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CONTRACTIVE PROJECTIONS ON AN s1 SPACE

R. G. DOUGLAS

This paper discusses the class of contractive (operator norm
one) projections on the complex Si space of a probability
measure. In particular there is a characterization of such pro-
jections and of their range spaces, and also of the closed
vector sublattices of Si and the subspaces of 8i that are
isometrically isomorphic to some Si space. Further results
include an extension of the above results to more general
measure spaces and several results about contraction operators
on Si.

Let (X, &*, μ) be a probability space. Let E*' denote the con-
ditional expectation for the σ-subalgebra ^ of S?. A nonnegative
function k e S2(X, &* μ) is said to be a weight function for J7~ if
E^k = χτ where χτ is the characteristic function of some Γ e ^
The weighted conditional expectation Ef is defined to be: Ef — k E^.
For each measurable function φ of modulus one, let Uφ denote the multi-
plication operator Uφf=φ f. Let 9ΐ[P] denote the range of P. A
projection P is said to satisfy (*) if P{f\ (/) 3t[P] = (0)} = (0).

THEOREM 1. An operator P on Sx is a contractive projection satis-
fying (*) if and only if P — UφEf Uφ for some σsubalgebra J7~ of £/*,
weight function k for j ^ ~ and measurable function Φ of modulus one.

The characterization is completed by showing that each contractive
projection splits canonically into a contractive projection that satisfies
(*) and an "arbitrary" contraction operator with certain properties.

COROLLARY. An operator Q on Sx is a conditional expectation
if and only if

(1) Q2 = Q, (2) || Q || ^ 1, and (3) Ql = 1.

THEOREM 3. For a subspace 2JΪ of Sx the following statements
are equivalent:

(1) 2JΪ is the range of a contractive projection,
(2) UφW, is a closed vector sublattice for some measurable func-

tion Φ of modulus one, and
(3) 3Jϊ is isometrically isomorphic to some 21 space.

LEMMA 1. Let 2JΪ be a closed vector sublattice of S : (α closed

Received February 6, 1964. Research supported in part by an N.D.E.A. Fellow-
ship and in part by a grant from the National Science Foundation.

443



444 R. G. DOUGLAS

self adjoint subspace in which the real functions form a lattice).
Then there exists a σ-subalgebra ̂ ~ and a weight function k for
J7~ such that 3JΪ = fe S^X, ^ μ^-), where μ^ denotes the restriction
of μ to

An operator P defined on a Banach space is said to be a projection
if P 2 = P. Attention is confined to a subclass of projections. The
particular subclass under study is the class of contractive (operator
norm one) projections on an 21 space. The methods developed shed
some light on general contraction operators defined on an Sx space; in
particular, a relation between such operators and positive operators is
shown.

The main theorem in this paper gives a characterization of con-
tractive projections on an 2t space. This result is obtained in several
steps each of which is stated as a separate proposition and the final
result is then summarized in Theorem 1. The "concrete model" of
a contractive projection is given in Proposition 1 and is the conjuga-
tion (in the group theoretic sense) of a "weighted conditional expec-
tation" by a multiplication operator where the "multiplier function"
has modulus one. It is further shown in Proposition 1 that this
"concrete model" satisfies a certain "regularity hypothesis". In Proposi-
tion 2 it is shown that a general contractive projection splits canonically
into a "regular" contractive projection and an arbitrary contraction
with a fixed range and domain. In Propositions 3 and 4, the char-
acterization is completed.

Several corollaries to Theorem 1 are given; one of these states
that a contractive projection that takes the function 1 into 1 is a
conditional expectation. This is related to results of Moy [6],
Bahadur [1], Rota [7], and Sidak [8]. Also in the proof of Proposi-
tion 3, it is necessary to determine the structure of those closed sub-
spaces of an Sx space that are also sublattices; this result is stated as
Lemma 1 and is related to results that appear in Moy [6], Bahadur
[1], and Brunk [2].

In § 3 the problem of determining which subspaces of an S>1 space
are the range of a contractive projection is raised. Two solutions to
this problem are given in Theorem 3. The second solution further
solves the problem of determining which subspaces of an 82 space are
themselves Sx spaces (in the sense of being isometrically isomorphic
to an S2 space). In this sense Theorem 3 can be regarded as a "Stone-
Weierstrass type theorem" for Sx spaces.

In §§2 and 3 only 2λ spaces defined relative to finite measure
spaces are considered. The extension of these results to more general
measure spaces is taken up in § 4. In § 5 several results about con-
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traction operators on an Sx space (including a mean ergodic theorem
for such operators) are stated and proved. Finally, a few concluding
remarks appear in § 6.

The results of this paper represent an extension and refinement
of certain results from the author's doctoral dissertation which was
submitted to the Graduate Faculty of Louisiana State University in
August, 1962. The author wishes to acknowledge his indebtedness to
P. Porcelli for his guidance and assistance in preparing that disserta-
tion. The author is also grateful to the referee for many helpful
suggestions.

1* Technicalities and definitions* The standard work of Halmos
[3] will be used as a basic reference. All measures considered in this
paper are assumed to be countably additive.

Let (X, <9*, μ) be a fixed probability space, that is, X is a set,
S^ is a σ-algebra of subsets of X, and μ is a measure defined on S^
for which μ{X) = 1. Sx = SX(X, £f, μ) will denote the usual Banach
space of complex valued integrable functions defined on X, in which
two functions are regarded as equal if they are equal almost every-
where relative to μ, and in which the norm of a function / is defined

to be 11/11 = I \f\dμ. Hereafter, the relation f — g will be inter-
Jx

preted to mean that the functions / and g are equal almost every-
where relative to μ, and the relation S> = T, to mean that μ(Sf] T) +
μ(S' f)T) = 0.1 The relations of inequality and containment will be
interpreted similarly. Further, for each subset S e ^ let χs denote
the characteristic function of S, that is, χs(x) = 1 if x e S or 0 if
x 0 S. Lastly, define the support of a measurable function / to be
the measurable subset S(f) = {x \f(x) Φ 0}.

