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EMBEDDING THEOREMS FOR COMMUTATIVE
BANACH ALGEBRAS

WiLLiaAM G. BADE AND Pririp C. CURTIS, JR.

One knows from the Gelfand theory that every commutative
semisimple Banach algebra 2 containing an identity is a
separating subalgebra of the algebra of all complex continuous
functions on the space of maximal ideals of 2. We shall be
concerned in this paper with conditions which when imposed
on a separating Banach subalgebra 2 of C(2),2 a compact
Hausdorff space, will guarantee that 2 = C(2). The conditions
will take the form of restrictions on either the algebra or
the space 2. For example we prove that if % is an e-normal
Banach subalgebra of C(2) then 2 = C(2) if an appropriate
boundedness condition holds locally on 2. If £ is assumed to
be an F space in the sense of Giliman and Henriksen this
boundedness assumption is redundant. These results include
a recent characterization of Sidon sets in discrete groups due
to Rudin and have applications to interpolation problems for
bounded analytic functions.

Various conditions which guarantee that 2 = C(2) are known. One,
due to Glicksberg [5], is the following.

(1) Assume 2 is sup-norm closed, containg the constants, and in
addition assume that the restriction of 2 to each closed subset F' of
2 is a closed subalgebra of C(F").

Another, due to the present authors [1], is the following:

(2) Assume Q is a totally disconnected F-space and that 2 is the
maximal ideal space for A.

A compact space 2 is an F-space if disjoint open F, sets in Q

have disjoint closures. This class of spaces was introduced by Gillman
and Henriksen in [4] and includes stonian and o-stonian spaces as well
as their closed subsets. There are also connected examples,
+  The results in this paper center around extensions of these condi-
tions as well as others due to Katznelson [11,12]. Many of the
techniques apply equally well in a Banach space setting, and are
discussed in this way where possible.

To begin the discussion we need the following definition: given
€ > 0, call a subset § < C(2) an e-normal family if for each pair F, F,
of disjoint compact subsets of 2 there exists an x e § satisfying

(i) |o@—1|<e, wek,

(ii) Ja(@)| <e, weF,

By a Banach subalgebra of C(2) we will mean a subalgebra of C(9Q),
not necessarily containing the constants, which is a Banach algebra
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under some norm.

The result of the paper which illustrates the unusual properties
of F-spaces is the following:

THEOREM A. Let Q be a compact F-space and A be a Banach
subalgebra of C(R2). If A is an e-normal subalgebra for an ¢ < 1/2
(tn particular if A is dense) then A = C(2).

In addition to extending the result of [1] mentioned in (2) above,
this theorem contains Rudin’s characterization of Sidon sets in discrete
groups and has applications to interpolation problems for bounded
analytic functions.

For general compact spaces £, we will call an e-normal family
contained in a Banach subalgebra of C(2), or more generally contained
in the continuous image in C(2) of a Banach space X, locally bounded
if for each point w there exists a compact neighborhood N, such that
whenever the sets F, F, belong to N,, the © may be chosen to have
-norm (or X norm) less than a constant depending on w.

Our extension of (1) and the results of Katznelson is basically
contained in the following:

THEOREM B. Let 2 be a compact Hausdorff space, A a Banach
subalgebra of C(2). Then U = C(Q) if the following conditions are
satisfied.

(1) A is an e-normal family for some e < 1/2.

(2) U s locally bounded.

If Q is an F-space (1) implies (2), thus proving Theorem A. Indeed
for F-spaces much can be said when 2 is only assumed to be the
continuous image of a Banach space X,

THEOREM C. Let Q be a compact F-space and T a continuous
linear map of a Banach space X imto C(2) such that TX forms an
e-normal family for some ¢ < 1/4, Then there exists a finite open
covering U, -+, U, of 2 such that

TX| U= C(T), i=1,+,m.

In general, linear subspaces of C(2) may be e-normal, ¢ < 1/4,
without being dense, but for totally disconnected spaces density and
e-normality are equivalent. A short argument shows that e-normality
and density are also equivalent for arbitrary F-spaces,.

Theorem C raises the question whether a continuous linear map
T of a Banach space X into C(2), 2 an F-space, which has dense
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range, must be onto C(2). Section 4 contains an example due to J.
Lindenstrauss which shows that TX=+C(Q) in general. G. Seever [16]
has proved that TX = C(Q) if one has the stronger assumption that
TX is normal on 2, We give a new proof of Seever’s theorem. An
unpublished result of Beurling which covers the case when X is an
adjoint space, C(Q) = l., and T is weak star continuous is proved by

an argument of Helson.
We are indebted to J. Lindenstrauss and Y. Katznelson for the
elegant examples in § 4, and to Katznelson for illuminating discussions

of the problems of this paper.

