then
P& & and || Pll. =1 tf and only vf P salisfies (x) and there
exists a o-subalgebra 7 of & aTye 7, and a measurable function
¢ of modulus one for which P = Uzys E” U,.
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