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SUFFICIENT CONDITIONS FOR AN OPTIMAL
CONTROL PROBLEM IN THE CALCULUS
OF VARIATIONS

EpwiN H. MOOKINI

An arc C is a collection of parameters b* (0 =1,:--, 7) on
an open set B and sets of functions y'(x), a™(x) ¢ =1, .-, m;
h=1,---,m) defined on an interval 2! <« < 2® with y*(x) con-
tinuous and ¥i(x), a*(x) piecewise continuous, The arc is admis-

sible if it satisfies the differential equations
?)i:Pi(x’y,a) (":219"',%)

on 2! < x < 2° and the end conditions

xs = Xo(b), yi(x®) = Y'5(b) s=1,2.

The dot denotes differentiation with respect to . The problem
at hand is to find in a class of admissible ares C, an arc C,,
which minimizes the integral

10)= g + " f,0, 00

where P(x,y, a) and f(z,y, @) are assumed to be class C'/ for
(x,y,a) in an open set R while g(b), X*(b), Y*(b) are of class
C’" on B. Under the added assumption that P(x,y, a) is Lip-
schitzian in y and a, the indirect method of Hestenes is used
to prove that the necessary conditions for relative minima of
the problem above, strengthened in the usual manner, yield a
set of sufficient conditions, This problem differs from that of
Pontryagin in the choice of (x,y, a) to lie in an open set.

DEFINITIONS AND NOTATION. The are C will be denoted by
C: b, y(x), a(x)

and the minimizing arc will be called C,. A set of parameters 8° and
functions 7*(x), a*(x) is called a variation v and denoted by

7: B, (@), a(x)

if 7'(x) are continuous and 7i(x), a*(z) are in L, on o' < x < a°. The
variation v is differentially admissible if

7.] = Py,ﬂ?j + Pahah

along C, for almost all # on ©* < ¢ < x°. Repeated indices indicate sum-
mation. It is admissible if in addition to being differentially admissible
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264 EDWIN H. MOOKINI

it also satisfies the variational end conditions
@) = {Y® — 9'(2) X;}8° = Cr (s=1,2)

where the subscript p denotes the derivative with respect to b°.

2. Condition S. An admissible are

Co: by, Yo%), ay(®)

will be said to satisfy condition S if the following are true.

(a) ay(x) is continuous on X' (b)) = x = X?*(b,).

(b) C, satisfies the first necessary conditions, i.e., the Euler
equations,

(@)= —Hy, ¥ (x) = Hyi, Hn =0
and the transversality condition
9o — [H@) X, — 22 Y1zt = 0

with 2'(x) being continucus and having econtinuous derivatives on a
neighborhood of C,. The symbol [f(x°)]:=? means f(x?) — f(xY).

(e) C, is nonsingular, i.e., the determinant |H,,:| is nonzero
along C, where

H(xy Y, a, Z) = zi(x)Pz(xy Y, a’) - f(xy Y, a’) .

(d) C, with z'(x) satisfies the strengthened condition II, of
Weierstrass, Eg(x, y, », q,2) = 0 whenever (x, y, p, 2) is near those on
C, and (x, ¥, ) # (¢, ¥, q) in R, The E-function is given by

Ex(x, 9,0, q,2) = —H(z,y,q,2) + Hx, y, p,2)
+ (qh - ph)th(fX/', Y, D, 2)

(e) For every nonnull admissible variation <, the second wvari-
ation IL(v) along C, is greater than zero where

I(7) = {900 — [H b zsz%;
+{H, — ¥ H,$X; X5 + H (Y Xo + Yo XO)[Te s’

— S:iz.:o(x, 7, a)dx ,
2w(x, 9, &) = Hyi,i)' + 2Hgn'a + Hpgaa® .
(f) There is a neighborhood of C, in @y-space such that
| P(z,y,0) — P(2, Y, A) | <elly = Y[+ |a— A} ¢ >0

holds for all elements (z,y, @), (x,Y, A) of R which have (v,y) in
that neighborhood.
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Unless otherwise specified it will be assumed that the arec denoted
by C, will satisfy condition S. The principal theorem of this paper can
now be stated and its proof will be given in § 7, using the results of
the intervening sections.

