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TRANSFORMATIONS OF FOURIER COEFFICIENTS

DANIEL RIDER

Let A and B be function spaces on the unit circle and let
F be a complex function defined in the plane. F is said to
map A into B provided ΣF(fln) einΘ is the Fourier series of a
function in B whenever Σ^neίnθ is the Fourier series of a
function in A. For 1 ̂  q < oo, let Lq denote the usual space
of functions on the unit circle normed by

(1)

Let 2 S- q ^ oo and p be given by p"1 4- q~ι — 1.
It follows from the Hausdorff-Young theorem that if b(z)

is bounded near the origin, then

(2) Fiz) = dz + czz+\z \Vv b(z)

maps Lq into L9.
In this paper it is shown that all functions mapping Lq

into Lq have this form. In fact, all functions mapping the
continuous functions into Lq have this form.

THEOREM 1. Let 2 <Ξ q ̂  oo. The following are equivalent.
( i ) F maps L? into ZΛ
(ii) F maps the continuous functions into LQ.
(Hi) F(z) = ciz + c2z + I z |2/p 6(2) where b(z) is bounded

near the origin.

Rudin [2] proves that Theorem 1 is true provided F is an even

function. Our proof consists primarily of applications of the method

devised by Rudin.

^ will denote the continuous functions on the unit circle. The

Fourier coefficients of fe L1 are given by

( 3 ) f{n) = — Γ f(eiθ)e~inθdθ (n = 0, ± 1 , ± 2 , •) .

F maps A into B provided given feA there is geB such that

g = F(f). This is written g = Fof.

2* Trigonometric polynomials with few coefficients* H. S

Shapiro in his Master's thesis [3], and, independently, Rudin [2], prove

the existence of a sequence {εj with εΛ = ± 1 such that

N

( 4 ) I X εn einθ \ < 5N1'2 (0 ^ θ ^ 2π; N - 1, 2, 3, . •) .
71 = 1

A similar construction yields

347



348 DANIEL RIDER

THEOREM 2. Let r be a prime integer and a = exp (2πi/r).
There is a sequence {εr(n)} with εr(n) having for each n one of the
values 1, α, , ar~ι such that

( 5 )
! -w

w = l
θ

= 1, 2, 3,

Proof. Let AQ, Au , Ar_L be complex numbers. A simple calcu-

{ T s — 0
n' Q — i 9 _ i ^

u, s — i , ώ, , r l

r-l

j=0

( 6 )

For r = 2, this is just the parallelogram law used in [2] and [3] to
prove the theorem for the special case r = 2.

Let Po°(£) = P](x) = = Pô Xa?) = « and define polynomials Pfc

s

inductively by

( 7 ) = Σ ^ i r f c a s
(8 = 0,1, . . . , r - l ) .

P^ is a polynomial of degree rk and it is easily seen by induction that
each of its coefficients is a power of a and that PI is a partial sum
of Pk+i. The sequence er(n) is defined by letting εr(n) be the nth

coefficient of PI when rk > n.
If l α | = 1, (6) and (7) yield

( 8 )

Since

( 9 )

Hence

(10)

ϊ«o I PS(x) I2 = r, we have

I P°k(eiθ) I ^ r 1 /

For N = rk this is stronger than (5). From it we can obtain (5) for
all values of N by following the procedure of [2],

If we replace a by a* (t = 1, 2, , r — 1) in (7) then we obtain
a sequence {εr,t(n)} such that

(11)

and

er i t(») =

(12) Σ̂ r1/2)iV1/
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Now let δr(n) = Σ*=ίεr,ί0Ό. Since er(n) is an r th root of unity,
it follows from (11) that δr(n) = r - 1 or - 1 . Thus (12) yields

THEOREM 3. If r is a prime there is a sequence {δr(ri)} with
dr(n) — r — 1 or —1 such that

(13) oinθ < (r - l )r( l + r1/2)ΛP/2 (0 g 0 ̂  2ττ; N = 1,2,3,. ) .

3* Proof of Theorem 1* To prove Theorem 1, we need only
show that (ii) implies (iii). Furthermore, by [2, Theorem 4], we can
assume that F is odd. For q = 2, Theorem 1 follows from [2, Theorem
4], For if F maps <Sf into U then H(z) = \F(z)\ + | F(--s) | is an
even function mapping ^ into U so that | F(z)/z \ is bounded near the
origin. In this section F will map ̂  into Lq(q > 2; 1/p + ljq = 1).

