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AN ASYMPTOTIC PROPERTY OF THE
EULER FUNCTION

R. J. MiecH

Let ¢(n) denote the Euler function. The starting point
of this paper is the simple observation that if p is a prime
then p and ¢(p) + 1 = p have a common divisor which is greater
than 1; its conclusion is: if {m;} is the sequence of positive
square free integers which have & prime factors, where & = 2,
then the number of integers m; not exceeding x such that m,
and ¢(m;) + 1 have a common divisor other than 1 is asymp-
totic to

i —2_ (log log x)*2 ,
log

where 1, is a positive constant that depends on k.

The source of the problem under consideration was a
question raised by Gordon in the course of his investigations
of Hajos factorization of abelian groups. The question was:
are there integers n, other than primes and their doubles, such
that ¢(n) + 1 divides ». This is still an open problem.
However, if we relax our demands, as we have done above,
it is possible to prove the asymptotic relation stated there.

One of the main results needed to establish the first assertion of
this paper is:

LEMMA 1. Let a be a positive integer and b, -+, b, be a set of
integers such that 0 < b; <a and (b;,a) =1 for 1 =1,2,.--, k. Let
bi, -+, b, denote the distinct integers which appear in the sequence
b, - -+, b, and suppose that b; appears r; times for j=1,2,--+,q.
Let n{x; a,b, ---,b,) denote the number of square free integers n
not exceeding x such that m = pp, -+ p, where p; is a prime and
p;=b;, mod a for t=1,2,--- k. Then for k=2 we have

_ 1 ko logi* o [ log; x ]
;a, bl, cen, b.)= 1 1085 &
m(w; o 5) rdeeer!l o%a) log x + ﬁ< log, x>

uniformly for a =< log,., ®, where log;  is the jth iterated log-
arithm of x. The constant implied by the 7-term depends on k.

The proof of Lemma 1 is based on a generalization of one of
Wright’s ideas [2]. We begin this proof by listing several known
results about primes in arithmetic progressions,
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LeMMmA 2. Let w{x; a, b) denote the number of primes not exceeding
@ which are congruent to b modulo a, where 0 < b < a and (a,b) = 1,
Then 1f

o < exp [¢, log «/log, «],

where ¢, is an absolute constant, we have

n(x;a,b):_l_._ i [1—5—(?( 1 )]
@l{a)y log « log @

except, possibly, for a set of integers {a'} all of which are multiples
of a single integer &' which, in tuirn, is greater than log4 x, where
A is any fixed positive constant., The constant implied by the &7 -term
depends on A.

See Chapter 9, Theorem 2.3 of [1] for a proof.
Frequent use will be made of the following form of this lemma:
if log < u and a < log, © then

w{u; a, by = ’EbﬁlogLu[H §><10g% u)]’

where the constant implied by the ~-term is independent of « and «.
We shall also employ:

Lemma 3. If a < x then there is an absolute constant c, such
that

Co @

wx; a,b) = 2 - .
pla) log (x/a)

See [1], Chapter 2, Theorem 4.1 for a proof.
The next lemma is a straightforward consequence of Lemmas 2
and 3.

LemmA 4. If e =27, 0<b < a and (a,b) =1 then

1ol gt 4»(10g_sx>
ECTI P(a) (@)

untformly for all integers a < 2 log, x.

The balance of this section deals with the proof of Lemma 1, As
for notation, a, b, ---, and b, will be the integers defined in Lemma
1, any prime p; which occurs will be congruent to b, modulo a for
1 =1,2,+++ k, and a prime on a summation symbol (as in 3V) will
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indicate that any prime p; appearing in the index of summation is
congruent to b; modulo a. The symbols ¢, ¢,, -+ - will denote constants
that depend, at most, on k. We also assume that k = 2.

LEMMA 5. Let
L(x; a, bl1 MY bk) = Zl’

pl"'pkéx pl LAY pk

where the primes p;, run tndependently through the residue classes
b;, Then if © = ¢; we have

L(z; a, by, ++, b)) = ____1.__._log2 [1 -+ ﬁ’( log; )]

P*(a) log, @
wniformly for a =< log; «
Proof. Since
k , 1 ) y ] 1
il;.[l(piéz:c”k ‘E") = L(@w;a, b, +-+,0) I;[(é —Z;_>

and since @ is chosen so that
a = log, © = 2 log, 2%,

Lemma 5 follows from Lemma 4.

LEMMA 6. Let
Hx; 8, by, w00 b)) = 3 logpceepy

Pypeee S

where the primes p; run independently through the residue classes
b;, Then if x> ¢, and a < log,., © we have

x logi [1 + ﬁ(10g3 )] .