THEOREM 2.1. Let C, be an admissible arc on &* < x < x® satis-
Sying condition S. There is a meighborhood N of C, in b y-space
such that I(C) > I(C,) for all admissible arcs C with (b, y) in N and
(x, 9, a) in R,

For future use it is convenient to state a theorem of Hestenes
[8, Theorem 5.1] as

THEOREM 2.2. Let C, be a mnonsingular admissible minimizing
arc satisfying condition Ily. There is a meighborhood N, of C, in
b y a-space and a constant h > 0 such that

EH(xy Y, P, q, Z) g hl(q - p)
for (x,y,p) in N, and (x,y, q) in R where

Wg—p)=V1+]g—pF—1
and |q — p| = the length of the vector q — p.

3. I*(C). Let C, be a nonsingular minimizing arc and define
22
E3(0) = | ExO)ds
22
= ~[1-H@ + He@) + @ - ) Hu(a)ds

where the missing arguments are (x, y(x), 2(x)). Choose a funetion
I*(C) so that
I(C) = I*(C) + EZ(C) .

It follows from the definitions of I(C) and E%(C) that
I*(C) = g(b) + [ (x)y'(x")]i

~ [TV + B, v, a0 + 0 - diHalo, v, 0 D) do
Since E3(C,) = 0,

I(C) — I(Cy) = I*(C) — I*(C,) + EX(C) .

From the definition of I*(C),
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I*(C) — I*(Cy) = {g(b) — g(bo)}
+ [ (@) y'(x°) — 2¥(ah)ys(as) =t
x2) .
e — v+ H
3 1) x1(d)
@ — H{y) + {a* — al}Ha(y))da
x26)
— % i+ Haos
X%(b)
x(b .
+ 7 ek + Hoda
X1(bg)
where the missing arguments in H are (x, @, 2). The following result
can now be proved.

THEOREM 3.1. Let C, be a nonsinguler admissible minimizing
arc satisfying condition IIy. For every € > 0 there exists a con-
stant 6 > 0 and a neighborhood F' of C, in by-space such that

| T*(C) — I*(Co) | < &fl + ELO)},

for every admaissible arc C im F whose endpoints are in a d-neigh-
borhood of these on C,.

Given ¢ > 0,0 and a neighborhood N, of C, in b y-space can be chosen
such that from equation (3.1),

3.2 |10 — 7€) | < || et — aHu(w, v, 0 e | +
xd) 2

for all ares C with (b, y) in N,. Since H (2, 4., &, 2) = 0, it follows
that for ¢ > 0 a neighborhood N, of C, in b y-space can be chosen so
that

(3'3) l Hah(xy y’ aO; z) ’ < 81
for all ares C with (b, ) in N,. From Theorem 2.2,
Ex(C) = hi(g — p) > Ija — a,| — 1}
and
0= a| = {Ba(C) + 1}

This together with inequality (3.8) yields

x2 x2

H (@ — aYHoa(z, y, ay, 2)de l< 81S o — a| da
x! x1

(3.4) c
< i{E’;(C) + h(x* — aY)} .
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Choose ¢, such that &(2? — ') < ¢/2 and ¢,/h < e&. If in addition F is
taken to be the smaller of the neighborhoods XN, and N,, the theorem
follows readily from inequalities (3.2) and (3.4).

THEOREM 3.2. Given a constant ¢ > 0 there are positive con-
stants 9, 0 and a mneighborhood F of C, in b y-space such that for
every admissible arc C in F satisfying theorem 3.1, I(C) > I(C,) — o.
If E}C)=p, then I(C) < I(C) + 0. If E}C)= 20, then I(C) >
I(Cy) + o.

The definition of I(C) and Theorem 3.1 yield
—&e+ {1 — gE3(C) < I(C) — I(Co) < ¢ + {1 + etE%(C)

for all admissible ares C with (b, y) in F. The theorem follows im-
mediately from the proper choice of ¢ and p.

4, Extension of the arcs C, and C. We shall extend the ares
C,, C to lie on a fixed interval e¢' < x = €* containing X*(b,) =< x < X*b,)
and X'(b) = v < X*b). The equation

(4'1) Hah(xy Y, a, Z) =0

has a solution y = y,(%), @ = a,(x) corresponding to the minimizing arc
C,. By the nonsingularity of C,, there is a solution @ = a(x, y,2) of
equation (4.1) which is continuous and has continuous derivatives in a
neighborhood of C,. Further, on X'(b,) =<z < X*b,), a(x, ¥,, 2) = a(x).
By an imbedding theorem [2, pp. 196] the equations

y. = Hz(xy Y, a’(xy Y, Z))
£= — y(xa Y, a’(x’ Y, Z))

have a solution y = %(x), 2 = Z(x) on €' = x < ¢* such that ¢! < X(b,) <
X¥by) < ¢ and F(x) = yo(x), 2(x) = 2z(x) on X'(b) <= < X*b,). The
arc C,,

Co: by, H(@), @) = a(w, §(x), Z(x))

coincides with C, on 2! < x < 2%, is defined on the larger interval
et <x =< ¢ and is therefore an extension of the arc C,. Since this
extension is unique, the extended arc will be denoted by C,,

Ca: by, 4o(@) = J(®), a(®) = @) .

