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POLYNOMIALS ORTHOGONAL OVER A
DENUMERABLE SET

J. L. GOLDBERG

This paper concerns itself with characterizing the ortho-
gonality domain and the distribution function for polynomials
which satisfy

(1.1) Φn+i(x) = (x — an)φn(%) — bnφn-i(x) (n ^ 0)

with

(1.2) φ^{x) = 0 and φo(x) = 1

under the restriction an = 0, bn > 0 (n ^ 0) and lim bn = 0.

This extends the results of Dickinson, Pollak and Wannier [6] by
replacing their restriction Σbn < <*> with the weaker assumption
lim bn = 0, by correcting an apparent oversight, and by characterizing
the distinction between the cases Σ bn < oo and lim bn — 0. In the
course of this study we prove some theorems with occur rather na-
turally and seem of interest in their own right. Our approach owes
its origins to ideas expressed in [4] and [6] and our techniques to the
product and the series representations for a certain subclass of analytic
functions studied by Richards [9] and related to functions characterized
by a certain Stieltjes transform and continued fraction expansion.

More specifically; from a theorem of Favard [7] and Shohat [11],
equations (1.1) and (1.2) and the assumptions an real and bn > 0 (n^0)
are sufficient to imply that {Φn(x)} is a real orthogonal set. Under the
additional restrictions an = 0 (n ^ 0) and Σ bn < oo 9 Dickinson, Pollak
and Wannier [6] have shown:

( i) The domain of orthogonality is a bounded denumerable set
S, symmetric with respect to x — 0, with x — 0 the only non-isolated
point.

(ii) The distribution function (unique, after normalization, because
of the boundeness of S) with respect to which the polynomials {Φn(x)}
are orthogonal, is bounded, nondecreasing and with spectrum (the points
of increase) the point set S of (i). The points S are the poles of a
certain function, meromorphic in 1/x, whose residues are the values of
the jumps of the distribution. (This statement appears to require
modification because of the possibility of nonzero mass at x — 0, a
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point of S not a pole. This oversight is examined in some detal below,
see Theorem 3 and § 5.)

(iii) The sequence {xnΦn(x)} converges to an entire function which
is shown to be the denominator of the meromorphic function referred
to in (ii).

Later, Carlitz [2], studing polynomials, remotely related to Laguerre
polynomials, showed that properties (i) and (ii) hold for the polynomial
sets (under a different normalization)

(1,4) gn+1(x) = xgn(x) - n gn^(x) (n ^ 1)
(n + y)(n + 7 — 1)

where 7 > 0, gQ(x) — 1 and gλ(x) = x. For these polynomials Σ bn

diverges and hence (Corollary 4, below) (iii) is false. Subsequently,
Chihara [3, pg. 15] noted, and offered an independent proof of, a
theorem implicit in the works of Stieltjes [13], equivalent to the pro-
position that lim bn — 0 is necessary as well as sufficient to insure a
denumerable spectrum (with x = 0 the only limit point) for the dis-
tribution relative to {Φn(x)}> an = 0, n — 0, 1, .

In § 2 we sketch the fundamental theorems of continued fractions
and the theory of moments that are pertainent to our work. In § 3
we prove the corrected generalization of the Dickinson, Pollak and
Wannier theorem (Theorem 3) and set forth necessary and sufficient
conditions that lim xnφ'n(l/x) be entire. Section 4 provides a representa-
tion theorem for the class of meromorphic functions relevent to our
study and provides us with a means for investigating in § 6, conditions
under which mass at x = 0 is not present. Finally we offer an ex-
ample, due essentially to Wall [15] which explicitly contradicts (ii)
(without the modification supplied in Theorem 3) but in which (iii)
holds. The example is of interest independently of our use.

2* Preliminary theorems and notational conventions* We
use this section to set forth those parts of the theory of continued
fractions, theory of moments and theory of orthogonal polynomials
which bear on the problems with which we wish to concern ourselves.
None of these theorems are novel. They are stated in a form suitable
for our purposes with their proofs outlined only in such detail that a
specific reference may be quoted for their completion.