1. Preliminaries. In this section we collect some facts about
approximation and onto maps. Given a bounded linear map T: X — C(2),
where Q is locally compact and X is a Banach space, one seeks con-
ditions to insure that 7X = C,(£2). These results are not new for the
most part, and the techniques appear in a variety of settings. We
first consider the general case T: X — Y, where Y is a Banach space.
Recall that a subset £ © Y is equilibrated if y in £ and |« | < 1 implies
ayec E. The smallest convex equilibrated set containing F is denoted
by coe(E), the smallest convex set by co(F), their respective closures

by coe(E) and co(E).

LEMMA 1.1. Let E be a subset of Y. Then coe(E) contains the
closed unit ball S of Y if and only ©f

ly* |l = §g}g|y*(y)l
for each y*e Y*,

Proof. Note coe(E) consists of all sums >'7_, «,y;, where y; € F and

o] =1, If coe(E) 2 S, then for each y*e Y* and ¢ > 0 we can
find y, = >\, auy; € coe(E) such that

Ly (o) | > ly* ] —e.

For some ¢ we must have [y*(y;)| > ||y*|| —e. Conversely, if y,€ S,
but ¥, ¢ coe(E), the separation theorem [3, p. 417] yields a functional
ys such that

lwd || = Reyi(ys) > sup {Re yi(y) : y € coe(E)} .
Since coe(E) is equilibrated, we have
[y || > sup|yi(y)] .

THEOREM 1.2, Let T: X — Y be linear and continuwous. Suppose
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there exists a set B C Y and constants k <1 and K such that
(1) coe(E) contains the closed unit ball S of Y.
(2) For each ye E there exists an xe X such that

I To—yll =k |lo] = K.

Then TX =Y, If T is one to one, || T7"|| < KA — k).

Proof. For any y*e Y* and ye€ E, select © by (2) and note

v | = |y*(y — Ta)| + |y*(T2) |
=klly*ll + [(THy*") () |
Sklly*ll + K| T*y* || .

Taking sups on y in E yields
ly Il = kily* [ + K| T*y* |
by Lemma 1. Thus
1Ty | = K7L = k) [ly* ||, y* e Y*

’

showing T*, and hence T has a closed range [3, p. 488]. However
the argument above shows TX is dense in Y, since if y*(TX) =0,
y*=0, then

v W =klly*ll <lly*ll,yeE,

in contradiction of Lemma 1.1. The result now follows.

Theorem 1.2 is due to Katznelson [11] in slightly different form.
He constructs a solution of Tx = y by successive approximations. The
proof above follows an argument of Rudin to prove a theorem on Helson
sets [15, p. 116], (Corollary 1.3 below) which is a special case of
Theorem 1.1. Recall that if G is a locally compact abelian group, a
compact set PC G is a Helson set if each continuous function on P is
the restriction f| P of the Fourier transform of an element of L, on
the dual group 7.

COROLLARY 1.3. Suppose P 1is compact in G and there exist
constants k <1 and K such that to each FeC(P) with |F(t)| =1,
te P, there corresponds an element fe L(I") such that || f|; = K and

sup | f () = F(t) | = .

Then P vs a Helson set.

Proof. Define T: L(I") — C(P) by Tf = 7| P. The extreme points
of the unit ball S in C(P) are precisely the functions of absolute value
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one. Lemma 1.1 and Lemma 5.5.1 of [15] show S is the norm closed
convex hull of its set of extreme points, The result now follows
directly from Theorem 1.2,

We next consider the case that Y is Cy(2), the continuous func-
tions vanishing at infinity on a locally compact Hausdorff space. A
subset E of Cy(Q) is a normal family if for each pair F,, and F, of
disjoint compact sets in 2 there exists fe E with f(F,) = 0, f(F,) = 1.
We denote the nonnegative functions in the closed unit ball S of Cy(2)
by S..

LEMMA 1.4, If E is a bounded normal family, then co(E) contains
S..

Proof. It suffices to approximate any element f of S, having
compact support by elements of co(£). Let n be any positive integer
and L = sup{||f]l: fe E£}. Let C be a compact set whose interior
contains the support of f. Define

U= {oe f = L},

Vi={occifo) =Lt k=120 -1,

Choose f,e E with
fl(Ul):ly f1(V1):O-

Let W, ={weC:|fi(w)]| = 1/n}. Then W, is compact. Choose f,€ E
with

LoU) =1,  f(V,UW)=0.

Let W,={weC:|fi(w)| = 1/n*}, ete. Continuing, we finally obtain
fu_i€ E with

forlw)=1, welU,,
:0, (DGVn_1UW1U"'UWn_2.

Define the function g = 1/n >332l fi.. We estimate ||f— ¢g|/.. Note
that

L+1
n b

| f() —g(®)| = weC .