For the σ-subalgebra ^ of ^ let E^ denote the conditional
expectation for ^ 7 which is defined for / e Sx as follows: E^f is the
unique ^^measurable function having the property that \ E^fdμ —

S J5Γ

fdμ for every subset T e ^ 7 That such a function exists and is
T

unique follows from the Radon-Nikodym Theorem. A nonnegative
measurable function k is said to be a weight function for ^ if
\ kdμ = \ χτβμ for every T e j^~f where To — S(k) and is a set in ^~
for which Se £f and Γ o c S imply Se ^". (The essential property is
that E^(k) is a characteristic function; the additional hypothesis is
imposed for uniqueness considerations later on.) For a σ-subalgebra
^ of Sf and weight function k for ^ 7 the weighted conditional
expectation Ef is defined to be: Ef = k E^.

An example of a nontrivial non-^^measurable weight function can
1 Note, S' = X- S for every subset Se r.
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be obtained as follows. Let X be the unit square [0, 1] x [0, 1], £S be
the σ-algebra of Lebesgue measurable subsets of X, ahd j?~ be the
σ-subalgebra of Sf consisting of sets of the form E x [0,1]. It can
be easily verified that the function k(x, y) — 2y is a weight function
for J7~ that is not .^measurable. Moreover, in this case S(k) = X.
This example also yields the nontrivial weighted conditional expecta-
tion Ef.

Lastly, for each measurable function φ of modulus one (that is,
I φ(χ) I — 1 for x e X), the operator Uφ is defined as follows: Uφf = Φf
for every / e S1# Notice that Uφ is an isometry on Sx and that Uφ Uφ

is equal to the identity operator on S lβ

All operators considered in this paper are assumed to be bounded
and linear, and to have 2± as domain, and to have range contained in
8 l β An operator P is said to be a contraction (or to be contractive)
if | | P | | <Ξ 1; to be positive if Pf ^ 0 for every nonnegative function
/ G S2; and to be a projection if P 2 = P. Let 3ΐ[P] denote the range
of P (that is, 3ΐ[P] = P(S0), and ®[P] the subspace { / l / e ^ and
/ 9t[P] = (0)}. Notice that each of Sft[P] and fl[P] is a closed sub-
space of Sx. A projection P is said to satisfy (*) if P{$[P]} = (0).
(This is the regularity condition referred to in the introduction.)

2* Characterization of contractive projections* In this section
the characterization of contractive projections is obtained. It is first
shown that a certain class of operators (the "concrete models") consists
of contractive projections that satisfy (*).

PROPOSITION 1. Let ^ b e a σ-subalgebra of S^ k a weight func-
tion for ^~, and φ a measurable function of modulus one. The operator
U-φEjΓUφ is a contractive projection that satisfies (*).

Proof. The following useful equation will be derived first: (ΐ) For

each ^""-measurable function heS>u the equality \ khdμ = \Xs(k)h'dμ

holds for every T e ^ .
To see this observe that the special case

\ kχsdμ = I kdμ = I χS{k)dμ = I χs{k)χsdμ

where S e J7~, follows from the definition of weight function. From
this special case it further follows that (t) holds for each
function h. Now for h a nonnegative .^measurable function in
there exists an increasing sequence {hn}~=1 of nonnegative
functions converging pointwise to h. The sequence {khn}n=i is also an
increasing sequence of Sx functions that converges pointwise to the
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function kh, and this and the fact that

I khndμ ^ I hndμ ^ \ hdμ
J x )x J x

implys that kh is in Sx and that

khdμ = lim khndμ = lim I χS[k)hndμ = I γ^s{k)hdμ

for every T e jτ~. Thus (f) has been proved.
The case Φ = 1 is now treated. For every / e 2i9 the inequality

\\Eff\\ = \ \Eff\dμ=-\ k\E^f\dμ^\ \E'f\dμ
JK JX JX

= sup \

- sup {j/d/ί - ^fdμ \Tejr}^^\f\dμ = \\f\\

is obtained, and thus E,Γ is a contraction. Further, for every J7~-
measurable function h e 2U the equality E^(kh) = hχSUc) is a restate-
ment of (f). Therefore, (Ef )2 = kE^(kE^) = kE^ = £?f and so ̂ f is
a projection. Lastly, it is clear that a necessary condition for / e St[Ef]
is that fk - fEf 1 = 0, and so j£f/ = feJS/^/ = 0 because S(k) e ^
and S(f) Π S(fc) - φ imply S(£7^7) Π S(&) - Φ. Thus £/ Γ{^[-E/Γ]} - (0)
and Ef is a contractive projection that satisfies (*). (It is well known
that E^ is a contractive projection (see e.g. [6, pp. 48-49] and [1,
pp. 565-566])).

The operator UφEfUφ is also a contractive projection:

(UφEfUφ)* = UφEjfUφUφEfUφ = U-φEfEfUφ = U$EfUφ

and

Moreover, because Tχ[U-φEfUφ] = U$i[EΓ], then
Therefore a necessary condition for / e St[UψEfUφ] is that fk = 0, and
so (UφEf Uφ){^[UφEf Uφ}} = (0). Thus UφEfUφ is a contractive
projection that satisfies (*).

Next it is shown that every contractive projection can be written
as the sum of a contractive projection having the same range space
that satisfies (*) and of a contraction that is nilpotent of order two.
This decomposition is canonical and reduces the study of contractive
projections to the study of those that satisfy (*).