Consider the class of polynomial sets defined recursively by

(2.1) Φ{

n

sU%) = %Φls)(x) - bn+sΦlUx) (n ^ 0)

with

(2.2) φ"(χ) = 0 , φ^(x) = 1
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and

(2.3) bn > 0 (n^ 0).

We write ΦTix) as Φn(x) and agree in general to omit all zero super-
scripts. We reserve the use of superscripts in parenthesis for non-
negative integers fixed in advance of any argument and never for use
as a derivative.

It may be easily seen that {Φ{

n

s)(x)} are the successive denominators
and {Φn-^ix)} the successive numerators (here our convention assures
that s is fixed and the sequences are indexed by n) of the convergents
of

(2.4) Γ

Such polynomial sequences have been studied by Dickison [4], [5],
Dickinson, Pollak and Wannier [6], and perhaps most completely by
Sherman [10], in which more references may be found. We pause to
mention the important recursion relationship

(2.5) φ?(x) = xφ^\x) - b1+aφϊ™(x) (n ^ 1),

which follows from (2.4) but which may be proved independently by
induction. If (2.5) is established first, one may observe directly that

(2 6)
Φls)(x)

and hence the equivalence of (2.4) and Iimnφ
i

n

sj1

1)(x)/φi

n

s)(x). The defini-
tions (2.1) and (2.2), the theorem of Favard-Shohat and the standard
properties of real orthogonal polynomials lead to the observations which
we state as

LEMMA 1. All the zeros of the monic polynomials φ{

n

s)(x) are real

and simple. The degree of φ{

n

s)(x) is precisely n and φ(

n

s)(x) is an

\ dβ) function if n is ( tfdi The zeros of ψn](x) and φ{^\x)

alternate] there is a zero of one polynomial separating two con-

secutive zeros of the other.

Next consider the sequence {φn-iι)(x)/φn](x)}. Set z — 1/x in (2.3)
and define G{s)(z) by

zG^(z) = ,-ί-l - &i±-i - A±iJ ^Ltil

11/2 11/z 11/z 11/z

so that after and equivalence transformation
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(2.7)

But a theorem of Stieltjes states: A necessary and sufficient condi-
tion that (2.7) be a nonrational meromorphic function is bn > 0 and
limbn = 0 (see Wall [14; Theorems 54.1 and 54.2]). Hence,

THEOREM 1. If {φίs)(x)} is defined by (2.1), (2.2) and (2.3) with
lim bn — 0, then for each nonnegative integer s.

(2.8)
»->- zφ{

n

s)(l/z)

G{s)(z) is a transcendental meromorphic function and the convergence
in (2.8) is uniform in compact sets which exclude the poles of G{s)(z).

As a corollary of this theorem we prove the properties of the
orthogonality domain listed in (i) of the introduction. (See Chihara
[3, pg. 15] for an alternate proof along different lines). Consider an
interval [c, d] free of poles of Gis)(l/x). Lemma 1 assures that the
zeros of φns)(x) and φ{^\x) are not common. Hence, Theorem 1 and
and Hurwitz's theorem imply that [c, d] is ultimately free of zeros of
Φn](x). Thus any distribution function for {φ{

n

s](x)} is constant in [c, d],
Szego [12, Theorem 6.1.1]. But the poles of G{s)(l/x) are a bounded
set, symmetrically distributed with respect to x = 0. Hence, we have
proved:

COROLLARY 1. The orthogonality domain for the {φ^(x)} of
Theorem 1 is the bounded, denumerably infinite set of singularities
of G{s)(l/x). This set is isolated except at x = 0, and symmetric with
respect to the origin.

Suppose, by way of a converse, that S is any bounded, denumera-
bly infinite point set with x = 0 the only limit point. Suppose the
distribution function β{x) (bounded and nondecreasing) has S as its
spectrum. We normalize β(x) and all distribution function considered
herein by specifying:

( i ) Γ dβ =
(2.9) J -

(ϋ) β(x) = λ[β(x + 0) + β(x - 0)] , xeS.
Li

Suppose further that β(—x) —— β(x) (so that S is symmetric) and that
{pn(x)} is the unique set of monic polynomials orthogonal over S with
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respect to dβ. Then the symmetry of dβ leads directly to

