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A NONNORMAL BLASCHKE-QUOTIENT

JOSEPH A. CIMA

We shall call the meromorphic functions of the form F(z) =
Bί(z)IB2(z) Blaschke-quotients, where Bι(z) and B2(z) are Blaschke
products in | z \ < 1 with zeros at {an} and {bk} respectively.
Although there is a characterization of meromorphic functions
which are normal there is no characterization of the Blaschke-
quotients which are normal in terms of the non-Euclidean
(hyperbolic) distances between the zeros {an} and {bk}. In this
paper we show by construction that even if the zeros of a
Blaschke-quotient are separated by a positive non-Euclidean
distance the Blaschke-quotient need not be normal.

We shall be concerned in this paper with the boundary behavior
of meromorphic functions. The concept of a normal function was
introduced by K. Noshiro in [2]. Several properties of normal mero-
morphic functions are developed in a paper of 0. Lehto and K. I.
Virtanen [2]. Their definition of a normal meromorphic function is:

DEFINITION A meromorphic function f(z) is called normal in a
simply-connected domain G if the family {f(S(z))} is normal in G (in
the sense of Montel), where zr — S(z) denotes an arbitrary one-to-one
conformal mapping of G onto itself.

In the same paper they gave the following characterization of a
normal meromorphic function:

THEOREM 1. A nonconstant function f(z), meromorphic in a
domain G, is normal if and only if

p(f(z)) \dz\^C dσ(z)

at every point of G. p(f) is the spherical derivative of f, da is the
hyperbolic element of length and C is an absolute constant.

The class of normal functions includes the bounded functions,
schlicht functions and functions omitting three values. Moreover, it
is known that the class of normal functions interselects the class of
functions of bounded characteristic. Functions of bounded character-
istic. Functions of bounded characteristic have the following form

F(z) = e« WL exp P - Γ e " + * dψ(θ)
Bt{z) V 2π Jo eiβ - z
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ψ(θ) is a function of bounded variation, λ is real and the B^z) are
infinite products.

B(z, a.) = Bt(z) = Π -L^-

oo

Σ fl — /7 h <^ oo
71 = 1

For brevity we refer to a quotient of the form B^{z)IB2{z) as a
Blaschke-quotient. There are functions which are normal which are
not of bounded characteristic and functions of bounded characteristic
which are not normal. In particular F. Bagemihl and W. Seidel [1]
have constructed a holomorphic function of bounded characteristic
which is not normal.

If Si and z2 are two points of the unit disk D — {z \ \ z \ < 1}, the
non-Euclidean (hyperbolic) distance between zλ and z2 is given by the
formula

7 Z\ Zo

The following theorems of F. Bagemihl and W. Seidel [1] show that
the non-Euclidean metric is in a sense a natural one for discussing
the boundary behavior of a normal function.

THEOREM 2. Let {zn} be a sequence of points in D — {z \ \ z \ < 1}
which converges to a point ζ e C — {z \ \ z \ — 1} and is such that Urn
p(zn, zn+1) — 0 as w-+oo, and let f(z) be a normal meromorphic
function in D for which lim f(zn) — c as n—*<*>, where c is finite
or infinite. Then f(z) has the angular limit c at ζ.

THEOREM 3. Let {zn} be a sequence of points in D — {| z \ < 1}
for which \ zn \ —> 1 and f(z) is a normal, meromorphic function in
D such that lim f(zn) = C // {z'n} denotes any sequence of points in

n—>oo

D for which lim p(zn, z'n) — 0, then also lim f{z'n) — C.
n-^oo n—*co

One problem remaining in the study of normal functions is to
determine those Blaschke-quotients which are normal. That is, if
F(z) = Bx{z)IB2{z) — Bx(z\ an)/B2(z; bn), to determine conditions on the
non-Euclidean distances between the zeros of Bx and B2 which will
make F normal. We note a few immediate results and then construct
an example of a Blaschke-quotient such that the zeros of B1 and those
of B2 are separated by a positive non-Euclidean distance and such that

is not normal.
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2* The construction* The first comment to be made is that a
Blaschke-product has radial limits a.e. That is, lim B(reίθ), r—> 1,
exists and equals a complex uni-modular number eiφ [3]. The only
singularities of B{z) = B(z; an) in | z | ^ 1 are those points s0, | z0 \ = 1,
such that there is a subsequence {anjc} of the zeros of B(z; an) with
αWfc —• zQ as ά —> oo. If we denote by A(αw) the set of limit points of
the set {an}, then we have the following:

LEMMA 1. Let F(z) = Bx{z)IB2{z) = B&; an)/B2(z; bn). Then if
A(an) Π A(bn) is empty, F is normal.

Proof. The condition of Theorem 1 for F — BJB2 with domain
the unit disk is

p(F(z)) \dz\ =
- B[(z)B2(z)

B2{z) |2
dz C \dz\

a-\z
For P = eiφ it suffices to show

IT^Γ I Bi{z)B'2(z) — B[(z)B2(z)

Now

tiz) - B[{z)B,(z) I (1 - I z |2)

B[{z) i ( l - i z i2) ( i - I g I2)

The lemma follows from the fact that

lim (I Bx{z) |2 + B2(z) |2) ^

and a result of W. Seidel and J. L. Walsh [5] which states that
I B[{z) I (1 - I z I) is bounded for | z \ < 1.

The following lemma is a restatement of Theorem 3.