If an admissible are C lies in a sufficiently small neighborhood of C,
then ¢' = X' (b) < X*b) < ¢* and the arec C may be extended uniquely
to the interval ¢' < & < ¢* by requiring that a(x) = a,(x) where it is
undefined and that ¥y = P(z, v, a(x)) also holds on the extension. The
extended arc will also be denoted by C.
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This method of extension will be used throughout the rest of the
paper. In the formulas for I(C) and I*(C) it will be understood that
the integrals will be evaluated on the interval 2' < 2 < x* and not on
the extended interval. An exception to this convention is made in
the formula for K(C, C,) which is discussed in the next session.

5. The function K(C,C,). To measure the deviation of com-
parison ares from the minimizing are, we shall define a function
K(C, C,) where C,C, are the unique extensions of admissible arecs
given in the last section as

K(C,C) = b~ b+ max [4() — u@) [+ | e — )i
with
e —a)=VI+]a—a —1.
Since a(z) = a,(x) on the extension,
S:i o — a)dx = S:il(a — aydx
and E,(C) is not changed by extending the interval.

THEOREM 5.1. Let C, C, be extensions to e' = x < e* of an admis-
sible arc and a monsingular minimizing arc respectively. For every
e > 0 there s a b y-netghborhood of C, such that K(C,C,) < ¢ for all
arcs C in that meighborhood satisfying Ej(C) < g/2.

By Theorem 2.2 and the hypothesis,
£ > Bi0) > 1| U — a)da .

Choose a neighborhood of C, in b y-space such that

(2h — e

[0 — b "+ max |y(@) — () ' <

In that neighborhood,

(2h —1e |, & _
BC,C) < ===+ g =¢

and the theorem is proved.

THEOREM 5.2. Let C, be the extension of an admissible arc and
let the sequence {Cy} of such extended arcs have the property that given
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a netghborhbood F of C, in b y-space there is an integer q, such that C, is
wn F for q > q, If limsup,_..I(C,) < I(C,), then lim,_., K(C,, C,) = 0.

If F' is the neighborhood in Theorem 3.2 and E3%(C,) = 20 for
q> q,,0>0,I(C,) > IC,) + o which contradicts the hypothesis that
lim sup,-.. I(C,;) = I(C;). Hence, E}(C,) < 20 < ¢/4. Theorem 5.1 as-
serts that K(C,, C,) < ¢ for arbitrary ¢ > 0 and the theorem is proved.

THEOREM 5.3. The sequence of arcs {C;} in Theorem 5.2 has the
property that {b;} converges to b, {y,(x)} converges uniformly to y,(x)
and {a,x)} converges almost uniformly in subsequence to a,(x).

Since lim,_., K(C,, C;) = 0, it follows that
lim [b, — b, [*= 0,

lim max |y, (x) — y(2) =0,
g=c0 elzz<e?

and
2
(5.1) lim § ag — a)de = 0.
g=c Je

The first two of these equalities give the convergence properties of
the sequences {b,} and {y,(x)} respectively. Suppose now that there
is a subset S of ¢! < x < ¢® of positive measure, m(S) > 0, such that
for any integer ¢, there is a ¢ > ¢, for which |a,(x) — ax)| >0 >0
for all # in S. Then, since l(a, — a,) = 0 for all g, it follows that

Sejl(a,, —a)dx = Ssl(aq —a)de > VT F o —1m(S) >0

for infinitely many ¢’s. This contradiets equation (5.1) and the sequence
{a(z)} must converge in measure to a,(x) on ¢' < x < ¢’, There is then
a subsequence, call it {a,(x)}, which converges almost uniformly to a,(x)
on ¢ £« < e and the theorem is proved.