PROPOSITION 2. Let P be a contractive projection on 81# There



448 R. G. DOUGLAS

exists a unique subset To e 6^ (called the support of P) such that
S(f)dTQ for every feϊR[P] and for which Λ[P] = χ^ ^ . If A
denotes the operator defined to be Af = P(χτ^f) for every / e 8U then

(1) A is a contraction,
(2) g*[A]c3t[P]f

(3) A2 = 0,
(4) AiXrfa} = (0), and
(5) P — A is a contractive projection with the same range as P

that satisfies (*).

Proo/. Select a sequence of functions {/J~=o from the range of
P as follows: set /„ = 0 and assuming that the functions {fn}ξ=o have
been chosen, select fN such that μ[S(fN) - [Jn^o S(fn)] > 1/N if this
is possible or set fN = 0 if it is not. Set To = (JΓ=o S(fn). It is
clear that TQe^ and so it remains to prove that S(f) c To for every
fe!R[P]. For each ge^P] either % ) c Γ 0 or there is a positive
integer If for which μ(S(g) — To) > 1/M. The existence of such an
M is, however, impossible because g would have been selected as fN

for some N. The alternative to this is that it was possible to select
fN Φ 0 for N ^ ikf, which would imply that

^ Σ μ\s(A) - U
n = iH" L *=0

^ Σ

This is a contradiction and thus S(f) c To for every / G 3ΐ[P]. (This
construction will be used several times in this paper. For each sub-
space 2JΪ of Si the set TQ obtained from this construction is called the
support of 2JΪ.)

If the operator A is defined as in the statement of the proposi-
tion, then the properties attributed to it follow readily.

The operator A is unique in the sense that it is the unique operator
for which P — A is a contractive projection with the same range as P
that satisfies (*). The proof of this depends on the fact that a con-
tractive projection is determined by its range (see Corollary 3).

The structure of the closed vector sublattices of Sx is determined
in the following lemma. (Note that by vector sublattice is meant a
selfadjoint subspace—that is, a subspace such that / is in it whenever
/ is—for which the subspace of real valued functions forms a sub-
lattice.) This lemma is very important to the proofs that follow and
will be used also in § 3. It is related to results that appear explicitly
in Bahadur [1, pp. 565-566] and Brunk [2, Theorems 4 and 5, p. 302]
and implicitly in Moy [6, pp. 51-58].

LEMMA 1. Let 9JI be a closed subspace of £χ that is also a vector
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sublattίce. Then there exists a σ-subalgebra J7~ of £^ and a weight
function k for J7~ for which 2Ji = fc S^X, ^ μ#). Moreover, the
pair {J7~, k) is unique. (The measure μ^ is the restriction of μ

Proof. There exists a nonnegative function h e 3Dΐ such that
S(f) c S(h) for every / e 9Jϊ. To see this select a sequence of real
valued functions {/n}»=o from 2Ji as in the proof of Proposition 2,
discarding now the zero terms. The function h — Σ~=o (2W \\fn II)"11/«
is in SDΪ and has the desired property.

If ^l = {T e SS I hχτ e 211}, then ^ is a σ-subalgebra of ^ because
2Ji is a closed vector sublattice of S1# Further, the following argument
shows that there exists a function keίΰl such that

1 Xs(h)dμ = \ kdμ
JT JT

for every T e ^~h. The positive measures defined on (X, j^l) by the

indefinite integrals \χSu)dμ and IMμ are mutually absolutely con-

tinuous. Thus there exists a J7\-measurable nonnegative function g

by the Radon-Nikodym Theorem such that I χS{h)dμ = I #Mμ for every

T e J7~h. Moreover, g is the pointwise limit of an increasing sequence

{Qn}n=i °f ^I-simple nonnegative functions, and because the summable

function gh dominates each function gnh, the sequence {gnh}Z=1 must

converge in norm to gh. Thus gh is in Wl because each of the func-

tions gnh is in 3ft and 3Dΐ is closed. Therefore, the function k = gh

is a weight function for ^\ which is in 9Ji.
Further, it can be shown readily that the tf-subalgebra j?\ is the

same as J7\. To see this suppose that T e ^ . Then &χΓG2Ji and so
also is each of the functions (h — nkχτ)

+. Now because S(h) = S(k)
it follows that the sequence {(h — nkχτy}Z=1 converges in norm to the
function hχτ, which must also be in 2JΪ. Thus T e ^~h and so ^\ c j?\m

The proof that Jfh c ^ proceeds similarly. If J7\ is denoted now by
just ^ 7 then what remains is to prove that UUΪ = fcS^X, ^ i"̂ -)

First, the inclusion k2±(Xf ^ μ^) c SOI is immediate. This follows
because each nonnegative / e SX(X, ^ μ#) is the pointwise limit of an
increasing sequence {fn}n=i of ^ s i m p l e nonnegative functions. Hence,
because

= \jcfndμ^\χfndμ=\\fΛ\\ £

the function kf is summable and thus kfn converges in norm to kf.
Therefore, k&^X, ^ μ*) c SUi.

Assume that / is a nonnegative function in 9JI. Because for each
λ > 0 the sequence {fen}»=i, where hn = [w(/ — λfc)+] Λ &, is increasing
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and dominated by the summable function k, it converges in norm to
a function he%3i. Moreover, h = ^ [ ( / _ A f c ) + ] and thus S[(f — Xk)+] e ^\
It is now easy to see that / is the limit in norm of a sequence {kgn}~=1,
where each gn is a ^ s i m p l e function for which S(gn) c S(k). Thus,
because \\kgn — kgm\\ — \\gn — gm\\ for every n and m, the sequence
{g^n=i converges in norm to a function g e £3(X, ^ /V) and f = kg.
Therefore 3Dΐ c k2x(Xf J7] μ^-) and the proof is complete. The uniqueness
of the pair (^7 k) is proved easily.

The next lemma states that the range of a positive contractive
projection is a closed vector sublattice of S1# This result is isolated
as a lemma because it will be used again in § 3.