Now f(w) =0, w¢C, the sets W, are disjoint and compact, and

lgw) | = we U W,

n*’
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If (l)eWi,
fl@y=0, j>i
Floy =L, i<
nw
)| = L.
Thus
lg(@)| = —1—2 foyl=2 + L wew,,
n j=1 n n
and we have proved
1 f—gll.=LEl

n

Now h = n(n — 1) geco(E). Since % is arbitrary, the result follows.

THEOREM 1.5. Let 2 be locally compact and T: X — Cy(2) be linear
and continuous. Suppose there exist constants € < 1/4 and M such
that if F, and F, are any disjoint compact sets in Q, these exists an
xec X such that

(i) |(To)w)| S¢c, weF,

(ii) [(Tx)w) —1|=¢c, wekF,

(i) jlx] = M.

Then TX = C(Q). If T is one-to-one then || T7'|| < AM(1 — 4e)7*.

Proof. Let ¢ <& < 1/4 and E be any bounded normal family in
Cy(2). If F, and F, are any disjoint compact sets, we can find ve¢ X
with

el = M, | (Tx)(F,) — 1| =S¢, |[(Tx)(F,| =¢, and fe E with

fF)=1, f(F)=0.

Since C(F}; U F) is isometrically isomorphic with the quotient of C,(2)
by the ideal of functions zero on F) U F,, we can select g, e Cy(2) with
g/(F, U F,) = 0 and

[ Te —(f+g)ll=¢.

Then E' = {f + g;: fe E} is a bounded normal family, co(£’)2 S, by
Lemma 1.4, and hence coe(4E’) © S. For each gec 4E’ we can find an
¢ with

| Te —gll =4, o]l =4M.

Theorem 1.5 now follows from Theorem 1.2.
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REMARK. Often in applications it is just as convenient to verify
that for each compact set F'C 2 and fe C(F) there exists xe X
satisfying [|z|| = M and || Tx — f|l. = €| f]l~. This of course implies
the condition of Theorem 1.5.

If TX satisfies (i, ii) we shall call TX an enormal fomily. If
(iii) is satisfied we call TX boundedly e-normal. If TX is e-normal
and for each we 2 (iii) holds when F), F, belong to a suitably small
compact neighborhood of ®, then we call TX locally bounded. Note
that Theorem 1.5 yields:

COROLLARY 1.6, If 2 is compact and TX is e-normal and locally
bounded, there exist finitely many compact sets S, +--, S, whose
interiors cover Q and such that TX|S; = C(S;).

COROLLARY 1.7. If Q is compact and totally disconnected and N
s a linear subspace of C(Q) which is e-normal for € < 1/4, then M
1s dense in C(Q).

Proof., Let X be the closure of 9t in the sup-norm and 7T be
the natural injection map of X into C(£2). Since F, and F, may be
enclosed in disjoint open and closed sets having 2 as their union condi-
tion (iii) of Theorem 1.5 is satisfied with M =1 + ¢.

It is important to note in the absence of boundedness 1.4 and 1.5
are false. The recent example of McKissick [13] of a sup-norm closed
normal function algebra which is not C(Q) provides a counter example,

We note in passing that if 2 is compact and w € 2, then TX = C(Q)
if and only if (TX),= C(2 ~ {w}), where for a linear subspace
WM< CQ), M, ={feC): f(w) = 0}. Also, as shown by Seever [16],
TX = C(Q) if and only if for each measure p on 2, the restriction of
TX to the carrier of y is all continuous function on the carrier.

2. We now specialize to the situation when X is a Banach algebra
of continuous functions vanishing at -« on £. In this case we shall
write A for X. Then of course |z(w)| = ||z]|| for xe?. Hence
|#]l- = |l2|| and the embedding of 2 into C,(2) is continuous. Also
if an algebra is e-normal for some ¢ < 1/2, it is e-normal for every
such e, This is clear since the function f defined by

fRI=0, |z|=¢
=1, |1—z|=¢

can be uniformly approximated on these sets by polynomials without
constant term, Indeed, a condition equivalent to e-normality for
algebras is the following: For each pair of disjoint compact sets S;, S,
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of Q, there exists an z e and disjoint open sets V,, V, of complex
numbers such that z(S)c V,, and C~ (V,U V)) is connected and
contains the origin.

That this is equivalent to e-normality is easily seen. If ¢ < 1/6
and [2(S) | e, |1 —2(S)|=¢, |1 —y(S)| =e, and |y(S)| =e¢, then
22 + y has the desired property. For the converse note that without
loss of generality we may assume that V,N V.= @. Let W be an
open neighborhood of 0 satisfying Wc W< C ~ (V,U V,) and such
that C ~ (V,U V.U W) is connected. Then by the theorem of Mergel-
yan, the function f defined by f(V,U W)=0,f(V,) =1 may be
uniformly approximated on V, U V.U W by polynomials p(z). Since
these polynomials may be taken to have no constant term, if «(S;) c V,
1 =1,2; then p,(x) e U, [p,(x)(Sy) | <e¢, and [1 — p,(x)(S)| <e.