THEOREM 5.4. Let {C;} be a sequence of extended arcs having
the convergence properties of the last theorem. Given a constant
© > 0 there is a constant 0 > 0 and an integer q, such that if M s
a subset of ¢' < x < e* of measure at most 0 and q = q, then

0< S L(@)ds < o
M
where 1(x) = la, —a) + 2 =1+ V1+[a, — al.

By the definition of [,(x),
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S L(@)de < 26 + 5 U@y — a)d .
M M

If ¢, is chosen so that K(C,, C,) < p/2 for all ¢ > ¢, and ¢ is chosen
to be p/4, the right side of the desired inequality is proved. The
proof is completed by noting that [ (x) = 0. We have just proved

that S l(x)dx is an absolutely continuous function of M uniformly
M
with respect to q.

6. Variations 7, v,. Let k, be the positive square root of K(C,,C,)
and define a variation v, as follows.
— bq - bo

Yot B = 27, 7]4(56) =

Yo(2) — yol®) a(x) = Qo) — (%)
I —_— a4 e ——

]ﬁq kq

For a sequence of ares C, with the property that lim,_.. K(C,, C)) = 0
it will be shown that the sequence of variations {v,} converges in sub-
sequence to a variation v, which is admissible on ' < 2 < 2°. From
the definitions of v, and K(C,, C,) it follows that

(6.1) 18,1+ max |7a) [+ | 19D gy = 1
elzw=ze? el lq(x)
Since each term is nonnegative.
(6.2) 1B, P=1,
(6.3) max [7,(z) " =1,
and
(6.4) erx =1.
et Zq(x) o

Using these inequalities we shall obtain several theorems, the first of
which is

THEOREM 6.1. Let {C;} be a sequence of extended arcs for which
lim,, K(C,, C)) = 0 and B, = (by — b))/k,. The sequence {8, converges
wm subsequence to a parameter [,

This follows immediately from inequality (6.2) and the Bolzano-
Weierstrass theorem.

THEOREM 6.2. Let {C;} be the sequence of arcs im the previous
theorem and o(x) = (a(x) — ay(x))/k,. There is a function a,(x) in
L, on e £ ¢ < €® such that the sequence {a,(x)} converges weakly in
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subsequence to a,(x) tn L, on every measurable set M on which a.(x)
converges uniformly to a,, Moreover, for every bounded integrable
function g(x),

(6.5) lim Sejg(x)aq(x)dx - Sejg(x)ao(x)dx .

From inequality (6.4) and the inequality of Schwarz,

2 < SM |aq£90; l2dw§ L(x)da < S lo(x)dx

for all measurable subsets M of ¢! < x < ¢’. Hence

] SMaq(x)dx

lim S a@)ds = 0

m(M)=0 JM

by Theorem 5.4 and S a(x)dx is absolutely continuous in M uniformly
with respect to q. In al([idition equation (5.1) and the deﬁnition of l(x)
imply that there is an integer ¢, such that for ¢ > q,, § 1,(x) is bounded.
Hence S | () | do is bounded. Banach [1] proved that there is an in-

tegrable funection a,(x) such that the sequence {a,(x)} satisfies equation
(6.5) for all bounded integrable functions g(x).

Now let M be a subset of ¢' = x < ¢* on which {a,(xr)} converges
uniformly to a,(x). For x in M there is an integer ¢, such that for
q > q,, l(x) < 3. Thus S log(x) P de < 3 for all ¢ > g,. Banach [1,

M
p. 130] showed that for a sequence of functions {a,(x)} in L, satis-
fying this last inequality, there is a function a,(x) in L, to which
{a (x)} converges weakly in L, in subsequence on M, Consequently,

3z limint | |au@)fdoz | o) de.

Since this holds for every set M as above, we have S |a(x) Pde < 8
and a,(x) is in L, on ¢ <z < ¢®. The theorem is thus proved.

THEOREM 6.3. Let {C;} be the sequence of arcs in the previous
theorem and let N (%) = (Y(x) — yo(%))/k,. There exists a function 1(x)
whose derivative 7,(x) s in L; such that the sequence {1,(x)} converges
uniformly to n(x) on e <z < e and {n,(x)} converges weakly in L,
to n(x) on every measurable set M on which {a,(x)} converges uni-
formly to ayx). Moreover,

tim [ oy (@)ds = | o@n@as

for every bounded measurable function g.
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Applying the Lipschitz condition of condition S to equation (6.1),
we get

2 e L[ | 4@ |
| Bal* + max |7.(z) [ + czgel_zq(m) do =1+ S»—zq(m‘) a .