The proof of the theorem relies primarily on the following lemma
similar to [1; Lemma 3.2],

LEMMA 1. Let F map c^ into IΛ There are constants δ > 0
and M < oo such that

(14) ||*V||g^Λf

whenever f e ^ and \\f\\oo<δ.

Proof. It is sufficient to show that (14) holds for trigonometric
polynomials.

For let fe if, | |/ | |» < (1/3)3, and define

ei9)=(15) Km(ei9)= Σ m i n ( l , 2 ~ M . W (m = 1, 2, 3,
2 \ m

If * denotes ordinary convolution then f*Km is a polynomial such
that ||/*JBΓw||,o < δ. Hence \\Fo(f*Km) \\q S M. But a subsequence
of {-Fo(/*iίm)} approaches Fof weakly as elements of IΛ Hence
11 /̂11. ̂ M.

Thus if the lemma is false there is a sequence of polynomials
{fj with 11 / J U < 1/m2 and 11 F°fm \ \q -> oo as m -> oo. Clearly we may
assume that fm{k) = 0 if k < 0. Let i\Γw be the degree of / m and
choose integers nm so that

(16) nm + 3Nm < nm+1 ~ Nm+1 .

The series

(17) / ( β « ) = £ e< t l m β/T O(e i ( ))
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converges uniformly to a continuous function. Let

The choice of {nm} implies that

(18) (Fof)^Hm = e^θ(Fofm).

Since || £Γm |U < 3, it follows that

(19) l l ^ o / w | | g < 3 | | F o / | | g .

But this is impossible since \\Fof\\q^> oo.

LEMMA 2. | F(z/2) — (l/2)F(z) \ \ z \~2lp is bounded near the origin.

Proof. If the lemma is false there are numbers zm Φ 0 (m =
1, 2, 3, •) such that mzm —> 0 and

(20) ^ξ ) - ±F(zm) m
12/p

Let Nm = [m~2z^2] and define

z Nm

where δd(n) is the sequence of Theorem 3 for r = 3. From Theorem 3
and the definition of Nm it follows that || Tm ||«>—>0 as m—> oo. Hence,
by Lemma 1, | | F o Γ w | | f f is bounded as m—> oo.

Since F is an odd function

(22) (Fo Tm)(eiθ) = F{zm)

Thus

I Fo Tm(eiθ) I ̂  A

2 / lί»ίJfm,ίj( )=-l

(23)

Now if F maps ^ to Lq, q > 2, then, α fortiori, F maps ^ to ZΛ
Thus the truth of Theorem 1 for q = 2 implies that | ί7^)/^ | is bounded
near the origin. Thus, since \\ΣnΆeinθ\\q^ CqNHp, it follows that
I (l/2)F(zm) — F(zJ2) I NUP is bounded as m -• oo. However this is a
contradiction to (20).

LEMMA 3. F(z) + F2(z) where
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( a ) Fx and F2 map <& into Lq.
( b ) I F2(z) I I z |~2/ί) is bounded near the origin.
( c ) F^z/2) = (l/2)F1(z) for all z.

REMARK, F2 is the "small" part of F. Lemmas 5 and 6 show
that because of (a) and (c)

Fλ(z) = cλz + c2z .

Proof. By Lemma 2 there are finite positive constants B and C
such that for z I ̂  B

(24)
k-l

Σ
ί3 2s

s c z r

Define

(25) Fλ(z) — lim 2n.

This limit exists. For if n > j and we apply (24) to z/2j with
k = n — j and multiply by 2n then

(26) z
2j

Since p < 2, the right side of (26) —> 0 as j and n—> oo,
It is clear from the definition of F1 that (c) holds. F2(z) =

F(«) — Fi(i5) and (b) is a result of (24). F2 maps <Sf into Lq because
of (b). Thus Fλ does also. Note that F1 is odd (since F is).

LEMMA 4. î \ is continuous.