Suppose now £ is compact and the e-normal Banach subalgebra of
C(2) is locally bounded. Then by Corollary 1.6 there exist finitely
many compact sets S, ---, S, whose interiors cover Q2 such that
A|S; = C(S;). We shall prove A = C(2). Incidentally the ability to
match each continuous function on the sets of a covering is not
sufficient to prove A = C(2) without the assumption of e-normality.
To see this let

A = {xel.: z(n) = 2(— n)}.

For A restricted to the negative or to the nonnegative integers yields
all bounded sequences on these sets, but 2 == [.. We begin with the
following

THEOREM 2.1. Let Q be a compact Hausdorff space and A be an
e-normal Banach subalgebra of C(Q). Suzopose tl_z_ere exists a finite
covering of Q by open sets U; such that A | U, = C(U;). Then A = C(Q).

Proof. We first make a definition.

Let U, ---, U, be an open covering of a topological space. An
e-partition of unity subordinate to this covering is a set of continuous
functions fi, ---, f, such that

|filw)| = ¢ we U,
fit+ e+ fu=1.

LemmA 2.2, Let U satisfy the hypothesis of Theorem 2.1. Then
for each € > 0 U contains an e-partition of unity subordinate to the
given covering.

Proof. We observe first the following identity for complex numbers
)"U ttty >"n
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(#) i[l(l—)»i):1—x1§(l—xi)—xzﬁ(1—xi)_..._M

which is easily proved by induction., Next we assert that if U is one
of the open sets U,, then there is a constant M such that for each
compact set S < U and ¢ > 0 there exists x e U satisfying |a(w)| =Z ¢
off U,x(S)=1and ||x]l. =M. To prove this, note that by the closed
graph theorem there is a constant C such that if fe C(U), then f
may be chosen in 2 satisfying

Af:fon U, and
Nl =Cllflle.

Let 0 < e <1/2. Pick he U satisfying

[1—hw)]=¢ weS
lhw)|=¢ weU.

Let T={w:|h(w)| = 1/2}. By the Tietze extension theorem there
exists g e C(U) satisfying g(w) = h'(w), we T,

lglle=2.

Therefore if §eUA,§ =9 on U, and ||§|| = 2C, we may take x = Gh,
Then [2(Q ~ U)| = 2Ce, 2(T) = 1, and ||z |l = C.

Now select open sets V;,7 =1, .-, n, covering 2 and satisfying
V.c V,c U,. Choose f,, -++, ficU in turn such that

| fil@) | = ¢, off U,
filw)y=1on V,

where ¢, =¢, ¢, =¢|| 1. A — )| k=1, -+, n —1, Let z, =
e llin U — fi); a e Aand | (w) | = ¢ off Up. Since [11o, (1 — fi)(@) =
=0,weQ, it follows from () that 1 =2, + ..+ + x,.

To finish the proof of the theorem we apply 1.2, That is, we
assert for 0 < ¢ <1 there is a constant M such that for fe C(Q),
I fll. =1, we may choose fe 2 satisfying

If—Fl=e
IFll =M.

To do this observe that there exists a constant K and functions
fi, oo, foe W satisfying f; = fon U; and ||f;|| = K. Let o, -, 2,
be the e-partition constructed via Lemma 2.2, If f = fix, + o0 + [fu,,
then fe . Also || f|| = K S, || «;|| which we may take for M. To
estimate ||/ — f|l. note that if we U,, then (fr; — fiz)(w) =0, If
w¢ U;, then

[ (fos — faw)(@) | = (LI + [1fille) [ed@) | = (K + De.
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Therefore
If=Fllo = 2w — fivillo = m(K + 1) <1
for a suitable choice of . This finishes the proof.

COROLLARY 2.3. Let U be an e-normal Banach subalgebra of C(Q),
Q compact Hausdorff. If U is locally bounded then A = C(Q).

We note that this corollary is a local version of the main theorem
of [12]. For, Katznelson’s condition that for each closed set F' of a
compact space Q there exists an ¢ = ¢(F') such that whenever N is
both closed and open in F', U contains an element & of norm one
satisfying Re(x(w)) < 0, we N, Re(x(w)) > ¢,we F ~ N is easily seen
to be equivalent to ‘bounded e-normality’. That his condition implies
the latter is implicit in Lemma 1 of [12], and the same sort of argument
yields the converse.

Another related result is the theorem of Glicksberg [5] that if 2
is a closed separating subalgebra of C(2), 2 compact, containing the
constants such that the restriction to each closed subset FFC Q is a
closed subalgebra of C(F'), then 2 = C(2). Theorem 2.2 yields a local
version of this result which is as follows.