Since max,ic, <2 |7(x)° = 1 and l(x) = 2,

2 2
CI0 0 gy < 1% = Lo o) =
Lyt < gl = g - =,

a constant. Hence,

2 . Lr | 24() [* 7.
84" + max [n,()[" + = el—lq(—w)—dx <l+e.
By an argument similar to that for the sequence {a,(x)} it follows that
there is a function 7,(z) in L, to which the sequence {7,(¥)} converges
weakly. Hence,

(6.6) lim S”liyq(t)dt _ S’lfyo(t)dt

uniformly on e' < x < ¢*. Let
i@ = Ci5 + | Aot .

Since lim,_.. n,(X*(b,)) = 7(x"), it follows from (6.6) that the sequence
{n4«(x)} converges uniformly to 7,(x) on e' < x < ¢* and the theorem is
proved.

THEOREM 6.4, Let {C,} be the sequence of extended arcs for which
lim,_., K(C,, C;) = 0 and define the variation v, as above. The sequence
of variations {v, converges in subsequence to a variation v, which s
admissible on x* < x < o,

Let v, consist of the parameters 8, and the functions 79,(x), a,(x)
of the preceding three theorems. That v, is a variation follows directly
from the definition of a variation and the properties of B, 7,(x), and
a(x). The variation v, will be admissible if it is differentially admis-
sible and satisfies the endpoint equations in § 1. Let M; be a subset
of ' < x < 2* on which {a,(x)} converges uniformly to a,(x) and whose
complement relative to x! < x < 2* has measure less than 4,0 > 0. By
Taylor’s theorem,

Y — Yo = Puilyl — i} + Pufaf — a5} + R,
the arguments of P,;, P,» being (x, y,, @,) and
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IRq! sedlye — ol + lag — a0}

on M where ¢,— 0 as ¢ — . Then

limg u@)ds = 1im§ (P,imi + Paaide + limg Lo g .
My g=c0 JM§ s k

g=oco g=0c0 q

Since the last integral on the right is bounded and &,—0 as ¢— oo,
it follows from Theorems 6.2 and 6.3 that

[, @ade = (P + Puatids
M Mg

and v, is differentially admissible. The endpoint conditions on an
admissible arc yield

yi(w®) — yoxs) = Y(by) — Y**(bo) .
Expressing the left side as y,(2°) — y(x°) + yo(x*) — yo(x5) and dividing
by k. we get

7u(@?) + Us(e) X (00)8; = Y (b)),
where

xt =) 4 0, — ), 0< 6, <1

by = b, + 0,(by — b,), 0 < 0, < 1.
‘When g — <o,

nu@s) = {5 — 5 X165 = C° %

and v, is admissible.

7. Proof of the sufficiency theorem. Two theorems involving
I*(C,) and E}(C,) will be proved, then they will be used to obtain
a proof of the sufficiency theorem of § 2.

THEOREM 7.1. Let C, be an admissible arc on x* < x < x* satis-
fying condition S. If for any integer q there is an admissible arc
C, # C, wn the 1/q-neighborhood of C, such that I(C,) < I(C,) then

2

lim I*(C) — I*(Cy) = %Iz(“/o) + _;_Sx Hpaakakdy |

g=o0 kz 1

Applying Taylor’s theorem to the right side of equation (8.1) for
I*(C) — I*(C,) and dividing by k2 we get equations (7.1) to (7.4)

(7-1) g—(ﬁ)‘—l—;;—g—(ﬁ)‘ = %gpﬁz + ‘%gpa-ﬁ(q7 + qu
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where |R,,| < €,]8,]* and lim,_.. ¢, = 0. The derivatives are evaluated
at b —= bo.

(@)Y (b)) — 2 () Y*(b,)
kg

+§wwmﬁ+mmm+ﬁ%ﬁ

Ik,
(7.2)

+ BY X, + 2 VIS8T + R

where |Ry| < €| B ® and lim,.. &, = 0. Again the derivatives are
evaluated at b = b,.

@ — ) + (H, v, 00 2) — B, 0,0, 2)

(7.3) + (a" — ap) Hol@, Yo, @, 2)}da
- g {_Z-HW;?W + Eﬂ,zahmalj}dx + g'lequ

2l

where | Ry | < &7, " and lim,_. e, = 0. The derivatives H,i i, H,i,
are evaluated along C,.

