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ON CLOSED MAPPINGS, BICOMPACT SPACES,
AND A PROBLEM OF P. ALEKSANDROV

A. ARHANGEL’SKII

The purpose of this paper is to show, under very general
circumstances, that if /- X— Y is a closed map, then f 'y
must be bicompact for ‘““most” ye€Y. Two theorems of this
sort are obtained, one of which is then used to answer a
question of P, Alexandroff on the effect of closed maps on
countable-dimensional spaces.

If f: X— Y is a closed map, then it is known that, under suitable
assumptions, f~'y has a bicompact boundary for all ye Y (see I.
Vainstein [19], A. H. Stone [18], and K. Morita and S. Hanai [12]),
and f~'y itself is bicompact for “most” ye Y (see K. Morita [11] and
the author [4]). In §§1 and 2 of this paper, we prove two theorems
of the latter kind, whose main feature is that they require minimal
restrictions on X and no restriction at all (other than being T)) on Y.

In §3, we give some applications of the results from §2. The
most interesting among them is the following, which gives a complete
answer to a question of P. Alexandroff, (Terminology is defined below).

THEOREM (3.1). Let X be a countable-dimensional space with a
countable net, and let f: X — Y be a closed mapping of X onto some
uncountable-dimensional space Y. Then Y, = {ye Y| card (f'y) = ¢}
18 uncountable-dimensional.

Observe that Theorem 3.1 is new even in case X is compact
metric, In that case, E. Skljarenko [15] has shown that Y, is not
void, but his proof gives no further information about Y,. Our proof
is based on entirely different ideas.

Let me say here that I am very grateful to P. Alexandroff for
valuable discussions about this question and to E. Michael for helping
with the translation of this paper.

Notation and terminology. All spaces are completely regular
(often is it sufficient to suppose T); all mappings are continuous, and
all coverings are open. We call a family v = {S} of sets S & X a net
in X, if, for every € X and each open U containing x, there exists
an Sev with €S < U (see [3]). We write card A for the cardinal-
ity of A, and ¢ for the cardinality of the continuum. If v is a family
of subsets of a space X, and if xe¢ X, then vz denotes the union of
all elements of v containing ®. As usual, we call a space countable-
dimensional if it is a countable union of subspaces with dim = 0;

201



202 A. ARHANGEL’SKII

otherwise, we call the space uncountable-dimensional. We write 8X
for the Stone-Cech bicompactification of X, and we call X a Gs-space
if itisa G; in BX. We call X point-paracompact if every (open)
covering of X has an (open) point-finite refinement. Finally, X is
called a k-space if a subset U & X is open whenever its intersection
with every compact K & X is open in K,

1. Closed mappings of point-paracompact G;-spaces.

THEOREM (1.1). Let X be a point-paracompact Gs-space, and let
fi X— Y be a closed map. Then

Y = Yo U (U::=1 Yn) )

where Y, is discrete in Y for all n, and f~'y 1is bicompact for all
ye Y,

For the proof of this theorem, we need

LEMMA (1.2). Let X be a k-space, let v be a point-finite covering
of X, and let f: X— Y be a closed mapping of X onto some Y.
Then

N ={ye Y| no finite v/ & v covers f 'y}

18 discrete in Y.

Proof. Suppose that some y€ Y is an accumulation point for N,
Then the set N, = N\y is not closed. Since X is a k-space and
f a closed mapping, Y is a k-space [8]. Therefore there exists a
bicompact F'S Y such that F' N N, is not closed, and hence is infinite,
Let {y.} be a sequence of distinct points from F N N,. Since F' is
bicompact, there exists an accumulation point 3’ for this sequence,
which we may suppose different from all y,. We let A, = f'y, for
n=1,2 -.--, Next we shall define a sequence {x,}, with z, € 4,, where
for x, we take any point from A,. Suppose the points x, are defined
for all k < m. We take for «, any point of the set A,\N7='vx;; this
set is not empty by the very definition of N.

Now we prove that the sequence {x,} is discrete. Consider any
point x€ X. We only have to consider the case where v& N {x,}# O&.
Let x,<cvx; then xe€vx, and U = vx,, is a neighborhood of z; by the
definition of x,, this U can contain only points x, with » = m. Thus
the discreteness of {x,} is proved.

It follows that P = U, x, is closed, while the set @ = fP=
U ¥, is not (since 3’ € Q\Q). This contradiction completes the proof
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of the lemma.
We now proceed to the

Proof of (1.1). Let {G,} be a countable family of open subsets
of BX such that X = N, G,.. We write v, for some covering of
X (by open sets in X) such that the closure in AX of each element
of v is contained in G,. We take a point-finite refinement \, of v,.
For n =1,2, ..., let

Y, = {y€ Y| no finite N\, & \, covers Fy}.

It is known [5] that every Gs;-space is a k-space. Thus, by Lemma
(1.2), Y, is discrete in Y. We write ¥, = Y\Ur, V..