Proof. It is sufficient to show it is continuous at 1. If not,
there is a sequence sm--+l such that F^zJ) —> ̂ ( l ) . The 2m can be
chosen so that

(27) 11 - zm

Let Nm = [22m m~2] and define

2 -

(28) ") = 2 - ^ } (1 - ε2(n))\einΘ

J
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where {e2(n)} is the sequence of Theorem 2.
Theorem 2, (27) and the choice of Nm imply that || Ύm |U == 0(l/ra)

so that, by Lemma 1, \\FoTm\\q is bounded as m—>oo. But then
since Fx{φ) = (1/2)2^),

oinθ

(29) .)l

Σ ε,(n)ein6

As in Lemma 2 this implies that 1^(1) — Ft(zm) \ NHp>2~m is bounded
as m-^cx), which is impossible unless Fx(zm) -+ F^l). Hence F1 is

continuous.

LEMMA 5. There are continuous functions CΊ and C2 on (0,
that

^ + C 2(φ- ί θ
(0 < a? <

Proof. We will show that if r is an integer (r =£ 0,1) and z a
complex number then

(30)

Now consider FJjce™) = Gx(eiθ) for a fixed a?. G^ is a continuous
function of 0 by Lemma 4. It follows from (30) that for each
integer r Φ 0,1.

(31) Σ G.(exp + = 0 (0 ^ ί ^ 2π) .

By considering the Fourier coefficients of Gx it is easily seen that
Gx(eiθ) = Ci(ίc)βίθ + C2(α;)β"ίθ. Cx and C2 are continuous because of
Lemma 4.

To prove (30) it is sufficient to assume that z = 1. It is also
sufficient to assume r is prime. For if r = pq where p is a prime
then (30) can be written

(32)
pq

If (30) holds for primes then each summand of the outer sum of (32)
is zero.

Let Nm = [22mm~2] and define
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(33)

where {εr(n)} is the sequence of Theorem 2.

if β = Σ5=i -PΊ(exp 2τrf//r) and

= l , 2 , . . . f r - l ) ,

|U = O(l/m) so that

(34) Σ

then, by Lemma 1, ||ffm||, is bounded as m
F&/2) = (l/2)F(z)

Now since

(35) I Hm(eu) I = 2
ί l

Suppose εr(n) = 1. The coefficient of e i l iβ in (35) is then

(36) (r - 1)^(1) + (r -

Suppose εr(n) Φ 1, so that εr(w) is a primitive r t h root of unity. Then
ΣS-^iίOM^))'} = /5 - -FΊ(l) and Σl-ί («,(«))' = - 1 so that the coefficient
of e" β is

(37)

Hence

(38)

so that

(39)

β - Fx(l) - {|- - ^(1)} = (l - j

|ff-(

\H.

Λ <«θ

C Nllp

But this is impossible unless β = 0. That is

Σ
i-=i

(40)

which was to be proved

LEMMA 6. Cά{x) = xC^l) (0 < a? < oo; j = l, 2).

Proo/. Fix x and <p. Let r be a prime, iVm = [22wm~2], and define
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where {dr(n)} is the sequence of Theorem 3.
Since F1 is odd and Ft(z) = 2F1(z/2) we can write

(42)

As in the proofs of Lemma 2 and 4, || F l O Tm | |g and 2rm \\ Σ δr(n)eίίlθ ||ff
are bounded. Hence 2^mNHp \ F^xe*) - (r - l)F1(a;e<<p/r — 1) | is bounded.
But 2~mi\^/p is unbounded so that

(43) i^(x^) - (r - 1 ) W ^ ^ Λ = 0 ( 0 < £ < co; 0 ^ <p ̂  2τr) .
\r — V

By Lemma 5, (43) can be written

(44)
(x) - (r - l J C ^ - ^ - j ^ β - " = 0 .

Clearly this possible only if

(45) CM) = (r - l ) C y ( - ^ - ) (0 < x < co; i = 1, 2) .

Thus, if r and q are primes and n is an integer,

Now {(r — 1/g — 1)%: r, g, primes; n an integer} is dense in the positive
real numbers. This is true since given ε > 0 there are infinitely many
pairs of consecutive primes qny qn+1 such that qn+ι < (1 + e)qn.

Since C5 is continuous (46) then implies G5(x) — xG5(l) for all x.
The proof of Theorem 1 follows from Lemmas 3, 5, and 6.

4* The general case* We remark here that Theorem 1 holds if
we consider any compact Abelian group G. If Γ, the dual group of G,
has elements of arbitrarily large order then it is possible to construct
polynomials as in §2 and the proof proceeds as in §3. When, Γ, and
hence G, has an exponent the construction of the polynomials is slightly
different (it depends on the structure of Γ) but the remainder of the
proof is similar.
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