LEMMA 2. If P is a positive contractive projection, then 9ΐ[P]
is a closed vector sublattice of S1#

Proof. Because P is a positive projection, the range of P is a
closed self-adjoint subspace. Therefore, to prove that 9ΐ[P] is a closed
vector sublattice of Sx it is sufficient in light of the identity /& V g =
l/2{fc + # + I & — # 1} to prove that /+ e 3t[P] for every real valued
/ e ΪR[P]. If / is a real valued function in 3t[P], then because P is
positive and / + — / ^ 0, the inequality P ( / + ) ^ Pf = f is obtained
and thus also P ( / + ) ^ / + ^ 0. This implies

o ^ | |P(/+)-/+ll - \\P(f+)\\ - II/ΊI ^ o

or that P ( / + ) = / + . Therefore, /+ € ϋt[P] and Σft[P] has been shown
to be a closed vector sublattice of S3.

PROPOSITION 3. An operator P is a positive contractive projection
that satisfies (*) if, and only if, there exists a σ-subalgebra ^~ of £^
and a weight function k for J7~ for which P = Ef.

Proof. That a weighted conditional expectation is a positive con-
tractive projection that satisfies (*) follows from Proposition 1. There-
fore, assume that P is a positive contractive projection. As a result
of Lemmas 1 and 2 there exists a σ-subalgebra ^" of Sf and a weight
function k for ^~ for which 3t[P] = /^(X, ̂ 7 μ^). Thus because
3ft[jE7;f] = l&yiX, c^7 A1 -̂) also and in view of equation (t), to prove
that P = Ef, it is sufficient to show that ί Pfdμ = \ Effdμ for

JT JT

every / e S^X, £>*, μ) and T e ̂ T Moreover, because each of P and

j&jf is continuous and satisfies (*) and 3ΐ[P] = ®[Ef] = Z ĉ̂ j/Si, to

establish this it is sufficient to show I P(kχs)dμ = 1 Ef(kχs)dμ for

every SeS^ and Γ e ^ To see this observe first that for every

/ e Sx and T e ^ the following identities hold:
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\Pfdμ =

because P(χS[kyf) e PMP]} = (0), and ( Effdμ = \ Ef(χSik)f)dμ be-
JT JT

cause Ef{χSUcVf) = 0. Now the sufficiency is obvious because the
function χSUc)f can be approximated by linear combinations of func-
tions kχs{k).

Assume that Se^ and Te j^7 then kχτ = P(kχτ) ^ P(kχsnτ) and
kχτ, — P(kχτ) ^ P(kXsr)τ>) because P is positive. Further, the relations
kXsr\τ + kχSΓ]T> = kχs and 0 ^ I P{kχs^τ)dμ ^ \ fcχΓ,d/^ = 0 imply that

JT JT

P(kχs)dμ = \ P(kχsnτ)dμ + ί P{kχsnI)dμ
T JT JT

= ( P(kχsnτ)dμ .
JT

Thus the inequality

( kχsdμ = \\kχsuτ\\
JT

^ II P{kχsnτ) II ^ ί P(kχsnτ)dμ = \ P(kχs)dμ
JT JT

or \ kχsdμ ^ ( P(kχs)dμ holds for every T e ^~ and S e S?. Hence

JT JT

\ kdμ = \ kχsdμ + I fcχ^d/i

P{kχs)dμ ^ ( PfedjM = ί

and so ( kχsdμ = ί P(kχs)dμ for every T G ^ and S G ^ Thus for

each S e y the relation ί P(kχs)dμ = ( /cχ̂ d/i = ί Ef(kχs)dμ is

obtained for every Γ e J7~ from equation (|) and therefore by the previous

remarks P = £?jf.
The characterization of contractive projections that satisfy (*) can

now be proved.

PROPOSITION 4. Let P be a contractive projection that satisfies
(*). Then there exists a σ-subalgebra J7~ of ^ a weight function k
for ^ and a measurable function ^ of modulus one such that P —
UφEfUφ. Moreover, the pair {J7~,k) is unique.

Proof. For every fe%lf define the function θ(f)(x) =f(x)/\f(x)\
if f(x) Φ 0 or 1 if f(x) = 0. Then for every / e ^[P] and nonnegative
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he2τ such that | / | ^ h, the following inequalities hold:

ll/ll - II θ{f)h 11 = 11/- θ{f)h|| ^\\Pf- P[θ(f)h] II

^ 11/11 - IIP[θ(f)h] II ^

Thus

which implies

\\W)f-Hf)P[Hf)h]\\ = 115(7)/11 -

This implies that

= S(θ(f)P[θ(f)h]) c

and also because θζf)f^O9that 0(7)P[0(/)fc] ^ 0. Therefore, because
every nonnegative function h e 21 such that S(h) c S(f) can be approx-
imated by nonnegative functions hne21 such that (l/n)hn g | / | , it is
readily seen that U^^PUβ^h Ξ> 0 and S(PA) c S(/) for every non-
negative h e Si such that S(fc) c S(/). Moreover, this implies further
that for he 2, and S(A) c S(/) the inclusion S(Ph) c S(/) follows.

It is proved next that hχS{f), e 9ΐ[P] for every / and h in 9ϊ[P].
The equation h = Ph = P(hχS{f)) + P(hχS{fy) and the fact that the
support of the function P(hχS{f)) is contained in S(/) implies that

Thus /%(/), = P(hχS{fy) because

II hχs{fy || = || P(ftχ*(/r)%*</>' II ^ II P(hχS{fy) \\ ^ \\ hχs{fy

implies P(hχS{fy)χS{f), = P(hχs{fy). Therefore λχ^(/), e Sl[P].
This result and an argument as in Proposition 2 show that a

sequence of functions {/J~=i can be chosen from 9![P] such that
U"=i S(fn) = Γo (the support of P) and such that the sets S(fn) are
pairwise disjoint. Each operator Uθϊf^PUθ{fn) is positive on functions
supported on S(fn). Therefore UφPUφ is positive on 2U where Φ —
IΪΓ=i θ(fn), because for each nonnegative he^ the equality

shows that

= Σ (Ueu^PUβ(fJ(hχS(fn)) ^ 0
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By Proposition 3 there exists a σ-subalgebra ^ of & and a
weight function k for ^~ such that UφPUφ = Ef, and therefore,
since UφUφ = J7φf7φ is the identity operator, such that P= UφEfUφ.