THEOREM 2.4, Let A be a Banach subalgebra of C(Q) which
strongly separates the points of 2. Then A= C(Q) if the following
two conditions are satisfied:

(1) To each pair of points w., @, there exist disjoint compact
netghborhoods N,, N, of w,, w, respectively such that 2| N, U N, 1s closed
in C(N, U N,)

(ii) FEach point @ has a compact neighborhood N, such that for
each compact set FC N,, A F is closed in C(F).

Proof. We shall apply 2.1. First note that the hypothesis of
e-normality, in 2.1 can be weakened slightly. We need only to insist
that for disjoint nonempty compact subsets F, F, of 2 there exists
an xe A satisfying |x(F) | <e, |1 — x(F,)| <e. Indeed the argument
on pp. 158-9 of [5] shows that (i) implies that for disjoint nonempty
compact sets F',, F, of Q there exists an « € 2 for which 2(#,) = 0, and
x(F,) = 1.

To complete the proof we observe that for each w there exists a
compact neighborhood N, such that %, is boundedly normal on N, ~ {w}.
This follows from condition (ii) by the same argument as in [5, Lemma
3]. To wit: If there exist neighborhoods U; c U; = U,_; of w;; disjoint
compact sets S,;, S.;c U,_, ~ U, such that if e, (S, =0,
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2(S,,;) = 1, then ||w;|| = 4, the closed graph theorem implies that it
cannot be the case that 9| Eis closed in C(F') where F'= U ;S,,;U S,,; U {®}.
Therefore | N, ~ {0} = Cy(N ~ {w}) and consequently A|N, = C(N.,).
The result now follows from 2.2,

As an application of these techniques we consider the following
question:

Let 2 be compact as before and assume that 2 =02, U Q,, 2;
compact. The example at the beginning of Section 2 shows that if
A is a Banach subalgebra of C(Q) satisfying %A |2, = C(2), ¢ =1, 2, then
it is not necessarily true that 2|2 = C(2) even if 2, and £, are disjoint,
If, however, U is normal or even e-normal, then the disjointness of
2, and Q, implies A |2 = C(2). This is trivial in the first case and the
second is a special case of Theorem 2.2,

If 2,N0, # @, then it is not known whether normality of 2 is
sufficient of guarantee that 2 = C(2). In particular let A be the
algebra of Fourier transforms of L,(I"); and 2,, 2, be Helson sets in
G (cf. Section 1). It is not known whether Q, U 2, is a Helson set.

The following theorem shows that U = C(Q) if one assumes a
certain extension property for ideals.

THEOREM 2.5. Let Q = 2, U 2,; 2, compact, and assume A 1s a
normal Banach subalgebra of C(Q) such that W|Q; = C(2) i=1,2,
For a closed set FQ, let F; =2,NF. Let

Jp = {we W a(F) = 0}, J,, = {we C(Q): x(F,) = 0}.
If J, |92, = jm 1 =1,2 for each closed set I, then WA = C(Q),
Proof. Let us establish first the following:
LEMMA 2.6, For each we 2 there exists a neitghborhood N, of w

and a constant M such that if H, H, are disjoint compact subsets
of N, ~ {0} and H; N Q;, = @, then there exists x € A, satisfying

x(H) =10
2(H,) =1
el =M.

Proof. Note if there exists a neighborhood N,3s{w} such that
N,N 2, = @ for i« =1 or 7 = 2 there is nothing to prove. If the lemma
is false, there exists a decreasing sequence of open sets U, 2 w such that
U...C U, c U;, and disjoint closed sets H,,, H;, with H, ; S U, ~ U,.,,
such that for each v H;; N Q;, = ©,7 = 1,2, and if ;e A,,; x,(H,;,) = 0,
wi(H:;) = 1 then ||a;|| = 4. Let H=TUH, Ulw}, and H,= HN 2,
Applying the hypothesis together with the closed graph theorem, we



402 WILLIAM G. BADE AND PHILIP C. CURTIS, JR.

see that if &e C(2,), #(H,) =0, and ||¥||.. =1, then there is an x e J,
satisfying « |92, = Z, and ||2|| < K. Consequently, since for each %
there exists &; e C(Q2,) satisfying &,(H,) = 0, Z,(H;,) = 1, ||%;]l. =1, it
follows that there exists x; € Jg, || ;|| = K, satisfying ;| 2, = %,. This
is a contradiction.

To prove the theorem in view of the normality of %, it suffices
to show that for each w there exists a compact neighborhood N, > w®
such that U, | N, = C(N, ~ {w}). To prove the latter statement it
suffices, by the remark following 1.5, to show that there exist constants
M,, k, k <1, such that for each compact set ' N, ~ {w} and fe C(F),
I f]le =1, there exists fe, [[f|l=M, and |(f —F)w)| =k for
weF,

Choose N, so that 2.6 is satisfied. There exists a constant N
depending only on £, and 2,, so that if FF € N, ~ {w} and fe C(F),
[|flle =1, then there exist f,, f; € U, such that

filw)=f(@),0eFN2,|[fill =N, i=1,2
Let M be the constant of Lemma 2.6 and ¢ < (2M)™'. Let
H; ={weF:|fi(0) — f(w)| = ¢} .

