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FUNCTIONS ANALYTIC IN A FINITE DISK
AND HAVING ASYMPTOTICALLY

PRESCRIBED CHARACTERISTIC

D. F. SHEA

Let f(z) be analytic in the region \z\ < R (R ^ + oo). Then
in the interval 0 ^ r < R, Nevanlinna's characteristic

is known to be nonnegative, nondecreasing and convex in
log r; however, it is not known whether these properties
characterize completely T(r, /).

Recently, A. Edrei and W. H. J. Fuchs have investigated
one aspect of this question; they have shown that if A(r) is
an arbitrary convex function of log r defined for r0 Ξ̂ r < + °°
and such that log r = o(Λ(r)) as r-> + oo, then it is possible
to find an entire function f(z) such that

(A) T(r, f) oo Air) (r -» + oo),

except possibly for values of r belonging to an exceptional
set of finite measure. In this note I establish an analogue
of this result for the case of functions regular in a disk of
finite radius R.

The proof of (A) in the case R < + <>o y as well as in the case

R — + oo 9 depends on the construction of certain infinite products

which have applications to other problems of the same nature. To

illustrate this fact, I use these products to find, very simply, examples

of functions F(z) which are bounded on | z \ < 1 and such that the

derivatives F'(z) have unbounded characteristic.

The main result of this note is given by the following Theorem 1.

The notion of order which appears in the statement of the theorem

is the one introduced by R. Nevanlinna [9]: if A(r) is a positive non-

decreasing function defined in 0 g r < i 2 ( < + o o ) > the order λ of

Λ(r) is

λ = limsup

— r
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THEOREM 1. Let Λ(r) he a given convex function defined for
0 ^ r < R (< + oo) and satisfying

lim

Then there exists a function f(z) regular in \ z | < R and such that
( i ) if A(r) is of finite order,

(2) T(r,f)~Λ(r) (r - R - )

(ii) if Λ(r) has infinite order, (2) still holds provided r avoids
an exceptional set E of intervals in [0, R). The set E satisfies

( 3 ) means E(r, R) = 0 ί - ^ ^ J (r «-> Λ - ) ,

where E(r, R) denotes the intersection of E with (r, R) and τ ( ^ 1) is
a given constant.

We have assumed convexity instead of logarithmic convexity
because, for functions defined on a finite interval, these two notions
are asymptotically equivalent.

In a paper as yet unpublished, J. Clunie has improved the results
of [2] by eliminating the need for any exceptional sets. It seems
that, with a few modifications, his ingenious argument would lead to
an improvement of Theorem 1 which, in addition to removing the
exceptional set E, would also replace the condition (1) by the simpler

lim Λ{r) = + oo .

The construction given here of a function f(z) satisfying (2) may
be of interest because of its relative simplicity, and also because with
minor modifications, given in § 5 of this note, it yields a very simple
solution of a problem of Bloch and Nevanlinna.

I would like to thank Professor Edrei for suggesting the problem
of finding an analogue for the disk of the results in [2]. I am also
indebted to Professor Edrei and Dr. G. T. Cargo for their helpful
remarks about the Bloch-Nevanlinna problem, and to Dr. Clunie for
allowing me to see the manuscript of his paper.

1* Preliminaries. It is clearly no restriction to assume R — 1
and to consider only functions Λ(r) of the special form

(1.1) A(r) = [φ(t)dt (φ(0) = 0) ,
Jo
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where φ(t) is continuous, strictly increasing and unbounded. This is
justified by the elementary remark that any Λ(r) satisfying the con-
ditions of Theorem 1 is asymptotically equivalent, as r—>1—, to a
function of the form (1.1) [cf. for example 12, p. 69].

We shall need:

LEMMA 1. Let A(r) and G(r) be positive, continuous, increasing,
unbounded functions defined for r* ^ r < 1 (r* ^ 0) and such that

(1.2) #
•i- G(r)

Then the function

(1.3) β(r) = inf

has the following properties on the interval r* ^ r < 1:
( i ) it is positive, nondecreasing, continuous and unbounded;
(ii) the function

is unbounded and strictly increasing.

Proof. The properties (i) as well as the inequality

A(r)
(1.5) B(r) ^

G(r)

follow at once from the definition (1.3).
From (1.5) we deduce that B(r) is unbounded. To verify that it

is increasing, let r, r' satisfy

r* ^ r < rf < 1 .