(2.10) Pn+i(x) = xPn(x) ~ #»P»-i(aO (n ^ 0)

with p-ι{x) — 0 and po(x) = 1. This in turn defines the function
(Szego [12, Theorem 3.5.4])

(2.11) F(z) = ^ d β ^
-~1 - tz

11 B,z2\ B2z
2\

It is now a consequence of the hypotheses on β(x) that F(z) is trans-
cendental and meromorphic. Hence the theorem of Stieltjes mentioned
prior to the statement of Theorem 1 yields Bn > 0, n — 1, 2, and
limJSΛ = 0. Thus,

COROLLARY 2. A nondecreasing, symmetric distribution function,
normalized by (2.9) having discrete, bounded spectrum with x — 0
the only limit point, determines a transcendental meromorphic func-
tion with an expansion of the form (2.11), where {Bn} is a positive
null-sequence.

It is useful to have these two corollaries and Theorem 1 restated
in somewhat different form.

COROLLARY 3. The denominators of the successive convergents
of any continued fraction of the form (2βll) with Bn > 0 (n >0) and
lini-B^ = 0 form a sequence of real orthogonal polynomials with the
discrete domain of orthogonality described in Corollary 1.

Our proof of Theorem 3 (below) requires a Mittag-Lefϊler expansion
of G{s)(z). To this end we call attension to the following theorem of
Montel (Obrechkoff [8; Theorem XXI]):

// a sequence of rational functions converges uniformly to a
meromorphic function and if the zeros and poles of each rational
function are simple, real, and alternate, then the meromorphic func-
tion has the expansion

z - an an

where l>AJal converges and A, B, Al9 A2, , An, have the same
sign and the an are real and distinct.
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The hypotheses of this theorem are satisfied by the rational func-
tions φ^PQIzjlφ^Qlz) because of Lemma 1 and Theorem 1. Further-
more, G{s)(z) is even. Hence, after simplification,

(2.13) G ( 8 ) ( z ) = - A{
oo 9 Δd

V n

/ *

Finally, G(s)(0) = 1 so that A{s) ^ 0 and A{

n

s) < 0 (n > 0). In this re-
presentation, and in all similar expansions, we agree to order the
the poles, 0 < a[s) < a[s) < , αn —> oo.

THEOREM 2. The transcendental meromorphic function of Theorem
1 has the expansion

Gis)(z) = -
n=i z2

where -2Ai s )(αl s ))"2 < °°, A(s) ̂  0 and A{

n

s) < 0, % = 1, 2, .
convergence is uniform in compact sets which exclude the poles of
G{s)(z).

3* The construction of the distribution function* With the
preliminaries now settled, we can proceed with a consideration of the
first of our goals; namely, the construction which explicitly exhibts
the relationship between Gls)(l/x) and {φn](x)}. We state this result as
Theorem 3, a generalization and correction of the corresponding theorem
in [6, Theorem 5], The approach in this section owes its inspiration
to the ideas expressed in [6]β

Set z = 1/x in (2.1), (2.2) and (2.5). Define F{

n

s\z) = znφ{

n

s)((l/z).
Then,

(3.1) FlUz) = Fί'\z) - K^FίUz) (n ̂  1)

with

(3.2) *T(2) = 1, F[s)(z) = 1

and

(3.3) F^{z) = F^iz) - b1+sz*Fϊ:^(z) (n ̂  2).

Furthermore,

e+"(l/s) F^l\z) (n > χ )

F[;\z)

Now divide (3.3) by F^\z) and let n-* oo. This yields
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which may be interpreted as an alternate expression for (2.7). We
combine (3.3) and (3.4) to obtain

r n ur r n-ι — O]+SZ <JΓ {r n+ι\x Jo % _ 2 )

for n ^ 1. (Here and in the next equation F\;] = Fι

n

8)(z), G{s) = Gis)(z),
etc.). Such an expression suggests iteration. With the aid of (3.4)
Written as

Jp(8+n-l)Q(s-\-n-l) fii(s + n) __ Q(n-\-s-1) ^

and after some simplication, including multiplying through by
we compute

(3.5) z

for any p and all n ^ 1. Now choose C a circle small enough to ex-
clude all the singularities of G{s){z)9 G{s+])(z)9 •- , G{s+n)(z). Such a
circle exists because G(m)(0) = 1 for all m. The degree of FJf