Z?((E; a’y bl, ct Yy bk) = IOg
2

_k
#*(a)
The proof is an inductive one. For & = 2 we have

HNos @, b, 0:) = > S logp, + XV SV log p, .

Pysz pysu/py Pesz MSu/pg

Now, the first double sum on the right hand side of this equation
can be expressed as the sum of three double sums, 33, S, >3 whose
indices of summation are
m=cllogep Sloga, p =afloga logx <p = z/p,
zfloge <p = p, < a/p,,

respectively. Let us consider >, first, We have, by Lemma 2
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! 10g i
log z<pj=x/py
=_1 [—x——longr 0’9(—%— 1 >]
pla) L p, p. log, @

Moreover, since 2 log:{x/log z) = log; ©# = a, Lemma 4 can be applied.
Doing so we find that

Sy 3 log py= ——— log, cc[l + (Mﬂ :
pysefiog z log 2<p;<z/py @ ((1) 10g2 X

A straightforward application of Lemma 3 will lead us to tolerable
bounds for >}, and >},. If we do this and then apply the same
argument to the second double sum that appears in the equation for
Hz; a, b, b,) we will have our result for k = 2.

Let us go on to the induction. Set

felp) = @/pi a, by v vy bimyy by o0 By for 1=i=k+1,
glx/p) = L{x[p;a, by ove by by, =00, by) for 1=1=k
9(#/Pryr) = L2[Dros; @, boy =+ -, by)
and
hx[ps) = f(2/p) — (klpla))(x/pig(z/p) for 1=i=k+1.
Then, since

k-1
kl?(a:; ay bl, ccty bk—H) - Z Z’f{x/pl)

=1 pigx

and since for 1 <17 =k,

Liw; a,b,, -+, bi) = > (1/p:)g(@/py)

P

it follows that

k2
kz?(:c, a, bl, sty bk+1) -

) QUL(CU; a, bu Tty bk)
k
ola)
k+1
= 21 >V h(x/py)

1=1 p;=%

CEL(CL, b?: cy bk~i—1)

Now, if p; < x/log « then z/p; = log « and log,..(x/p;) = log,., & = a.

Thus, by the inductive hypothesis and Lemma 5, we have

S7 hiw/p) = ﬁ[ T (log, z) logt- a‘]

p;sz/log @ (pk"'l(a)

If, on the other hand, we have x/log = < p; =« then z/p; = log =,
and we can show, by referring to the definitions of the quantities
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involved, that

% Sl = |~ og ) logt 1

z/log x<p;<%

and
, k
z/log e<p;s% @(a)

olalp) = | s g ) logi o]

In short, we have

k(s @, by -, bews) = —° wL(w; a, by -+ -, by)
o(a)
kx
+ L(x; a, byy +++, byiy)
p(a)
-+ ﬁ[m loga X lOglz‘—1 Q?] .

Lemma 6 follows from this formula and Lemma 5.

LemMMmA 7. Let d(n; a,b, ---,b,) be the number of representations
of the integer n of the form n = p, -+ p, where p; =b; mod a for
1=1, -+, k and the primes p; run independently through the residue
classes b;. Then we have

S At a, by, +ee, by) = — gy 10872 [1+ ﬁ<log3x)]
"= Pa)  log @ log, &

untformly for a = log,., .

Proof. Set d.(n)= d(n;a,b, ---,b,). Then we have
Hw; @, by, + -0, b)) = XL di(n) log n= ( Xidy(n)) log «

-~ [z dumdaog w .

Since d,(n) < k! and since d,(n) is positive only if #n =b,---b, mod
a it follows that
< k(Y _
Sdm) = k( g +1)
Thus

[[(Sdmydiog ) = 57 = 57 (log, z)(logi 1) .
B P@) — @)

These results, along with Lemma 6, give us Lemma 7.
We are now in a position to prove Lemma 1, Set

e(n; @, by, +++, b)) = pA(m)d(n; @, by, -+, by)
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where p(n) is the Mobius function. Then

0= Zd(n; a, bu "'9bk) - Ze(n; a, bly 0y bk)

nsw

: cx  logk?a
= ,,Z:{ Zd(n; a, bly tt bi—-ls bi+1y °t bk) é ¢ s .

iss " a) log x
Consequently
kx  logi'w [ log; x ]
y @ biy s by) = 1 —=—)I.
g’x o(n; a «) (@) log x + ﬂ(logz x>

This completes the proof of Lemma 1 since

L Siem;a,b, .-, by).