The proof of the uniqueness of the pair (^7 k) proceeds as follows.
Suppose P = U^EfUφ = U^EfUψ, where ^ ~ is a σ-subalgebra of ^
Λ is a weight function for W and f is a measurable function of
modulus one. Then

or φk21(X, ̂ 7 JM^) = fh2,(X, w; μΨ). Now it is clear that the
support of each function in φk2λ{X, ̂ ~, μ*) is in W~ and vice versa.
Hence it follows from this observation and the definition of weight
function that jf = W". Further, there exists a J^measurable func-
tion / in Si such that S(f) = S(k) and φk = ψhf, which implies that

h\f\. Now by (t)

= \f\E'(h) = \f\Xsik) = \f\χs{k)

or I/I = Xs(k) and h = k.

REMARK. The measurable function of modulus one is not unique.
It can be easily shown that necessary and sufficient for the contractive
projections UφEfUφ and UψEfUψ to be equal is that φf be ^
measurable.

The results of the preceding propositions are collected in Theorem 1.

THEOREM 1. Let P be α contractive projection on 22. There
exists a unique Toe<9* such that if the operators Q and A are defined
to be Qf = P(χTof) and Af = P(χτ>f) for every f e 2l9 then

(1) Q is a contractive projection having the same range as P
that satisfies (*); and

(2) A is a contraction that is nilpotent of order two for which
3t[A]c3t[P] and Afcfr} = (0).
Further, there exists a σ-subalgebra ̂ ~ of^a weight function k
for ^ such that To = S(k) and a measurable function φ of modulus
one for which Q = UφEfUφ, and the pair (^~,k) is unique. More-
over, an operator P'= UφEfUφ + A is a contractive projection.

COROLLARY 1. An operator Q on 8χ is a conditional expectation
(Q = E^ for some σ-subalgebra J7~ of S^) if, and only if,

(1) Q2 = Q,
(2) Ql = 1, and
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(3) | | Q | | = 1 .

Proof. From Proposition 1 it follows that a conditional expection
satisfies (1), and (2) and (3) which are well known properties of a con-
ditional expectation. Assume that Q is an operator that satisfies (1),
(2), and (3). Conditions (2) and (3) imply that Q is positive as follows.
For every function h e Sx such that 1 ̂  h >̂ 0, the inequality

holds and implies that || 11| - || Qh || = || 1 - Qh || or that 1 ̂  Qh ̂  0.
Thus Q is positive. Further, Ql = 1 implies that the support of Q is
X and that Q satisfies (*). Therefore it follows from Proposition 3
that there exists a σ-subalgebra ^~ of £f and a weight function k
for ^ such that Q = Ef. But 1 = Ql = Efl = kE^l = k and hence
Q = E^. Therefore Q is a conditional expectation.

REMARK. This is actually a corollary to Proposition 3. It is related
to results of Moy [6, Theorem 2.2, p. 61], Bahadur [1, Corollary 2,
p. 566], and Rota [7, Theorem 1, p. 58], Sidak [8].

COROLLARY 2. A contractive projection that satisfies (*) is pos-
itive, if and only if, its range is a closed vector sublattice of S1#

Proof. If P is a positive contractive projection, then 9ΐ[P] is a
closed vector sublattice by Lemma 2. Assume that P— UφEfUφ and
3ΐ[P] is a closed vector sublattice. Then P(φk) = φk and because k —
supô βs ajc l/2{ei9φk + e~iΘφk} and each of the functions ê A? + e'iθφk is
in the vector sublattice St[P], it follows that & 6 3ΐ[P] and thus Pk — k.
The same argument used in the preceding corollary can now be used
with k in place of 1 to show that P is positive.

COROLLARY 3. A contractive projection that satisfies (*) is deter-
mined by its range.

Proof. Suppose P = UφEfUφ and Q = UψETUψ are contractive
projections satisfying (*) such that 3ΐ[P] = 9t[Q]. Then

and as in the proof of Proposition 4 it follows that j?~ — W^ and
k — h. Thus φψ is a .^measurable function. Now the proof given
for (f) also shows that φψ a bounded .^measurable function and /
an 2, function implies E^{φff) = φfE^(f). Therefore, for / in Sj
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it follows that (Uψ-φEfUψφXf) = ψφEf(ψφf) = fΦψΦEf(f) = Ef{f)
and so (U-φEfUφ) = U'4UnEfUn]UΨ = UψEfUΨ.

There is a certain subclass of contractive projections which have
a very simple structure. A different characterization of these is con-
tained in the following proposition.

PROPOSITION 5. Let P be a positive projection 8X for which 7 — P
is also positive. Then there exists a subset To e S^ such that Pf = χτj
for every / e S lβ

Proof. Set k — P I ; then each of & and 1 — k is a nonnegative
function. Further set /& = k A (1 — k); then

0 = (7 - P)ifc = (7 - P)(fc - h) + (7 - P)Λ ,

where each of the functions (7 — P){k — /&) and (7 — P)h is nonnega-
tive. Thus (7 - P)h = 0 and similarly Pfc = 0. Therefore k A (1 - k) =
h = Ph + (7 - P)h = 0 and thus S(k) Π S(l - k) = ψ.