Then H,NQ2; = @,1=1,2, and H NH,= @. We know by
Lemma 2.6 there exist functions «x; € 2, satisfying || x;|| = M and

©,(H) =0, v (H,) =1
wy(H,) =1, wy(H,) = 0.

Let = fa, + fur,. Then fe ¥, ||f|l < 2MN,
and

[(F =) @) | = [(f =) @) (@) | + [ (f = [)(@)(o) |
. =2Me, wel.

3. Let us return to the situation when a Banach space X is
continuously imbedded by the linear mapping 7T as an e-normal family
in C(Q), 2 compact Hausdorff. As was remarked in Section 1 some
sort of boundedness condition was essential to guarantee that the
mapping was onto. We show next that an appropriate condition can
be imposed on £ which will guarantee that T is locally bounded thus
proving that locally T must be onto. The condition we need is due
to Gillman and Henriksen [4].

DEFINITION 3.1. A compact Hausdorff space 2 is called an F-space
if disjoint open F, sets in 2 have disjoint closures.

The Stone spaces of complete or o-complete Boolean algebras as
well as their closed sub-spaces have this property. If C(Q) is an
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adjoint space, 2 is extremely disconnected, [7, Theorem 2], and is
therefore an F-space. There are connected examples such as B(R.)~R,,
where R, is the nonnegative reals [4].

REMARK. If Q is a compact F-space, a subspace M of C(£2) which
is e-normal for ¢ < 1/4 is necessarily dense in C(2). To prove this it
clearly suffices to show that the restriction of M to the carrier of
any measure is dense in all continuous functions on the carrier.
However, K. Hoffman and (independently) G. Seever [16] have proved
that the carrier of any measure on an F-space is extremely disconnected.
The result now follows from Corollary 1.7. Thus in the next theorems
the hypothesis of e-normality is no gain in generality over density.
However it is easier to verify in applications. The result of Hoffman
and Seever shows it would suffice to prove these theorems in the case
£ is extremely disconnected and supports a measure. This observation
does not simplify the present proofs.

THEOREM 3.2. Let 2 be a compact F-space, T a continuous
imbedding of a Banach space X into C(Q) such that TX is e-normal
for some e < 1/4, Then there exist finitely many compact sets Sy, +- -,
S, whose interiors cover £ such that

TX|S;=C(S) i=1++,m.

Proof. By Corollary 1.6 it suffices to prove that T'X is boundedly
e-normal in a neighborhood of each point w, of 2. Since TX is dense
in C(Q), (TX),, is dense in Cy(2 ~ {w}) (see [17]), and by 1.5 it
suffices to verify that (TX),, is boundedly e-normal in a deleted neigh-
borhood of w,. Suppose, on the contrary, that there exists a sequence
of open neighborhoods V; of ,, V,.,c V,.,c V,, and disjoint compact
sets F,,, F;,c V; ~ V., such that if

(1) [(Te — 1)(w)| <e welF,,,
(2) | (Tx)(w) | <e weF,,,
(3) (Tx)(w) =0,

then || 2 || = 4. But there exist disjoint open F, sets G, ,, G;,, containing
F, ., F,, respectively and contained in V; ~ V... Now let G, = U.G,,,
G, = U,G;, Then G, G, are open F, sets with disjoint closures H,, H,
respectively. We may assume w, ¢ H; U H,. For if w,€ H, say, replace
G, by G, = UGy, or G = U Gy, depending on whether w,¢ G, or
w,¢ Gy. Choose x € X such that (Tx)(w,) =0, |(Tz —1)(w)| <e, we Hy;
| (Tx)(w) | < e, we H,, Then (1) and (2) and (3) are satisfied by =, so
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[[e|| = e. This contradiction completes the proof.
Combining this with Theorem 2.1 we obtain:

THEOREM 3.3. If U is an e-normal Banach subalgebra of C(2Q),
Q2 o compact F-space, then A = C(Q).

A known special case of 3.3 is Rudin’s interpolation theorem for
Sidon sets [15, Theorem 5.74], (Corollary 3.4 below). Recall that a
set E in a discrete group /[’ is a Sidon set if for each bounded function
@ on K there exists a measure g on the dual group G satisfying
2(v) = (7). The restriction of /2 to E defines a mapping T of M(G)
into l.(F) = C(BE). Since BE is an F' space, (c.f. [4] p. 369), an
application of 3.3 yields the following.