1 (st
7+ B, u, 0, 2}

ke Jatey

=%W%+M%%%WMME

<

(7.4)

)

L\DIH

(Fyi + H, + Hual + H, 2} X} X1B067
i{z i+ HYXLBR° + R,

where | Ry | < &4 B8, |* and lim,_..¢,, = 0. All the terms on the right are
evaluated along C, at x = X*b,). A result similar to this also holds for
the integral remaining in the expression for (I*(C,) — I*(Cy))/k? with
R, as the error in place of R,. The de.ﬁmtlon of R,, and the bound-

edness of |7, |’ yield the fact that hmg R, dx = 0. Substituting equa-

tions (7.1) to (7.4) into equatlonq (?‘) 1), applying condition S and a
theorem of Hestenes [7, Lemma 6.3] we get the desired result.

THEOREM 7.2. Let C, be an admissible arc satisfying condition
S. Let {C;} be admissible arcs related to C, as described in the last
theorem and chosen so that the corresponding variation v, defined
previously converge to a variation v, as described. Then

22
lim inf EI;(C") 4+ = 5 S (bO)Hahaka{;aécdx =0.

g=co . z1bg)
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For large ¢, Ex(C,) >0 for C,= C,. Applying Taylor’s theorem to
Ey(C,) it follows that
E{C) - _ 1

(1.6) > _S Horo(@, Yo, G, )abides + S Ry do

k2 2 Ju o

where M is a subset of ' < x < «* on which {a,(¢)} converges uniformly
to a,(x). Since ll?eq[ < & | * and lim,_. e, = 0 it follows from the

boundedness of S Ja, [ do that limS Rydx = 0. Now
g=oc0 JM

I

Hahak(x; yh a’Oy z)al;;a];dx

Hahuk(x, Yo, G, R)CXEOEAX

(1.7
{Hah,,k(x Yoy Qoy 2) — Hongu(, Y, o, 2)}atakde

L’—; l——' » !-,7

NlH l\')l)—‘ o | = ST

Ymmmwm%@mmp—wwuw

22
From the continuity of H,,» and the boundedness of S llaq |Pdx we get

lim S {Hroe(, Yo, @, ) — Hongh(, Yo, &y, 2)}ataide = 0 ,
M

g=co

The last integral in equation (7.7) can be written as
| Hovadalde = | Houled — altat — af)ds
+ | Huuladat + atat}ds — SMHahuka{;aé‘dx :
Since {a,(x)} converges weakly to a,(x) on M,

lim infS Ly, atards = —lg Hopabards
g=co M 2 2 M
(1.8) .
+ lim inf S — 3 Hunuslah — aljlol — af)de .
=00
Therefore, from (7.6), (7.7) and (7.8),
lim inf Eﬂécq

g=o00

) + = 5 S Hweattalkdax
(7.9) .
> lim inf S — 5 Hoorlah — al}{e — afjde .
M

g=co

Since C, satisfies condition II, with multipliers zi(x) it also satisfies
the strengthened condition of Clebsch,
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Hgrmnt <0

in a neighborhood of C, for all (x) # (0). Hence the last integral in
(7.9) is nonnegative and the theorem is proved for every subset M on
which {a.,(x)} converges uniformly to a,(x). Let M, be the complement
of M on #* £ =< 2° Then

S:Hahakagagdx - SMHahakagagdx + SM{fahakagagdx .
Since the integrand H,:.alaf is integrable on x! < x < 2%, the last
integral of the preceding equation must go to zero as the measure of M,
tends to zero. Thus the theorem is proved over ' <z = 2*. We
now turn to the proof of Theorem 2.1, Suppose it is false. For any
integer ¢ there is an admissible arec C, = C, in the 1/g-neighborhood
of C, such that I(C,) < I(C;). From equation (3.2) and Theorem 7.1,

E3(Co)

q

(7.10) 0= L(v) + ; S H,atatde + lim inf Z2(C0

g=co

which implies, by virtue of Theorem 7.2, that I,(v,) < 0. Statement (e)
of condition S requires that v, must be null. Consequently I(v,) =0
and

S”lﬂahakagagdx ~0.
By Theorem 2.2 and the inequality (7.10),

0= hm mf EH(C") = hlim 1nf§ |aq [* =21 dx
: 4 I=co lq(x)

which is impossible because of equation (6.1). Hence 7, 0 and the
assumption that I(C,) < I(C,) is false. This proves the sufficiency
theorem.
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