β)(2) is
2[&/2], Hence the residues at the origin of each term in (3.5) is
readily computed and we have

(3.6) ---.- [ z—p~1Fls}(z)G^(z)dz = Kv Π bk+s
ZTCl JO' k=i

for O ^ ^ w and n ~ 1, 29 3? . If we define the empty product
as unity, then (3.6) holds for n — 0 also. The change of variables,
z — 1/x, casts (3.6) into

(3.7)

0 ^ p ^ n and n ^ 0. Here C is the circle reciprocal to CO C sur-
rounds all of the singularities of Gik+s)(l/x), k = 0, 1, , n. The
integration is taken in the positive direction. We may convert (3.7)
into a real orthogonality relationship by substituting the representation
of G{s)(z), given in Theorem 2, into (3.7) and interchanging the order
of integration and summation. With the observation that the residue
of x~λG{s){llx) a t x = ± l/α(

n

s) i s -~A{

n

s)(α{

n

s))~2 > 0, w e h a v e

(3.8) - A^δp0φi:\0) + Έx'φPix) Res JkΛs



1178 J. L. GOLDBERG

for 0 ^ p ^ w , w = 0, l ,2, . The summation is extended over all
the poles of x^G^il/x). We express this and the results of section
two as

THEOREM 3β Let {bn} be an arbitrary sequence of positive constants
with \imbn — 0. Suppose {ψ{

n

s)} are the sets of orthogonal polynomials
determined by (2.1) and (2.2). Suppose G{s)(z) is defined by (2.7) and
β{s) is the unique normalized distribution function associated with
{φ{

n

s)(x)}. Then for each nonnegative integer s,

( i) the spectrum of β{s) is the closure of the set of poles of
G{s)(l/z); namely, x = 0 and x = ±l/a'n

s), n = 1, 2, - .

(ii) the jump of βίs] at these poles is equal to the residue of
χ-ιG{s){ljx) there. That is,

β{s)(x + 0) - β{s)(x - 0) - - A ; s ) « ; ' ) " 2

for x = ±1M S ) .

(iii) /3(s)( + 0) - β{s)(-0) = -A ( s ) .

(iv) For each p,0^ p ^ n and all n = 0, 1 2, ,

= dnPf[ bk+s,
k = l

where [—a, a] is an interval large enough to include the bounded set,

The criterion Σbn < co is both necessary and sufficient to imply
the existence of Iimwajw^i8>(l/it?).

COROLLARY 4. If Σbn < oo then (uniformly)

xφ\:\llx) l im a?Λ^β)(l/a?) E{a)(x)
— G{s)(x)

Here, Eis+1)(x) and E{s)(x) are entire functions. Conversely, if
limnx

nφ{

n

s)(l/x) converges uniformly in a bounded closed domain about
x = 0 then Σbn < co.

Proof. The sufficiency, with the modification at x = 0 previously
mentioned, is the main theorem of Dickinson, Pollak and Wannier. Their
proof depends only upon Σb^ < oo and hence is applicable here. The
necessity is proved by an appeal to a theorem of Polya (Obrechkoff,
[8, Theorem IV] which states in eflect that the limit of a uniformly
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converging sequence of polynomials with real, symmetric zeros is an
entire function. Therefore, the coefficient of x2 in xnψ{

n

s)(l/x) converges
to the coefficient of x2 in the series expansion of the limit function.
But, we see that xnφ{

n

s)(l/x) = 1 - (&1+β + b2+s + + bn+s)x2 + 0(a;4) for
n = 1, 2, •••. This proves the necessity. More interestingly;

THEOREM 4. A necessary and sufficient condition that limxnφ{

n

s)(l/x)
converges uniformly in some bounded, closed domain containing x — 0
(and hence converges to an entire function) is that Σa~2 < oo.