COROLLARY 3.4. If G is a compact group with dual group I,
then E C I is a Sidon set if for each function ¢ satisfying o(v)= +1,
y€ H; there exists a measure pt on G satisfying

Sup A7) — (7)) | < 1.

A similar statement can be made for interpolating sequences for
bounded analytic functions. Following Hoffman [9], call F = {z,} &
{lz] <1} an wnterpolating sequence if for each bounded function ¢ on
FE there exists a bounded analytic function on the open unit disec such

that
f(z) = p(z,), z.€E.

Again the restriction of ¢ to E defines a mapping T of the bounded
analytic functions into {.. = C(8N). Since AN is an F space, Theorem
3.3 yields the following extension of a result of Hayman [8] (see also
Hoffman [9, p. 205]).

COROLLARY 3.5. A sequence E in the open unit disc is an in-
terpolating sequence if for each fumction @ on E such that ¢*= ¢
there exists a bounded analytic function f satisfying

1
sup | f(z) — p(2) | <=
2€EE 2
The intrinsic condition that E be an interpolating sequence, proved
by Carleson [2], is that

zk-“zj

— =0>0 k=12, .-
1—22

17k
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To prove Carleson’s theorem by the methods discussed here it would
suffice to produce for each subset E,c E a bounded analytic function
vanishing on E, such that f(¥ ~ E)) is contained in a compact set not
containing the origin and having connected complement, If the sequence
E is real this can be accomplished by the Blaschke product having E,
as its set of zeroes. Whether the Blaschke products provide this
separation in the general case is not known. In view of the known
behavior of these functions on the boundary of the unit dise, this is
perhaps too much to expect.

COROLLARY 3.6. If 2 is a Banach subalgebra of C(Q), 2 a compact
F space, then A = C(Q) if for each pair of points w,, , there exists
an xe€ W which vanishes in a neighborhood of w, and equals one in
a netghborhood of w,.

Proof. As in the proof of 2.4. the condition implies that for each
pair of disjoint nonempty compact subsets F', F, there exists an x e 2
satisfying «(F)) = 0; x(F,) = 1. By 3.3 for each we @, there is a
compact neighborhood N, of ® such that 2| N, = C(N,). An applica-
tion of 2.1 completes the proof,

One should not expect that the condition of 3.6 can be substantially
weakened. For recently Hoffman and Ramsey [10] have shown that
if one assumes the continuum hypothesis then separating closed subal-
gebras of [, exist in great abundance.

4. This final section contains some results and examples concerned
with the problem of extending Theorem 3.2. In an earlier version of
the manuscript we had conjectured that if  is a compact F-space
and T: X — C(Q) is a continuous linear map of a Banach space with
dense range, then TX = C(2). We are grateful to J. Lindenstrauss
for the following elegant counterexample to this conjecture:

There exists a continuous linear map @ from L.(0, 1) onto /,, since
L,(0, 1) contains a subspace isomorphic to [, (e.g. the subspace generated
by the Rademacher functions). Let {e,},n»=1,2,..-, be an ortho-
normal basis in I, and E, = sple;, ---,¢,}. Let X, = @'(F,) and let
X Dbe the Banach space of all sequences x — {x,}, with x,€ X, and
|2 = sup| ®,| <. Let T:X-— L.(0,1) be defined by

Tw = T({w.) = 3,

L
n! °

Then L.(0,1) is a space C(2), where 2 is stonian, and TX is dense
in L.(0, 1) as it contains U, X,. Also 7X is not the whole of L.(0, 1),
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since if there were an z = {x,} in X such that

o(Tw) = 3, 2@a) _ 510

.
P n=1 N

then one must have

nEN+1 q)

55

n=N+1 N

SRR

in l,, for N=1,2,..., as &(z,) € E,. Since sup| @(x,) ]| < «, we

obtain the desired contradiction.

We know of two cases one can conclude that TX = C(2) under
additional hypotheses. G. Seever [16] has proved that 7X = C(Q) if
TX is normal on 2. We shall give a new proof.

THEOREM 4.1. (Seever) Let 2 be a compact F-space and T: X —
C(2) be a continuous linear map of a Banach space such that TX
1s normal on Q. Then TX = C(Q).

By earlier remarks one can suppose that 2 is totally disconnected.
Seever proves that if TX is normal on 2, T*: C(2)* — X * has a closed
range, This fact rests on a uniform boundedness theorem for measures
on totally disconnected F-spaces which is derived from a theorem of
R.S. Phillips [15, p. 525] on convergence of finitely additive measures
on the subsets of the integers. Since TX is dense in C(2) and has
a closed range it follows that TX = C(2). The proof we shall give
also relies on Seever’s reduction to the case that Q is totally discon-
nected. The necessary element of uniformity is supplied by the follow-
ing lemma.,

LEMMA 4.2, Let 2 be a totally disconnected F-space and TX be
normal on 2. For each point w,€ Q there exists an open and closed
neighborhood V and constant K such thot if K, and E, are any
disjoint compact and open subsets of V ~ {w,}, one can find xe X
such that

(Te)(B) =1, (Te)(B) =0, (Te)(V')=0,
(Te) (@) =0, |lo|l= K.