77,'(37; a, bly "'ybk) = 1 1
Tyl oo° Vyi n=z

2. In this section we shall prove the assertion made in the
introduction of this paper. To that end, let @'(k, x) denote the number
of integers in the set

{m:1<m§xym:ply"'ypkyﬁg(m):19(m7¢(m)+1)>1}7

and let @(k, ) be the number of odd integers counted by @'(k, x).
Let n; be a generic symbol for an odd positive square free integer
which has j prime factors, for j =1, ---, k.
Our first goal is formula (3) below. Suppose we have n =n, =
Py P, | (m, p(n) + 1), and d > 1; then d is a square free integer
which has j prime factors where 1 =<5 =<k — 1. Thus if we set
Any) = {ng i ey = %, (05, my) = 1, p(nymy_;) + 1 = 0 mod 7}

an elementary combinatorial argument will yield the equation

k—1

Ok, o) = 2, (=1 3 > 1,
J=1 njST %k_jeA(nj)

Consider next the quantity

(1) Y 1.

logk+1 x<nj§x nk_.jeA(nj)

Since we have n; = p, --- p; at least one of the prime factors of n;,
say p;, must be greater than (log,,. )/ = z(J, #). Moreover, if n;
and n,_; are relatively prime integers such that

pnm;_;) + 1 =0 mod #n;
we then have n;n,_; = pn,_, and

P(PMp_) +1 =0 mod p, .
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Consequently the quantity (1) is bounded above by

k
(2 ) <j>p1>zz(]‘!,z) nk_lze;A(:ol)l !

for any integer m;n,_; which appears in (1) will appear at most (I;)

times in (1) and at least once in the double sum of (2). If we set
z = z(k, x) = (log;,, %)'* we have

(3) O, m) = S (— 1" S 5 14 2S),
j=1 n;jSl0gg 11 % vy ;€A(ny)
where
S=3 > 1.
p1>z np1€A(ny)
We shall now show that if 4 = 2 then
k=1 .
(4) S s % 1
i=1 njslogg 4y @ ng—;€A(ny)

G log « + ﬁ< log;+, x> ’

where «, is a constant that depends on k.

Consider any fixed n; which appears in (4). If n,_;€ A(n;) then
(Mg—;, m;) = 1 and p(n;)p(n,_;) + 1 = 0 mod n;. Thus, if (n;, p(n;) > 1
the set A(n;) is empty. On the other hand if (@(n;),n;) =1, and
Ny_j = Djs1 *** D, We have the congruence

(5) Djrr— 1) +++ (pr — 1) = U(n;) mod n;

where l(n;) is chosen so that l(n;)p(n;) = — 1 mod »;. Furthermore,
if pjuy o+ p, is a set of primes that satisfies (5) then there is a set
of integers [;.,, ---, [, such that

(6) lj+1 RERAES l(nj) mod n;
(7) A+l,m)=1 for i=4+1,---,k,

for we need only take I; so that p; =1+ I; mod n;. Conversely, if
lit1, -+, and [, are integers which satisfy (6) and (7) then there are
primes p;.,, -+, p, which satisfy (5). Note also that the number of
distinct solutions of (6), where two solutions, 1;,,, -+, 1, and lj4, - -, I},
are said to be the same if and only if both contain the same integers
modulo « to the same multiplicity, obviously does not exceed @*~7~'(a);
thus the number of solutions of (6) which also satisfy (7) is bounded
above by @**(a).

Now, suppose that (n;, o(n;) =1, let l;1, ---,l, be a set of
integers that satisfies (6) and (7),and let b, =1+ ;fori=75+1,---, k.
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Then we have

x
Mn,) = My by s )

i 1= 7[(
ng—;EA(nj;) {bjp1.eebgl n;

where {b;:;, +++, b,} runs over the sets of integers we get when
{1y +++, I} runs over the distinet solutions of (6) which satisfy (7).
Lemma 1 will be applicable here if

log,_jui(x/ng) = n; ,
but this is the case if n; < log,,, « since
log_j4:(%/n;) = log,_;1:(%/log,,: ®) = log(x/log,,, ®) = logey, © = n;
for © = ¢, ¢, being a constant that depends on k. Consequently if

j=k—2and n; < log,,, « then

8 M) = a(n;) « logi~'uw 1 log, «
(8) ™) = s o hs 7 |1+ @(___logz 2]

where a(n;) is an integer such that a(n;) < kp*7~'(n;). Lemma 2
implies that (8) also holds if j =%k — 1.