We now prove that f~'y is bicompact for every ye€ Y,. For each
n there exists a finite N, & \,, say N, ={Vr|i=1, ---, k(n)}, such
that f~y < Y Vr. Then F,, the closure of Ji% V7 in BX, is
bicompact, and f~'y S F, & G,. Therefore

fFfycsF=NLF. S NG, =X,

where F' is bicompact. As f~'y is closed in X, it follows that f~'y
is bicompact too. This completes the proof of (1.1).

REMARK. As the proof shows, a result analogous to (1.1) could
be obtained for k-spaces X which, for some cardinal 7, are Gs.,-spaces
(i.e. an intersection of ¢ open subsets of 8X). In particular, taking
7 =1, we conclude: If f: X — Y s a closed mapping, and if X is
potnt-paracompact and locally bicompact, then the set of all yeY
such that f~'y is mot bicompact is discrete im Y. This is a slight
generalization of a theorem of K. Morita [11], whose proof needs the
assumption that X is paracompact and locally bicompact.

In case X is a Lindelof space, the conclusion in (1.1) can be
simplified.

COROLLARY (1.3). If X is a Lindelof Gs-space, and if f: X—Y
is & closed map, then f~'y is bicompact for all but countably many
ye Y,

Proof. Since a (regular) Lindelof space is paracompact, and hence
surely point-paracompact, Theorem (1.1) is applicable, Now Y, as the
continuous image of the Lindelof space X, is itself Lindelof, and hence
all its discrete subsets are countable. Hence the set Y=, Y, in (1.1)
is countable, and that proves the corollary.

2. Closed mappings of spaces with countable net. The class
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of spaces with countable net (see the introduction for definition of net)
contains all separable metric spaces and all their continuous images.
Spaces with countable net are Lindelof, and hence paracompact.

The main result of this section (Theorem (2.1)) is similar to
Corollary (1.3), but the hypotheses are different. Note that the
hypotheses of (1.3) are satisfied by complete separable metric spaces,

while the hypotheses of (2.1) are satisfied by all separble metric
spaces.”

THEOREM (2.1). If X is a space with countable net, and f: X— Y

18 a closed mapping, then f~'y 4s bicompact for all but countably
many ye Y.

The proof is based on Lemma (2.2) below, which will also be used
in the proof of Theorem (2.3). We will use the following terminology:
If X is a space with a net v, and if xe X, then an x-sequence is a
sequence {S,(#)}, with xe S,(x) €~ for all n, such that any sequence
{z,} with z,€ S,(x) for all » has an accumulation point in X.

LEMMA (2.2). Let f: X— Y be a closed mapping of a mormal
space X with net v, such that for each ye Y there exists an x € f~'y
possessing an x-sequence {S,(x)}. Let Y, be the set of all y€ Y such
that f~'y is mot countably compact. Then card Y, =< card .

Proof. Without loss of generality, we may suppose that S;NS,e v
for every pair S;, S,e€v. We define Y, as the set of all ye Y such
that ¥y = N {f(S) | Se '} for some finite subcollection v' & v. Clearly
card Y, =< card v (if v is infinite). Consider any point y € Y\Y,. Our
purpose is to show that f~'y is countably compact. Then the conclu-
sion of the theorem will follow.

Let we f~'y be a point with an xz-sequence {S,(x)}. Suppose that
F = f~'y is not countably compact, and pick x,, @, -+ is F' such that
x; is discrete, By an obvious induction (using the normality of X), we:
can construct a discrete sequence {U,;} of open sets such that x;e U,.
Now, again by induction, we define three sequences {x,}, {x.}, and
{0,2}, where x,, 2, € X and 0,2 is a neighborhood of x, such that
(a) for m >k, 0,x contains x,;

(b) for »n =k, X\(0w)™ 2 fifw,;

(¢) for all n, z,c S,(x);

(d) for all n >1, x,eU,;

(e) for all n, fx,= fa,.

We take x, to be any point of X\F, and for 0,z any neighborhood of

! For separable metric X, (2.1) also follows from a recent result of N. Lashnev..
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x which satisfies (b) (with » = k = 1). Suppose that z,, 2}, and 0,2
are already defined for n <k so as to satisfy (a)-(e). Since 7 is a
net, there exist S, S’e~ such that z,.,€ S < 0« and 2., € S’ & U,,..
Let S* =8 N S;..(x). Then S*ev and (fS* N fS)\y+ .

Let w,.,.€S* a}..€S be points such that fx,., = f2,. #* ¥.
Finally, we take for 0,2 some neighborhood of x such that

©€ 0,2 & (0,0,0)” € X\UHEL i, .

Clearly conditions (a)-(e) are satisfied, and we can go further in our
induction.

Since {S.(x)} is an x-sequence, the set P = {x,} has in X an
accumulation point, say «*. The conditions imply that a*¢ f~fP.
Then fx*e (fP)"\fP, and hence fP is not closed. On the other hand,
fP = fQ, where Q = {x,}. Since x,€ U,, and the family U, is discrete,
Q is closed in X, Thus fQ is closed in Y, and we have a contradic-
tion which completes the proof of (2.2).

Proof of (2.1). In a space X with a countable net v, every xe€ X
has an z-sequence, namely all elements of v containing x. Also, as
observed earlier, such an X is paracompact, and hence it is normal
and all closed, countably compact subsets are bicompact. We therefore
see that (2.1) follows from (2.2).