Proof. Suppose the lemma is false. If W, is an open and closed
neighborhood of ,, there exist disjoint compact and open subsets E,,,
E., of W, ~ {w,} such that if x € X and (T»)(E,) = 1, (Tx)(E,, U W)) =0,
(Tx)(w,) = 0, then ||z|| = 2. Let k, denote the characteristic function
of a set E. Using the assumption of normality, select z,€ X such
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that Tw, = ky,, and let W, be an open and closed neighborhood of w,
with W, < W, ~ (B, U E,). Proceeding inductively we construct de-
creasing open and closed neighborhoods W, of ®, and disjoint open
and closed subsets E,., E,., of W,~ W,,, and elements x,c X such
that if

®  (T)E) =1, (To)E. U W) = 0, (T9)() = 0,
then
[FIES A

Note that
Eng E11UE21QE11U-E21UE31Q cee O WaUE11UE21 c quEug W1 .

Since 2 is an F-space, there exists an open and closed set F, such that
n n—1
UEilgFog WnU UEM, n = 1’2y 0
i=1 i=1

Then

(@) = 3 (T2,)(@) = ks, (@)

for we Uz, W!. By dropping, if necessary, to the subsequences for n
even or 7 odd we can suppose @, ¢ F,. Choose x, with Tz, = k,, and define
2, = &, — >otx;. Then Tz, satisfies (§), so ||z, || = 2" + >t || «;]l. This
implies ||@,|| = 2", n = 1,2, ---, which is the required contradiction.
It follows now by the arguments of Theorem 1.5 that TX contains
all continuous functions which vanish outside of V. A covering argu-
ment completes the proof of Theorem 4.1,

One also has TX = C(2) is the special case that X is a conjugate
space, C(Q) is .. and T is weak star continuous, This theorem is
essentially an unpublished result of Beurling.

THEOREM 4.3. (Beurling) Let S be an arbitrary set and X be a
Banach space. If T:1,(S)— X is linear and continuous and T*: X* —
1.(S) has dense range then T*X* = 1.(S).

Proof. The density of 7*X* shows T is one to one, We prove
that 7' is bounded, so T and hence T* has a closed range. If T-!
is not bounded we can find a sequence {&,} of elements of [,(S) of
norm one such that T¢, converges to zero. Thus

(Tr")(E) = X &6)(Ta") () — 0, a*e X™,
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as n— o, Since T*X* is dense in [.(S), {£,} converges weakly to
zero, But then {£,} converges strongly to zero ([3], p. 295), giving
the desired contradiction.

In a seminar in 1960 Beurling gave a proof (unpublished) of the
following theorem equivalent to the result of Rudin (Corollary 3.4)
for the case of the circle group.

THEOREM 4.4, Let {n,;} be a sequence of integers, and suppose
that for each ¢ > 0 and {a;} in l. there is a measure /. on the circle
I such that

|ﬁs(%j)—aj|<59 j:]-’z)""

Then for each {«;}€ l.. there exists a measure p such that fi(n;) = a;,
j=1,2, -

Helson observed that the essential argument of Beurling’s proof
gave a proof of 4.3, On the other hand, to prove Theorem 4.4 from
4.3 one defines T({¢,}) = >S5, &', Then T:1,— C(I"), I" the unit
circle, and T*(C(I")*) is dense in l., so the restrictions of the Fourier
transforms of measures must yield all bounded sequences. One may
also base a proof of Corollary 3.5 on Theorem 4.2,

Finally we give an example of a compact Hausdorff space I,
which is not an F-space, and a continuous map 7:X — C(I") such
that TX is dense and normal on I and enjoys the local matching
property of Theorem 3.2, yet for which TX =+ C(I"). This example is
due to Y. Katznelson. We denote the n-th Fourier coefficient of a
continuous function x on the unit circle 7" by Z,. Let X be the sub-
space of C(I") for which 37 . |Z,,.,| < . We may write X = YPZ,
where

Y:{yec(F):g2n+1:0y n
Z = {zeC(I‘);@n:O, n =

For © = y + z define

o]l = sup |y®)| + 3 | 2wl -

Then TX is a dense and normal subspace of C(I') complete in this
norm, If f is any continuous function defined on an arc of length
less than 7, we may construct a continuous function y of period =
and hence in Y, which extends f. Thus if 7 is the injection map of
Xinto C(I'), I'is covered by closed arcs S,, S,, S, such that 7X |S; = C(S))
but TX = C(I).
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