If we take j = 1 we have, by (8)
(9) > > 1

nSlogy 1 & np—1€A(ng)

- 3 a(n) « logi® [1+¢<M)] )

T msheee @ i(ny) n, log log, =

Set
a, = Z_a(/n’g__‘

"1 ¢k~1(n1)n1
Since a(n,) =< kp"*(n,) this infinite series converges. Furthermore,
a, #+ 0. For, since n, is a prime, say n, = p,, a(p,) is the number of
solutions of the congruence [, --- I, = 1 mod p, such that 1 + 7;, p) =1
for ¢ =2, ..., k, Since the set of values l, = [, = ... =[, = 1 satisfies
these conditions we have a(n) = a(p) >0 for p, =3, i.e. a, #0.
In short, the left hand side of (9) is equal to

a,x logt? [1-{-&’( 1 )]
log = logyy, /4’

where «;, is a positive constant.
If 2=<j=<Fk—1 then we have, by (8)

1:¢[_w_lo_g’ﬁw_],

njslogp 1@ ng—;€4(n;) log X
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Formula (4) follows from this and preceding result.

The main problem that remains is that of finding a reasonable
bound for the quantity S where

S=3> > 1
p1>2z np1€4(p1)

and z = (log,., )",

To that end, fix p, and define B(p,, 7) to be the set of integers
Py +++ D in A(p,) such that ¢ — 1 of the prime factors of p, -+
are less than p, and k — ¢ are greater than p, for =1, --- k.
Then
(10) S=3 3 1.

P1>2 1=1 n_1€B(py,1)

If we fix p, and %, where 2 <1<k — 1, we have
1= 3 1

N1 € B(Dy.4) PyrP; Dip1- - PLED

where each of the prime factors of p,--- p; is less than p, and C,
which depends on p,, ---, and p,;, is the set of integers i, -+ D
such that p; > p, for 7> 4, p, -+« PPiy. + -+ D 18 square free and less
than or equal to », and @(p, -+ +p;) + 1 = 0 mod p,. Similar statements
can be made when 7 =1, If we fix p, -+, and p; our problem then
is that of finding primes p;,,, -+, and p, such that

(pi+1”‘1)"‘(pk"1)5lm0d D1

where ! is an integer, relatively prime to p,, that depends on p,, ---,
and p;. Let D be the set of (k& — 7)-tuples

{(Bissy =+, 0g) 2 (Bigy — 1) =++ (b — 1) =1 mod p, 0 £ b; = 1.} .
Then, holding ., p,, ---, and p; fixed we have
1= 3 s 1.

Pii1°--PEEO - (b;41:°"0)ED Py PLST
P1<Pj=b; mod p1,5>i

If we fix (b;yy, -+, b,) and let (b;,,, ---, b};) run over the (k — 7)-tuples
we get by permuting the integers b;,,, ---, and b, we have

> 1= %, = 1
Py DpSz (b1’2+1’""b;t) PiryPLEE
P1<p;=b; mod py,i>4
where E is the set of integers
Divio o DD i D S0, D < P e
<pkyij b; mOd ./plyj> 'Z/} .

Now, fix (b4, -+, b;). If Dy, p,isin E it follows, by induction, that
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1
pk-—-r é (x/pl e pk-—r—-l) T+l = t(’r)

since p; +++ DpsPie = @ A0A Dy_p4ny) S Dy forr = 0,1, -+, &k — (2 + 1),

Consequently we have

(1 5o tss e e S a(—2 i, b))
Pi41*PLEE Pit1 Pr—p Pr—1 pl e pk—-l

where the prime on the summation symbol indicates that p, < p;_, = t(r)
and p,_, = b;,_, mod p, for r =1, -+, k — (2 + 1),

Split the quantity on the right hand side of (11) into two sums,
>u and 3. The index of summation of >}, will be those integers
Dy + -+ Py such that pp, «+- p,_; < 2%, where ¢ is a positive number
that will be chosen later; the index of summation of 33, will be those

* Dy such that pip, -+ Py, > 275,

We have, by Lemmas 3 and 4,

X 1
Z é Z’ cee Z’ 2
T A oD e Dis 10g(R/DID; -+ - Diy)

< C3 X kff( 1 )
T @P)py e p; log x oi=in 5isz  D;

pjsbl.mcd Py
¢y x
P Hp)py -+ p; log
where ¢, ¢, --- are constants that depend on % and 4. If we sum
on (biyq, +++,b,) we have

k——1.—1

A

log?