Proof. Assume that limnx
nφ'f(l/x) converges uniformly. Bat

the aforementioned theorem of Polya we know the limit function is
entire. Denote its zeros by ±a{

v

s\ 0 < a[s) < a^s) < . Let ±aktn9 k —
1, 2, [n/2] be the 2[n/2] zeros of xnψ{

n

s)(l/x) ordered

0 < aUn < a2tn •-. < a[
l 2 h n

Now a theorem of Hurwitz asserts that l im^α^ = a(

k

s), k = 1, 2, .
Referring once again to Polya's Theorem we conclude that Σ(ak

s))~2

converges. Of course, the zeros ±α[ s ) are the poles of G{s)(l/x). From
(3.4) they are also the zeros of G{s~1](l/x). But the zeros and poles of
G^-^l/cc) (for any s) alternate on the real axis. Hence Σ(ak

s~l))~2 also
converges. Successive applications of this reasoning yields the con-
vergence of Σ(ak

0))~2 — Σak

2 after s steps. We prove the sufficiency
by showing that the convergence of Σak

2 implies the convergence of
Σbn. Towards this end we note that the zeros of φ{*]{x) and φ[!2ί\x)
are interlaced (Lemma 1). In our notation, the reciprocals of these
zeros are ordered as follows;

• < aUn+1 < aun < a2tn+ι < a,,n < ,

for n — 1, 2, -. Hence,

1 1 _ 1 _ β m φ

OC\,n aίn + l Otln + 2

(3.9) Cίί,n «2,n + l «2,w-f

for r < [w/2]. Thus a~% < α^2. By hypothesis Σa~2 < c>o. Hence by
Tannery's theorem (Browwich [1, pg. 136]).

lim Σ akX = Σ
k 1 k l
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But b, + b2 + + bn = Σ k~?<Xk?n, since the coefficient of x2 in xnφ{

n

8)(l/x)
is the sum of the squares of the zeros of φ{

n

s)(x). Corollary 4 completes
the proof.

For a special case, Dickinson [4] has computed the moments, {m^s)},
of β{s) in terms of the parameters of G{s)(z), We know in advance
that the odd moments are zero (Shohat [11, Theorem II]) and that the
moments are the coefficients in the Taylor series expansion of G{s)(z)
about z ~ 0. Specifically,

COROLLARY 5. Under the hypothesis of Theorem 3;

m?

(

?

s) = 0 , n odd ,

m\:] = -A{s) - 2 Σ Aΐ'ia'f)-2 = 1 ,

mi s ) = - 2 Σ Ai s )(αi s ))"%~2 , n >
Jfc = 0

Proof. We have from Theorem 2 that

Σ

Σ
=0 n=l

for | « | < I α| s ) |. Thus

(3.10) aj^G^^l/a?) = -A{s)/x - Σ a?"2*"1 Σ 2A{

n

s)(a'n
s)y2k~2 .

k

But then

and the Corollary is proved.

4* A representation theorem for the meromorphic function
G{s)(z). In previous sections we have concentrated on the determina-
tion of the spectrum of β{s) from a knowledge of {bn}. In this and
the succeeding section we direct our attention to the class of meromor-
phic functions which determine real orthogonal polynomials with dis-
tributions having spectra of the type described in Corollary 1. We
denote the class of such meromorphic functions by PIF; a notation
motivated by the notation for a related class of functions. We express
our main theorem by the following:
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THEOREM 5. The following four statements are equivalent*:

(1) zF(z) e PIF

(2) m l } B £ B £

with Bn > 0 n — 1, 2, , and lim Bn = 0.

(3) F(z)= -A + ± 2A± 2 ,
where A ^ O , A % < 0 , w = l , 2 , 3, •••, - A -2 7 2A % α- 2 = 1, 0 < # ! < <x> <

0 < «! < 7i < α2 < τ 2 < , an -> oo α^d Π (1 +

converges (and is therefore
7 1 = 1

Proo/. (1)«(2) is established in §2 along with (2)=>3 (Theorem
2). We shall prove (3)=>(2) and then (3)<=>(4) to complete the proof.

(a) We prove (3)=>(2). Suppose F is defined by (3). Then
— A — Σ2Ana~2 = 1 establishes the uniform convergence of the right-
hand side of (3). Hence F is transcendentally meromorphic and analy-
tic at z — Oo The Taylor series (in z2) for F at z — 0 has only positive
coefficients. From the theory of continued fractions (Shohat [11, pg.
455]), we deduce a representation for F in the form (2) with the stated
conditions on {Bn}.