By definition, for some tt such that r ^ tx < 1 we have

(1.6) G&) = J & .

If ίi < r', the relations (1.6) and (1.5) (with r replaced by r') imply

^ 1 - <; G&) < G(r') g Ajfl ,
β(r) β(r')

and hence

(1.7) B(r) < B(r') .
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If r' S tu then by the definition (1.3) and (1.6),

β(r') <£ Ά&- = β(τ) ,

which implies β{r') — β(r). Thus (1.7) follows from the inequality
A(r) < A(rf). This completes the proof of Lemma 1.

In the sequel, we shall use the symbol K to denote a positive
constant depending on one or more parameters. Since most of the
inequalities in §§ 2-5 are valid only for values of certain parameters
t, r, V, sufficiently close to some limit, it is convenient to indicate
this fact by writing, immediately after the relevant inequality,
(to ̂  t < 1), (r0 ^r < 1), (p ^ p0), . The quantities K, t0, r0, p0,
are not necessarily the same each time they occur.

We assume that the reader is familiar with the fundamental con-

cepts of Nevanlinna's theory of meromorphic functions, and in parti-

cular with the symbols: log, n(r,f), N(r,f).

2. Construction of a function f(z) with N(r, 1//) ~ /?(r). Let
A(r) be any given function of the form (1.1) such that the growth
condition (1) is satisfied. Denote the order of Λ(r) by λ, and choose
a constant A such that, if λ is finite,

(2.1) A > λ + 2 .

If A, = + oo, we consider the arbitrary number r ( ^ 1) which appears
in (3) and require that A satisfy

(2.2) A > 6τ .

Then define a function G(r) on 0 ^ r < 1 by

G(r) = max \VA(r) , A log —-—} .
I 1 — r i

By (1), A(r) and G(r) satisfy the hypotheses of Lemma 1, and hence
there exists a continuous, nondecreasing, unbounded function β(r) such
that, on some interval r* ^ r < 1,

(2.3) β(r) ;£ VA{r) ,

(2.4) β{r) ^ — A{χ)

— A log (1 — r) '

and such that the function

(2.5) B(r) = ^
/3(r)
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is continuous, increasing, and unbounded.
Let a be any constant such that 0 < a <£ 1 and

aB(r*)l/β(r*)

and observe that the equations

(2.6) k = aB{τk)Vβ(rk) (k = 1, 2, . . •)

define uniquely an increasing sequence {r/c}, with limr/c = 1.
/C~»oo

Next, put

si = exp ( k ) = exp (B(rk)) (k ̂  1)

and note that si increases to + oo with jfc, while the terms sk form a
monotone sequence converging to 1.

Denote by [x] the greatest integer in x, and define new sequences
{qk} and {Qk} by

qk = fiks^ sΛ] (A; ̂  1) ,

Qk = Qι + 42 + + Qu (fc ^ 1) .

The following relations are elementary consequences of the above
definitions and will be taken for granted.

(2.7) qh > si = β*"> (^ ^ 1) ,

(2.8) g/c+1 > gfc (fc ^ 1) ,

(2.9) Km -2*±! = 1 ,

(2.10) lim -^- = 0 .

Finally, we define a sequence {£&} by the conditions

(2.11) Φ(tk) = Qk (& = 1, 2, . . . ) ,

it is clear that this sequence exists and is uniquely defined, with
0 < ίi < ί2 < < 1 and lim tk = 1.

We consider now the formal product

(2.12) β (l + If}**) = f(z)

and establish some of its simple properties.
If p is any number in tx ^ p < 1, we can define an integer

V = P(p) by
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(2.13) tp^p< t p + 1 .

T h e n if \z\ = r < p , we have in view of (2.8)

(2.14) vΣ k=p\ p ) \ p ) p — r

These inequalities imply that the product (2.12) converges uniformly
for \z\ ^ po(< p)y and hence f(z) is regular for | z | < 1.