Cs x logk— ¢
P p)py e P logw

/ .
(Bypprmiby)

since there are at most (¢ — 7)! permutations of b, -+, b,. Summing
on (bi+1s ) bk) ylelds
I

Z Zs é 06 1ng-—t—1
(b1, bj) €D P(D)DPs * -+ Ds log =

for there are at most @***(p,) (k — 7)-tuples in the set D, Since
p; <p, for j=2,---,7 we have

1 )i‘l logk——* ¢
‘6 _— g —=2 v
2= MZ 712 @(pl)pl <v<z»1 D log «
¢, logi=t p, x logi—*
P(0)D: log «

Since we have the restriction 1 < k — 1, we have

k-1 logt=2 p, x logh— z
— Z Z é c 2 1 2
Za=Z 2z pp(p) log «
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Finally, since p, > z, it follows that

x logkt— ¢
PIPIEA LA
P>z log @ '1/ z

In short, we have

k—1 k=2
(12) pIPSUD N - RNL IR e
p1>2 t=1 ny_1€B(py,i) log X ‘[/ z

where the summation is restricted to those integers p, and n,_, =
p; +++ 0, for which pip, « -+ pp_, = @70,

Let us return to (11) and deal with 3}, i.e. with those integers
P, -+ D, Where pip, ++- D, > 2%,  Under these circumstances we
have

- by oo b)) < s N
———; Py, b ) = w(P2® Py, b)) S 5 = e’
Do Dp log «

Since we also have, for 0 = a < 1,

l—a
L =c¢ Y
n<psy P X
p=b mod py
we can prove, by induction, that
1
i =y

Zzécﬁz’...Z' —

Pit+1 Pi—r Dh

.

Py« ++ D)=

Thus if follows that
.’E5+B

S, %
TP (py e p)f

where 8= B(i) =1 — (k —4)~. If we now sum on (b;,,, ---, b;) and
(bi41, b)) We obtain a quantity that is bounded above by
x> Pl(py + - )P

Omit the summation on ¢ for the moment, and divide the sum

2 > aPl(py e .- po)f

i
into two parts, the first, >, being that part where p, < #*, the second,
S being that part where p, > af, ¢ being a positive number that
will be chosen later., We have, since p; < p, for 5 =2, ---, 1,

2= 20 2 —-—x-siﬂ—i)g é( > ——1—->iﬂc“‘3 = egt

2<P1=%¢ Py P; “ee P1=at 8
1 1
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where A = (1 — B)e 4+ 0 + B. Furthermore since

T = Dy DiDizr *** Di > p{c——i+1p2 ceep;
it follows that

1 x5+B
p>et pf pge--pi<a/pF Y (pe =~ pi)ﬁ
< 6’9( > _1_ LSBT < o piti—e
p1>28 P}
Set &= 1/(2k) and 0 = 1/(4k). Then 1+ 9 —e=1— (4k)", A =1~
(4k)™, and

28 =

1
27 + Zs = et ek
A summation on the 4’s yields the inequality

(13) S5 0s 1= eww,
p1>2 =1 nj__1€B(py,1)
where the summation is restricted to those integers p, and %;,_, = p, - - - p;
for which pip, <+« pp_; > 23,
If we return to (10) we see that we must find a bound for that
part of S corresponding to ¢« =k. If we have n,_,=7p,----p, in
B(p,, k) then, by definition, p; < p, for j =2, ---, & and

P:—1) -+ (0 —1) —1=0 mod p, .
Once again we have a two way split. On one hand we have

1= 3 #(p)* = = ex™*,
2<py=atlk ny_1EB(py,k) pi=atlk
for the obvious reasons, On the other hand, if p, > x'* then
Do P = 2% and
1=

pi>2ilk g €B(py,k) pyrepp=al—ilk p1>atlk
21l (@(pg-+-pf)—1)

Since the number of prime divisors of @(p,--- p;) —1 which are
greater than x'* does not exceed k this last double sum is bounded
above by ka'~''*, Therefore, we can conclude that
(14) DD 1= extiE
P1>2 np—1€EB(P,k)
Let us assemble our results, Items (10), (12), (13), and (14) imply
that

_ X logi—2 2
(15) S = ﬁ[ = ]
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Relations (3), (4) and (15) yield

O(k, x) = akx%:%cﬁ [1 + ﬁ’(;%:)] )

where z = (log,., )%, Since @'(k, x) was defined to be the number
of positive square free integers m less than or equal to 2 which have
k prime factors and which have a factor in common with ¢(m) + 1,
and since @(k, x) was defined to be the number of odd integers counted
by @'(k, ) we have, for k > 2,
'k, x) = Ok, x) + Ok — 1, /2) ~ (o, logk—2 x)/log .
If ¥ =2 then
(2, x) = 02, 2) + w(x/2) ~ (@ + 1/2)z/log @ .

These are the results we set out to prove.
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