(b) To prove the equivalence of (3) and (4) we set z — it and define
f(t) = tF(it). Then f(t) is a meromorphic function which maps the
right half-plane into itself, the imaginary axis into itself and the reals
into the reals. These properties of f(t) follow, if we assume F is
given by (3), by taking real and imaginary parts of (3). Richards [9]
made a detailed study of such functions which he named iPRF (PR
for positive real part; PI for positive imaginary part in our case).
The transformation, t — —iz and the definition F(z) = if(—iz)/z, there-
fore, converts Richards' theorems into results for F(z). In particular
then, (3)=>(4) as a consequence of [9; Theorem 12] and because /'(0) =
F'(0) = 1. Conversely, if F is given by (4) then f(t)eiPRF by [9,
Corollary 12.1] and (4)=>(3) by [9; Corollary 10.1]. This completes the
proof.

5* The constants A{s\ The mass assigned by the weight function

* We suspend our convention on superscripts for this section.
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to each point of the orthogonality domain may be determined, as we
have seen, by examination of the residue at each pole of a function
meromorphic in 1/x with the single exception of the mass at zero,
— A{s). If the mass at zero is zero for each s, as it is in the examples
considered by Dickinson, Pollak and Wannier [6] and Carlitz [2], the
exception is vacuous. It is of some interest then, to consider the
problem of characterizing in function-theoretic terms those PIF func-
tions with Ais) — 0, s — 0, 1, 2, . In the course of this section we
derive some theorems, parts of which yield conditions assuring nonzero
mass at x — 0. We begin by proving a Lemma fundamental to this
part of our study.

LEMMA 2. In the Stolz domain,

0 < θ1 ίg arg z ^ θ2 < π, and for each s Ξ> 0 ,

/K n limG(s)(z) = - A ( s ) .

Proof. This is a well-known theorem in a different guise. For,
[9, Theorem 5 and Corollary 10.1] shows that liml2Hoo f(t)/t exists (t in the
domain | arg t | ^ θ < π/2) and is nonnegative. Now G{s)(z) is PIF from
Theorem 5 (2), so that f(t) = tG{s){it) e IPR and the Lemma follows from
[9; Corollary 10.1]. A second Lemma follows from (3.4) and Lemma 2.

LEMMA 3. Either the terms of {A(s)}Γ=i are all zero or they are
alternately zero and nonzero.

Proof. Set z — iy, (y real) in (3.4) and write

(5 2) -&k
Then one interation of (5.2) yields

(5.3) J- = 1 + b1+s(Vt + 62+.G( +

Now let 7/ —> oo in (5.2) and (5.3) and evoke Lemma 2. Equation (5.2)
shows that A{S)A{S+1) Φ 0 is impossible and (5.3) shows that either
A{s) = A{s+2) = 0 or A(s)A(s+2) Φ 0 for every s. But this is just an
alternate way of expressing the content of Lemma 3.

THEOREM 6. For all s = 0,1, 2,

(5.4) - A{s) = lim Π (αi s )M s + z )) 2 < ~ .
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Proof. Set z — (iy)"1 in Theorem 5 and note that

•(5.5) lim G{s){z) = - A{s) = lim Π \ V \ + ^ ' ^
I*H~ y-^o i L y2 + (a{

n

s))-

Since

t +
χ _

for all 7/ and every n, the hypothesis that Π («1S)M'+1))2 converges
implies the uniform convergence of the rightmost factor in (5.5) in
every set y2 ^ R2 and thus the continuity of Gis)(l/iy) at y = 0. This
proves (5.4) when the product converges. Now | a{

n

s) | < | a{

n

s+1) \ so that
divergence of Π (^is)/^is+1))2 is divergence to zero. Hence, given any
ε > 0 there exists an N such that for all n > N

Π (a'f/a{

n

s+1)γ < e .
1

But

w « i ) ) η f r^ + («,(r+i))fr w + «s+i ))-η < fr r
Y L ̂  + «»)-2 J - i1 L ̂  + «
Π y + Γ̂ 2

 } U (l + i ) Π

The leftmost inequality holds for every N because each term in the
product is less than one for every y. The last inequality holds for
all y satisfying y <£ (VWa^^)"1 n = 0,1, , N. Because of the
ordering of the poles of G{s)(z), this can be accomplished by the re-
striction y ^ {V~Wa[£+1))-1

 o Hence the limit on the right side of (5.5)
must be zero, proving Theorem 6 if the product diverges. A less com-
plete result follows from (2.13).