It is clear from the representation (2.12) that the zeros of f(z)
satisfy

0 (0 ^ t < tx)

Using (2.9), (2.10) and (2.11), we have

and hence

(2.15) N(r, j

We proceed to estimate the maximum modulus of f(z). Let tγ ^
r < p < 1, p = p(ρ). Then

(2.16) log M(r, /) = Σ log f f )'* + Σ log (l + ίH'*
tk^r \tk/ tkSr \ lr)

Using log (1 + x) < x (x > 0), (2.14) and Jensen's theorem, we obtain

(2.17) N(r, A-) S Γ(r, /)

5S log M(r, /) < Nίr, i )
,0 - r

3. Proof of Theorem 1 when A(r) has finite order λ. Putting
σ = λ + 1/2, the definition of order implies

(3.1) A(r) < * (r0 ^ r < 1) .
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Increasing, if necessary, the value of r0, we may associate with each
r in the interval r0 ^ r < 1 an integer p such that

(3.2) qp_, ^ — — < qp ,

and then select any p in the interval

(3.3) tpSp< t9+1 .

Since (3.3) coincides with (2.13), we see that the estimates following

(2.13) will be valid if we can show that r < p.

By (3.2), (3.3), (2.11) and (1.1), we have

d+P)/2 9

ψ(t)dt <

so that, by (3.1)

1 2σ+1

and hence

~Λ- > 2 (r0 ^ r < 1) ,

(3.4) r < λJL^L < p < l .

Using (3.2) and (3.4), we have

(3.5)
p - r \ J r ί / i - r

(1 - r ) λ

Returning to (2.7), and using (2.9) and (3.2), we have

B(rp) < log g, = log ?,_! + o(l)

< (λ + 2) log — i — + o(l) ( r _ » i _ ) f

1 — r

so that by the definition (2.1)

(3.6) B(rp) < A log — ± — (r0 g r < 1) .
1 — r

Hence (2.4) and (1.4) imply
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1 ~ r p /3(rp) 1 - r

and this shows that r p < r. Using (2.6), (3.6) and (2.4), we have

1
p g B(r ,)!/£(*•*) < A log—-—Vβ(r)

1 — r

S *JAΛ(T) log — — (r0 g r < 1) ,

1 — r

so that, in view of the growth condition (1),

(3.7) p = o(J(r)) ( r - 1 - ) .

Theorem 1 then follows, for functions of finite order, on combining
(3.5), (3.7) and (2.15) with (2.17). In fact, it is clear from (2.17) that
the method yields the additional information

T(r, f) ~ N(T, 1 ) - log M(r, f) ~ A(r) (r - 1 - ) .

4* Remarks on the infinite order case* Since the proof when
X — + oo proceeds in much the same way as the one given in Section
3 for finite orders, a sketch of the argument used will suffice.

The quantities p and p given in (2.17) are chosen as follows: For
each r in r0 ^ r < 1, p is taken so that

(4 i) log Vφ(p) = p-r
Vφ{p) P

It is not hard to see that such a p = p(r) exists and is unique. Then
let p be the integer determined by

(4.2) Qp £ φ(p) < Qp+1 .

The definitions of qp and Qp, together with (4.1) and (4.2), imply

(4.3) ( £ . Y ' _ f i _ = o(l) (r-1-).
\ρ/ p — r

The exceptional set E needed when λ = + °° is defined by

E = {r: p(r) > aB{τ)V~β(τ)', r* ^ r < 1} .

I n v i e w o f ( 2 . 4 ) - ( 2 . 6 ) , ( 2 . 1 7 ) a n d ( 4 . 3 ) , r $ E i m p l i e s

N{r, 4 ) ^ Άr, f) ^ logM(r,
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so that (2.15) and the growth condition (1) gives (2) for these r.

To complete the proof of Theorem 1, it remains only to show that
E satisfies (3). This follows upon using (2.2), (2.3), (2.4) and (4.1) to
estimate p, and then using this estimate and (1.1) to see that reE
implies

Άr+ 7 > β2 (r0 ^ r < 1) .
V Λ{r) 1

This relation together with BoreΓs growth lemma ([1], p. 19) then
gives (3).

5* A solution of the Bloch-Nevanlinn problem* If F(z) is
meromorphic in \z\ < 1, does T(r, F) = 0(1) imply T(r, F') — 0(1)?