If / is assumed to be any nonnegative function in S1? then nk ^
P ( / A nl) for every integer ?ι because ril^fΛ ril. Thus P/ = Xswf,
because S(P/) c S(k), S[(I - P)/] c S(l - k), and P/ + (7 - P ) / = / .
Therefore Pf - χ*(Jfc)/ for every / e Sx.

REMARK. This proposition is also valid for positive projections on

2p(X,&ϊμ), f o r lύp< - .
The following further characterization of this class of projections

on 2P(X$ £f μ) for p Φ 2 can be obtained as a corollary to Proposition
5 using a result due to Lamperti [5, Corollary 2.1, p. 460]: Let P be
a projection on 2P such that \\f\\ζ = | |P/ | |5 + | | ( 7 - P ) / | | ; for every
/ G Sp. Then there exists a subset To e ^ such that Pf = χ Γ / for
every / e Sp.

3* The range of a contractive projection* In this section the
problem of what subspaces of 2X are the range of a contractive projec-
tion is raised and solved. Two characterizations are given; for each,
the problem of determining the subspaces that are the range of a
positive contractive projection is first considered, and then the more
general case is reduced to it. An obvious necessary condition is that
the subspace be closed.

PROPOSITION 6. A subspace is the range of a positive contractive
projection if, and only if, it is a closed vector sublattice of S1#

Proof. That the range of a positive contractive projection is a
closed sublattice of 8X is a result of Lemma 2.
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If the subspace -3JΪ if assumed to be a closed vector sublattice of
Sj, then by Lemma 1 there exists a tf-subalgebra ^~ of Sf and a
weight function k for jT~ for which 3Ji = AS^X, ^ 7 μ^). Thus 5U£ =
EJΓ(%I(X, S^j μ)) and the proposition is proved.

PROPOSITION 7. A subspace Wl is the range of a contractive
projection if, and only if, there exists a measurable function ψ of modulus
one for which U<$Jl is a closed vector sublattice of Slβ

Proof. If P is a contractive projection and 5ϋl = Pi&J, then 2JΪ =
7φ)(S1) for some measurable function 0 of modulus one and pos-

itive contractive projection Q; thus U<flJl = Q(2±) is a closed vector
sublattice of Sx by Proposition 6.

If for a subspace 2Ji and measurable function 0 of modulus one,
the subspace U<$Jl is a closed vector sublattice of 2lt then by Pro-
position 6, there is a contractive projection P for which P(£i) = ϊ7φ2JΪ.
But then 9J1 is the range of the contractive projection UφPUφ.

PROPOSITION 8. A subspace is the range of a positive contractive
projection if, and only if, there exists a positive isometrical isomor-
phism from some 21 space onto it.

Proof. If the subspace 2JΪ is the range of a positive contractive
projection, then 2JΪ = k21(Xf ^~, μ^ ) for some σ-subalgebra ^ of Sf
and weight function k for J7~. Further, the mapping from SX(X, ^ , μ^-,k}
to S>χ(Xf £f μ) that takes a function h to fcfc is in view of equation (t)
a positive isometrical isomorphism onto 3Ji, where μ^tk is the measure

r

defined on J7~ by the indefinite integral \χS(k)dμ^.
Assume that (Y, ^, v) is a measure space and that Φ is a positive

isometrical isomorphism from Si(F, ^ , v) onto the subspace 3Ji. The
proof of the proposition is completed by showing that 3JI is self-adjoint
and / + e 2 J i for every real valued /e2J i . Since S^Γ, ̂ , v) is self-
adjoint and 0 takes real valued functions onto real valued functions,
3JΪ is self-ad joint. Further, if the function / e 9JΪ and is real valued,
then / = Φtfφ-1/]-1-} - Φ{[Φ~-f]}, where each of 0{[0-y]+} and Φ{[φ-f]~}
is nonnegative. Moreover, the equality

implies that /+ = Φ{[φ-γ]+} and thus /+ e Wl.

PROPOSITION 9. A subspace is the range of a contractive projec-
tion if, and only if, it is isometrically isomorphic to some Sx space.
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Proof. It is clear that a subspace 3Ji is isometrically isomorphic
to Uφ$l for each measurable function φ of modulus one. Therefore,
it follows from Propositions 7 and 8 that the range of a contractive
projection is isometrically isomorphic to an 21 space.

Assume that (Y, ^ , v) is a finite measure space and Φ is an iso-
metrical isomorphism from SX(Y, ^ , v) onto the subspace 50i. Set h — Φ\
and let Ψ denote the composite map Uj^Φ from SX(Y, ^ , v) onto UJΪJ-$SI.

(Recall that #(/?,) = h/\ h |.) Then for every nonnegative / e S^Y, ^ , y),
the equality | | / + 1| | = | | / | | + | | 1 | | implies that

II ψf _i_ ψΛ || II Φ*/* II 4- II ΨΛ II
II ^ j τ ~ ^ J - l l — I I ^ J II i I I ^ - M I

Thus because ^ 1 = θ(h)h is nonnegative and S(Ψf) c S(h), the func-
tion Ψf is nonnegative and Ψ is a positive isometrical isomorphism from
S^Y, ^ , v) onto iTeTxySJi. Therefore it follows from Propositions 7 and
8 that SDΐ is the range of a contractive projection.

Assume that (Y, ^ , y) is a measure space and 0 is an isometrical
isomorphism from S^Y, ^ , y) onto 2Ji; then v is totally σ-finite. If v
were not totally α-finite, then there would exist an uncountable set of
nonzero functions {fa}Λe A i n SX(Y, ^ , v) such that

for every distinct pair of a and β in A. But then

which implies S(Φ(fa)) Π S(Φ(fβ)) = ^ for every distinct pair α and /3 in
A, which is impossible since 5Dΐ is a subspace of SX(X, S^9 μ) and /̂  is
finite. Thus, v is totally σ-finite and there exists a finite measure ξ on
(F, ^ ) such that S 2(r, ^ , v) is isometrically isomorphic to S^F, ^ , f).
Therefore there is an isometrical isomorphism from S^Y, ^ , f) onto 3ΪΪ
and the proposition is proved.