THEOREM 7O If A(s+1) = 0 then a necessary and sufficient condi-
tion for A{s) Φ 0 is that ΣA{

n

s+ι) converge. In either case

A< > = - ( 1 - bι

{suitably interpreted if ΣA{

n

s) diverges).

Proof. Set z = {iyY1 (y real) in the representation for G ( s + 1 ) given
by (2.13). Since A{s+ί) = 0 and 0 < a[s+1) < α t + 1 ) < •••, we have for
all y ^ (αίs+1))2,

N
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But from (3.4), with z = (iy)~\

(5.6) !/-=G..«»(

Let y —> 0 and assume ΣA(

n

s+1) diverges. Then

\im&s)(-i/y)= -A{s) = 0 .
2/-0

Now suppose 2Άis+1) converges. Since

(5.7) y-*G^( £ ^C' j

we conclude that Σ Ais+1)[l + (a^fy2]"1 converges uniformly for all
y in, say y2 ^ R, and hence represents a continuous function at y — 0.
Therefore, from (5.6) and (5.7).

This completes the proof.
Hence if {A{s)} is a sequence of zeros, ΣA{

n

8) must diverge for
each s. Conversely, if all such series diverge {A{s)} is a sequence of
zeros. Is it possible for 2Άis) to converge and A{s) Φ 0 ? A(s) = 0 ?
In other words, if {A(s)} is alternately zero and nonzero, what can be
said about the convergence of ΣAn,ΣA%\ ΣA{2\ •••, besides the state-
ment that they all cannot diverge? We leave this question open.

Finally,

THEOREM 8. The constants {bn+s} and A{8) are related by

(5 8) I — ]_ I ^ l + s I ^l+s^3+g _ι_ ^l+g^3+g^5-}-g I . . .

A{s) b2+s b2+sb,+s 6 2 +A+ sί>6+g

so that A{s) — 0 if and only if the series (5.8) diverges.

This theorem is known (see [3; Theorem 2] and the references
therein). We include the statement here for completeness.

6. An example* Wall [15] studied a certain continued fraction
which arose in a number-theoretic context. By suitable changes of
variable this example may be used to illustrate the theorems of the
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previous sections. There seem to be relatively few cases of interesting
special functions for which the sequences {bn} and {Als)} are known
explicitly and {A(s)} is not all zeros. The author was able to find only
this one example. Choose 0 < r < 1 and 0 < q < 1 and define ί>2 = r,

(6.1) b2k+2 = (1 - rqk)qk+1, b2k+d = rqk+1(l- qk^)

(6.2) Mx = r Π (1 - rqk)

(1 - q)(l - g2) (1 - g*-1)

Then Wall [15] has shown, in our notation,

1 - 1 . ^ v -Miϊ"*(6.4) — ± — = 1 + z2 Σ
G<"(Z) &

From (3.4) and (6β4) we deduce that

so that A{1) = 0, - 2 ^ υ = Mk{rqk)~ι and « 1 } ) 2 = ^~&. We use Theorem
7 with s = 0 to deduce that A{0) Φ 0 if ΣM^rq1")'1 converges. The
ratio test yields the convergence of this series if r < q and its diver-
gence if q < r . Thus the terms in {A{s)} are all zero if q < r and are
alternately zero and nonzero, A(0) ^ 0, if r < g. Wall has also shown that

(6.6) G{1)(z) = Σ IV ff(l - rqk)\z2n .

Hence, the moments m^} can be read off immediately (see Corollary 5)

(6.7) mff = qn U (1 - rqk) (n ^ 0)

where the empty product is defined as unity. Incidentally, Σbk < °°
for all choices of r and q so that this example is one that is included
in the Dickinson, Pollak and Wannier theory.
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