LEMMA 2. // .F(s) = B^z; an)/B2(z; bn), with {an} and {bn) dis-
joint, and if there exist subsequences {a%k} and {6«J, with p{a%k, bn])
tending to zero as k —> oo 9 then F is not normal.

We turn now to the example.

THEOREM 4. There exists a Blaschke-quotient F(z)=B^z; an)/B2(z; bn)
with p(an, bk) ^ δ1 > 0 for all positive integers n and k such that F
is not normal.
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Proof. The construction proceeds as follows. We exhibit a
Blaschke-product B2(z; bn) whose zeros lie in an angle at 2 = 1 and
which tends to zero in angular approach to 1. We can then construct
B^z; an) such that the zeros {αj tend to 1 and have the property
expressed in the theorem. B^z) has the additional property that there
is a nontangential path Γ such that lim B^z) for z on Γ is positive.
This implies

whereas B^aJ/B^aJ = 0. Applying Theorem 2, we see that F
cannot be normal.

First define B2 as follows:

J Λ _
n2 JB2(z; K) = B2(z; 1 - -±- = Π . , N

B2(z) is well defined and holomorphic in | z | < 1. The function pn,

where

-~τj ~
I)2

1 - 1 - — 1 -
n2 (n + I)2

2n

tends to zero as n —> cχ>. Theorem 2 shows that B2 has angular limit
zero at z — 1.

For the remainder of the construction we find it useful to do some
of the work in a half plane. The linear transformation T,

T(z) = ί ( 1 + z) = ω =
\1 — z /

maps I 2 I < 1 onto i; > 0, preserving the non-Euclidean metric. The
point z = 1 corresponds to α> = oo. As a nontangential path tending
to infinity we choose the hypercycle u — v, v > 0. This curve has
fixed non-Euclidean distance 1/2 log ("l/ΊΓ + 1) from u = 0, v > 0.
Select points α^ as follows:

a'n =
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The corresponding points an of | z | < 1 are

771

Define Bx(z) by using the points {an} as the zeros of Bx{z). To show

Bx(z) is well defined, it suffices to show Σ~=i (1 — I an I) < c o

an
[(an + I)2 - 11/2

1/2"

This last series has terms which are order of magnitude of e~n and
so converges.

We note that the curve u — v maps under T~x into a hypercycle
ha having a fixed non-Euclidean distance from the real axis. It also
forms the fixed angle τr/4 with the real axis at z — 1. Thus the zeros
of B^z) and those of B2(z) are separated by a positive non-Euclidean
distance.

In the plane v > 0, Bλ(z) has the form

"*B,(z) = Bλ(T~\ω)) = πι(ω) - Π ^ ( Z

where pn is real. Now select points iβk = i(2fc2 — 1) on t6 = 0, v > 0.

τ-\iβk) = ck = i - A..

^ δ > 0, this impliesIf we show that lim^co |

lim

However, we know ρ(Ck,Ck+ί) tends to zero as ί;-> co. Thus by
Theorem 3, if {tk} is any real increasing sequence tk < 1, ίft —> 1 with

> α, then we can choose a subsequence {CW;,} such that

C
jfe+1>

Wfc, C n k + 1 ) .

This implies Bλ(Cnk) —* a and so | a \ ̂  δ. This proves lim^i
δ.

is
positive. It remains to prove lim^^

The calculation for π^ω) is as follows:

= Π - OίJβ%

= π Λ
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Consider the following function of the positive real variables ζ and η,

a(ί v) = 2V/Y(2^-1)(2^-1)
yX ' l) (2eζ - If + (2η2 - I) 2 + V 2 (2eς - 1) {2η2 - 1) '

Setting x = [(2eξ - I)j2η2 - I ] 2 we have

a? + —

since x + (1/x) ̂  2 if x > 0.
We are considering the product Π~=i(l — ΰ(n, k)), where 0 ̂

g(n, k) ̂  σ < 1. We can choose a positive number A so large that
1 + x ̂  eAx for — σ g α? ̂  0. The number A = — log(l — σ)/σ will
suffice (A ̂  2).

For each positive integer k let iV(&) = AT be the positive integer
satisfying N < 2 log & ̂  JV + 1. #(2/, k) is monotone increasing on
1 <i 7/ < 2 log k and monotone descreasing on y > 2 log k, with

Thus we have for fixed k

, k) < 2 V~2(2k2 - 1)
ew - I) 2 + (2&2 - I) 2

J^+i (2β» - I)2 + (2&2 - I)2

, ( 2 β y - l )

(2N If + (2¥ I) 2 2 - I ) 2 J(2eN - If + (2¥ - I) 2 {2eN+1 - I ) 2 + (2&2 - I) 2

< 2 V-2 (ίW - 1) Π" ί ^ ^ + ? "I
V ' LJi (2e^ - I ) 2 + (2fc2 - I ) 2 2(2&2 - 1) J

= 2 VΎΛTC tan (^LzlS) Γ + 2 V~2 .
\2k2 - 1 / I i

Now evaluating the infinite product using the above estimates, we
obtain

Π(1 - g(n,k)) >exp(-A±g(n, k))
n=l \ n=l /

Thus lim^oo | π±(iβk) \ is positive. This completes the construction.
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The function F(z) = B^/B^z) tends to oo on the real axis as
x —> 1 and has a sequence of zeros on the nontangential curve (hyper-
cycle) ha. Thus F is not normal.
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