These results are summarized in the following two theorems.

THEOREM 2. For each subspace S0Ϊ of Sx £fee following statements
are equivalent:

(1) 501 is the range of a positive contractive projection,
(2) 3Ji is a closed vector sublattice of Sx, and
(3) έfeere exists a positive isometrical isomorphism from some

Si space cmίo 501.

THEOREM 3. For each subspace 501 o/ Sx ί/te following statements
are equivalent:
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(1) 2Jί is the range of a contractive projection,
(2) UφSJl is a closed vector sublattice for some measurable func-

tion Φ of modulus one, and
(3) 2JΪ is isometrically isomorphic to some Sx space.

4* Extension to general measure spaces* The results about
contractive projections on an Sx space defined for a probability measure
can be extended quite satisfactorily to the case of a totally ^-finite
measure. With the use of an isometrical isomorphism, information
about contractive projections for the totally ^-finite case can be obtained
from the results in §§ 2 and 3.

In certain special cases a more direct attack is appropriate. Let
(X, £f, μ) be a totally σ-finite measure space; then there exists a
probability measure v defined on Sf that is equivalent to μ (that is,
μ and v are mutually absolutely continuous). Let ψ denote the Radon-
Nikodym derivative dμ/dv, that is, ψ is the unique positive measurable

function for which the equality I ψdv = 1 dμ holds for every SeS<
Then the map Ψ that takes a function / G SX(X, S^, μ) to the function
fψ is a positive isometrical isomorphism from SX(X, S^ μ) onto SX(X, S^, v).

If P is a contractive projection on SX(X, 6^, μ), then ΨPΨ~ι is a
contractive projection on SX(X, S^f v) and thus is susceptible to the
analysis of §§ 2 and 3. An attempt at using this analysis on P directly
will not succeed in general, because it is impossible to define the condi-
tional expectation for certain σ-subalgebras of £f in the usual manner.
The hypothesis needed on a σ-subalgebra in order that the conditional
expectation can be defined is that the restriction of μ to the σ-algebra
be locally σ-finite. If it can somehow be ascertained that the σ-sub-
algebra involved in the study of a givnn contractive projection P satisfies
this condition then the characterization P = UφEk Uφ + A is valid. Fur-
ther, in any case the conclusions of Theorems 2 and 3 remain valid and
Lemma 1 can be stated as follows: a subspace 2Ji of S^X, S^9 μ) is a
closed vector sublattice if, and only if, there exists a σ-subalgebra ^
of £/* and a weight function k for ^ with respect to v such that

dμ

If (X, £f μ) is just assumed to be a measure space, then informa-
tion about contractive projections on SX(X, £f, μ) can be obtained using
the results of §§2 and 3 and the preceding remarks, but the statement
of precise theorems is difficult. The following remarks give an indica-
tion as to how results about the totally σ-finite case can be applied to
a more general measure space.
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If P is a contractive projection on SX(X, £f9 μ) and / e 3ΐ[P], then
μ restricted to S(f) is totally σ-finite. Moreover, if P satisfies (*) the
subspace ffll — %8{f)

i&1(X9 £f9 μ) is a reducing subspace of P, that is,
P3JI c 2Ji and P[Sj. θ 2»] <= [Si θ 2E]. Further, it is still true (although
the proof is technically more difficult) that an arbitrary contractive
projection can be decomposed into a regular part and an arbitrary
part. Therefore, in a sense, the study of a contractive projection on
83(X, £s μ) can be reduced to the study of contractive projections on
totally <7-finite Sx spaces. Difficulties arise in trying to assemble the
information obtained to give global information. The problem of "sets
of measure zero" becomes acute and only in certain cases can it be
resolved satisfactorily.

REMARK. There have been attempts at generalizing the concept
of conditional expectation to the contexts just considered (see e.g., [2,
Theorem 2, pp. 300-301]). This is achieved by choosing certain of the
properties of conditional expectation and then showing the existence
of an operator having these properties. These results appear, however,
to be relevant to the study of contractive projections only in those
instances where the preceding procedure already yields satisfactory
results.

The preceding procedure is actually applicable in a more general
context. Let (X, S^) be a measurable space and M(X9 Sf) denote the
Banach space of finite complex valued measures defined on Sf9 in which
the norm of a measure is defined to be the total variation. Let P be
a contractive projection defined on M{X, £f), and v be a measure in
M(X9S?) for which Pv = v. Assume that S^X, S*9 \ v |) has been
identified as a subspace of M(X, £f) in the obvious way. Then the
containment P{SX(X, ̂  | v |)} c 21(Xf S*,\v\) can be obtained from the
results of §§ 2 and 3. Moreover, M(X, S^) can be written as the direct
sum of normal subspaces (a subspace N of M{X, £f) is said to be
normal if it is a closed vector sublattice having the further property
that 7] e N and ξ e M{X, S?) such that | η \ ̂  | ξ \ implies ζeN) such
that all of the subspaces but one are reducing and can be identified
as an Sx space and the remaining subspace is the "complement of the
support of P". Further, if $t[P] is now defined to be the subspace
of M(X, Sf) consisting of measures that are singular relative to each
measure in 3ΐ[P], then B[P] is the "complement of the support of P" .
It is clear, however, that the possibility of being able to organize
global results in this context is extremely remote.

5* Contractions on 2X(X9 £f9 μ)+ Certain arguments used in the
proofs of §§2 and 3 are applicable in the more general context of a
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contraction operator defined on an 8X space. The results obtained with
the applicable argument are now stated.

PROPOSITION 10. If (X, £fy μ) is a finite measure space and A is
a contraction on 8X(X, ^ μ) for which Al — 1, then A is positive,
A{&.(X, &>, μ)} c STO(X, Sf, μ) and || A |U = 1.