This problem was posed by Bloch and Nevanlinna [9, p. 138], and
was first solved by 0. Frostman [4] who showed that the boundedness
of T(r, F) does not imply that of T(r, Ff). Subsequently a number
of further solutions have been given (cf. [3], [5], [6], [7], [8], [10],

[11]).
Using the methods of §§ 2 and 3, we now construct a function

F(z) regular and bounded in the unit disk and such that T(r, F') is
unbounded. In view of the importance of the Dirichlet integral

D[F] =

it might be of interest to point out that our example is such that, by
choosing suitably one of the parameters involved, we can obtain D\F]
and F(z) bounded and T(r, F') unbounded.

Let α ( ^ 2) be an integer, and put

(5.1) Q m = Σ α f c =Σ
Λ=I a —

(5.2) tm = 1 - J L (m ^ 1) ,

where 7 is a constant in 0 < 7 < 1. We shall verify that the product

(5.3) f(z) = Π. (l + { f

is analytic in the unit disk and satisfies

(5.4) a log —±— < Γ(r, /) ^ log M(r, f)<β log —^—~
1 — r 1 — r

(r. ^ r < 1) ,
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where a and β are any constants such that

(5.5) 0 < ^ , β>7 + β

a log a

If 7 and a are chosen so that 7 + (Iog2/logα) < 1, we can take
β < 1. This implies that the function

(5.6) F(z) = [f(Qdζ
Jo

is bounded on \z\ < 1, since by (5.4)

= 0(1) (| z | -> 1 - ) .

Further, if we take 7 and α to permit β < 1/2, then F(z) has bounded
Dirichlet integral:

Γ T | F'(reiΘ) |2 r dr dθ < + oo .
Jo Jo

On the other hand, (5.4) shows that

T{r,F') >alog-^— (r0 g r < 1) ,
1 — r

so that F'(z) has unbounded characteristic on the unit disk.
The regularity of the product (5.3) is an immediate consequence

of the definitions (5.1) and (5.2), which imply that the series ^ I zltm lα™
converges when | z \ < 1.

To establish (5.4), let n(t) denote the number of zeros of f(z) in

\z\^t, and put N(r) = [*(n(t)/t)dt. By the definition of n(t), if

tm^t< tm+1 then

n(t) = QmS -γ1— <Qm + αm+1 = n(

so that

(5.7) n(t) ^ -1— < n(t)(a + o(l)) (t ̂  1 - ) .

Multiplying (5.7) by t"1 and integrating from tx to r yields

(5.8) ?— log — L - < JNΓ(r) < (7 + o(l)) log - ^ — (r - 1 - ) .

α + o(l) 1 — r 1 — r
The first of these inequalities, together with Jensen's Theorem and

(5.5), implies
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a log — — - < T(r, f) g log M(r, f) (r0 g r < 1) .
1 /v»1-r

The proof of the last inequality in (5.4) is similarly easy. For
each r in ί1 s£ r < 1 we choose the integer p = p(r) given by

(5.9) tp S r < tf+1 .

Estimating the maximum modulus of the product (5.3), we have, as
in (2.16),

(5.10) logM(r,/) ^ Σlog 1 + i —} ) + X ( —)

< Σ}og (j-J + p log2 + Σ j ^ — ) ^

From (5.2) and (5.9) it is clear that

^ QP ^ -A— <
1 — r 1 — r

and hence

p log α < log .
1 — r

Using this with (5.10) and putting k — p + 1, we obtain

log M(r, f) < N(r) + ^ 1 l o g

logα
^ l o g + ^ ^
logα 1 — r «=fc\ί

and this together with the second of the inequalities (5.8) implies

(5.11) log M(r, / ) < (7 + -J2S! + o ( 1 ) \ j 1 _ + £ /ί* VTO

V l o g α / 1 — r ™=*Um/

(r-1-).

To prove that Σ^/ΛWίJ^is suitably small, use (5.1) and (5.2)
to see that

(5.12) 1 - a~n < tn < 1 - — 7a~n (n ^ n0) .

Hence

Σ (T-) < κ Σ *Γ = -̂  Σ («•""*
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By the second inequality in (5.12),

tf < e-y* (k ̂  K)

and hence

(5.13) Σ ( ^ ) < 1 Γ X <r™2>* = 0(1) (fc ->«>).

Combining (5.11) and (5.13), the derivation of (5.4) is complete.
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