In the following theorem, a space X is of point-countable type
(see [5]) if it is the union of bicompact subsets K having a countable
base of neighborhoods {U,} (i.e., if V2 K is open, then KS U, &SV
for some n).» All first-countable spaces, and all p-spaces (in the sense
of [5]) are spaces of point-countable type.

THEOREM (2.3). Let X be a normal point-paracompact space of
point-countable type, with a net v of cardinality <z. If 1 X—Y
is a closed mapping, and

Y, ={ye Y |f 'y is not bicompact} ,

then card Y, = 7.

Proof. Let us show that every xe X has a v-sequence {S,(x)},
so that (2.2) applies, Pick a compact K £ X such that ze K and K
has a countable base of neighborhoods {U,}. Clearly, if we pick S,(x)
so that ze S,(x) & U,, then {S,(x)} is an z-sequence. Applying (2.2),
we have the conclusion of the theorem since, in a point-paracompact
space, closed countably compact subsets are bicompact.

2 For point-paracompact spaces, the spaces of point-countable type are the same
as the g-spaces in the sense of E. Michael [10].
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3. An application.

THEOREM (3.1). If X is a countable-dimensional space with
countable net v, and f: X— Y is a closed mapping onto an un-
countable-dimensional space Y, then

Yi={yeY|card (/7y) = ¢

18 uncountable dimensional.

The proof is based on two lemmas,

LEMMA (3.2). Let f: X— Y be a closed mapping of a space X
with a countable net v = {S;} such that, for each ye Y, the set 'y
contains a point which is isolated in f~'y. Then Y is a countable
sum of subspaces, each of which is homeomorphic to a subspace of
X.

Proof. Without loss of generality, we may suppose that all S;e
v are closed in X. For each 7, let f* = f|S;, and let

X, ={weS;|fF'fife = a}.

Let Y, = fX;, and let us show that X, is homeomorphic to Y; and
Y = Uf:l Yi

Since f is closed, so is its restriction f* to the closed set S;.
Now X; = f*'7Y;, so if f;: X;— Y, is defined by f; = f* | X;, then f;
is also closed. Since f; is clearly continuous and one-to-one, it is a
homeomorphism.

It remains to show that Y=, Y;,. Let ye Y, and let « be
an isolated point of f~'y. Then 0x = X\(f'y\x) is a neighborhood of
x. Since v is a net in X, there exists an S, € v such that xe S, & Ox.
Then = S, N f'y, and thus xe X,. It follows that

y=frefiX, =Y, S UnY,:.

This completes the proof of (3.2).

LEMMA (8.8). If f: X— Y is a closed mapping of a space X
with a countable net v, such that card (f~'y) <c for allye Y, then
Y is a countable sum of subspaces each of which is homeomorphic
to a subspace of X.

Proof. By (2.1), Y=Y, U Y,, where Y, is countable and f'y is
bicompact for each ye Y,. Consider f, = f|X,, where X, = f"Y.
If ye Y, then card fi'y < ¢, so fi'y has an isolated point. Thus X,
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f. satisfy the condition of (3.2), and hence Y, is a countable sum of
subspaces which are homeomorphic to subspaces of X, & X. But Y,
is a countable sum of points, and hence the conclusion follows.

Proof of (8.1). Let Y,={ye Y| card f~'y < c}. Consider f, =
71X, where X, = f"'Y,. The map f,: X,— Y, satisfies all the condi-
tions of (3.8)., Since X is a space with a countable net, X is
hereditarily Lindelof. Hence every subspace of X is countable-
dimensional [17]. By (3.3), Y, is thus also countable-dimensional.
Therefore Y\Y, is uncountable-dimensional, and the proof of (3.1) is
complete.

Theorem (3.1) is new even for compact metric X, where it can
be rephrased as follows:

COROLLARY (3.4). If fi1 X—Y s a mapping of a countable-
dimensional compact metric space X onto an uncountable-dimensional
space Y, then {ye Y| card f~'y = ¢} is uncountable-dimensional.

REMARK 1. Another application of (2.2): A space is called dyadic
[14] if there exists a dyadic bicompact extension of this space. We
call a dyadic space mowhere countable if there are no nonempty
countable open sets in it.

THEOREM (3.5). If a mnowhere countable dyadic space Y is a
closed tmage of a separable metric space, then there exists a countable
base in Y.

Proof. By (3.1), there exists a countable set Y, = Y such that,
if ¥,=Y\Y, X,=/"Y, and f: X,— Y, is defined by f, = f| X,,
then f, is a perfect map. Hence Y, is a space with countable base.
Since Y is nowhere countable, Y, is dense in Y. Hence Y is
metrizable, by a theorem of B, Efimov [7]. This completes the proof.»

REMARK 2. The following generalization of a theorem of
J. Nagata [13] could also be proved.

THEOREM (3.6). Let X be a compact metric space, and f: X—Y
a map such that f~'y is finite for all ye Y. Then, for each
countable-dimensional X' & X, the space Y' = fX' 1is countable-
dimensional.

2 This theorem shows a simple way for constructing nondyadic spaces.
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