Proof. That A is positive follows from the proof of Corollary 1
and the rest is now obvious.

PROPOSITION 11. If (X, £f, μ) is a totally σ-finite measure space,
A is a contraction on S^X, ̂  μ) and To is the support of the sub-
space {/1 Af = /}, then A{χτ^x(X9 Sζ μ)} c χ^ SxίX, ̂  μ) and there
exists a measurable function ^ of modulus one such that UφAUφ is
positive on χ^ S^X, ̂  μ)

Proof. This result follows from the first three paragraphs of the
proof of Proposition 4 in which only the fact that Pf = / is used.

PROPOSITION 12. If (X, £f, μ) is a measure space, A is a contrac-
tion on SX(X, ^ μ ) , and / is a function for which || A/|| = | | / | | Φ 0,
then the operator UβΰT)AUΘif) is positive on

Proof. If 11 A/11 — | |/ | | , then for each nonnegative function
8X(X, £f μ) for which | / | ^ h, the inequality

ll/ll - IW)ΛH = \\f-Hf)h\\ ^ \\Af-A(θ(f)h)\\

^\\Af\\-\\A(θ(f)h)\\^\\f\\-\\θ(f)h\\

implies that

II Af - A(θ(f)h) || = || Af || - || A(fl(/)fc) ||

or that Uojjj)AUQ[f)h is positive. The proposition now follows.

PROPOSITION 13. If (X, Sf, μ) is a measure space and A is a pos-
itive contraction on S^X, S^ μ)[M(X> S?)\ then the subspace of fixed
points {/1 Af — f}[{v \ Av = v]\ is a closed vector sublattice.

Proof. This result follows using the proof of Lemma 2.
Using techniques developed in this paper it is possible to prove the

following Mean Ergodic Theorem for contractions on Si(X, S^ μ). It is
a generalization of a theorem of Kakutani [4, Theorem 9, p. 534] and
like it, is proved using the Yoshida-Kakutani Mean Ergodic Theorem.
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PROPOSITION 14. Let (X, £f μ) be a measure space, A be a con-
traction on 2X(X9 £f μ), An denote the operator (lM)Σ?=o-^Λ and 2ft
denote the normal subspace of 8X(X, <S^, μ) generated by the subspace
{/1 Af = /}. Then for every h e 2JΪ, the sequence {AJi}^ converges
in norm to Pf, where P is the unique contractive projection defined
on 2Jϊ having range {/1 Af = /}.

Proof. If / and h are functions in 8χ(X, ^ μ) for which Af — f
and I/I Ξ> \h\, then the sublemma that appears in the first paragraph
of the proof of Proposition 4, shows that | / | ^ \Ah\, and so | / | Ξ> | Aw/& |
for n — 1, 2, 3, Thus, it follows from the Yoshida-Kakutani Mean
Ergodic Theorem [10, Theorem 1, p. 192] that the sequence {Anf}n=ι
is a norm Cauchy sequence. Further, if {AnfN]ζ=1 is a norm Cauchy
sequence for each function fN, N — 1, 2, 3, where /V converges in norm
to a function /, then {Anf}ζ=ι is also a norm Cauchy sequence. There-
fore, for every h in the normal subspace 3Ji generated by the subspace
{/1 Af — /}, the sequence {Anh}n=i is a norm Cauchy sequence. More-
over, it is obvious that the map that takes a function heWl to the
limit function is the contractive projection defined on 2JΪ that has range
{f\Af = f}.

This proposition is also valid for contractions defined on M(X, £f)\
that is, for a contraction A, the sequence {(1/ri) Σ?=o ΆM~=i is a norm
Cauchy sequence for every v in the normal subspace of M(X, S^)
spanned by the subspace {ξ \ Aξ = ξ}.

6. Concluding remarks* Although only complex 2± spaces have
been considered in this paper, the results are also valid for real S2

spaces.
With the aid of a lemma stating that a contractive projection on

a Hubert space is Hermitean and with the Spectral Theorem for
Hermitean operators it can be shown that the "universal model" of a
contractive projection on a Hubert space is multiplication by a char-
acteristic function. Similarly, it is an easy exercise to prove using
Theorem 1 that the "universal model" of a contractive projection on
Sx that satisfies (*) is a conditional expectation followed with multi-
plication by a characteristic function.

The class of contractive projections on an 8X space is related to
certain special projections on £«,. Let (X, S^, μ) be a probability space.
If P is a contractive projection on SX(X, S^, μ), then the adjoint operator
P * is a contractive projection on 20O(Xf Sζ μ). (Recall that P * is the
unique operator on S^X, Sf, μ) = 8? (X, Sf, μ) that satisfies the relation

( (Ph)gdμ = [ h{P*g)dμ for every h e 8X(X, ^ μ) and g e SUX, ^ /£).)

If P = UφEfUφ, then because the conditional expectation is self adjoint
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on S2(X, ^ μ) (see e.g. [1, Corollary 2, p. 566]), it follows that P*g =
UφE^(kφg) for every ge2oo(Xf ^ μ). If P is positive, then P*g =
E^(kg) is an averaging operator on Si^X, £f μ), that is, P*f P*g =
P*(/ P*flO for every / and 0 in ^(X, ^ μ). Further, if #^(&) = 1,
then P* is a conditional mean in the sense of Wright [9, p. 199].
Although all conditional means are not obtained in this way, in general,
this is an interesting subclass of conditional means.

Added in proof. The proof of the following corollary to Theorem
1 is immediate:

COROLLARY 4. Let P be a contractive projection on jSfJ. Then
o a Jzfoo and ||P||«, = 1 if and only if P satisfies (*) and there

exists a σ-subalgebra ^" of £f, aToe j7~, and a measurable function
φ of modulus one for which P — Uφχτβ^Uφ.
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