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ON A PROBLEM OF O. TAUSSKY

BERNARD W. LEVINGER AND RICHARD S. VARGA

Recently, O. Taussky raised the following question. Given
a nonnegative n X n matrix A = (a;,;), let £, be the set of
all » X n complex matrices defined by

1) Q,=B=(.;)|1b;| =a;; forall 1=4,j=<n}.

Then, defining the spectrum S(OM) of an arbitrary set I of
7 X 7 matrices B as

(1.2) S(M) = {6 | det (¢I — B) =0 for some BeI},

what can be said in particular about S(f}A)? It is not difficult
to see that S([jA) consists of possibly one disk and a series of
annular regions concentric about the origin, but our main
result is a precise characterization of S((L) in terms of the
minimal Gerschgorin sets for A.

Introduction. We shall distinguish between two cases. If there is
a diagonal matrix D = diag (., - - -, «,) with x = 0 and x = 0 such that AD
is diagonally dominant, then A is called essentially diagonally dominant.
In this case, the set S(é ) is just the minimal Gerschgorin set G(2,) of
[6], rotated about the origin (Theorem 1 and Corollary 2). Determining
S(.é .) in this case is quite easy, since it suffices to determine those
points of the boundary of G(2,) which lie on the positive real axis
(Theorem 2). This is discussed in §2.

In the general case when A is not essentially diagonally dominant,
we must use permutations and intersections (Theorem 3) to fully
describe S(2,), in the spirit of [3]. These results are described in § 3.
Also in this section is a generalization (Theorems 3 and 4) of a recent
interesting result by Camion and Hoffman [1]. Our proof of this
generalization differs from that of [1].

Finally, in §4 we give several examples to illustrate the various
possibilities for S(!j ).

Before leaving this section, we point out that the question posed
by O. Taussky [5, p. 129] has an immediate answer in terms of the
results of [3]. In [3], the authors completely characterized the spectrum
S(2,) of a related set 2, of matrices, where C = (¢;,;) was an arbitrary
% X m eomplex matrix and

(1.3) 2,={B=(b:;)||b;)=cs;| and b, = ¢, forall 1 =4,5 <n}.

Clearly, QACQOA. On the other hand, if D(@) represents an n X m
diagonal matrix all of whose diagonal entries have modulus unity:
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d;; = exp(ib;), 1 = j = n, then AD®) 9, and 2, = Us2.pe, Where
the union is over all possible choices of D(6). Thus,

(1.4) S0 = U S(@usa) -

While this answers the question posed, it neither gives an insight into
the nature of S(2,), nor allows S(2,) to be effectively calculated.
We shall show that in fact S(2,) is more easily determined than S(2,).

2. The essentially diagonally dominant case. Let A = (a;,;)
be given n X m nonnegative matrix. In order to develop the material
of this section, we recall some definitions and results concerning the
minimal Gerschgorin set G(2,) associated with A. In [3, 6], a con-
tinuous real-valued funetion v(o), defined for all complex numbers o,
was characterized by

2.1 (o) = 11l1>1f max {L [Z, @My — |0 — @ u,]} .

0 [ U; Li#i

Using the Perron-Frobenius theory of nonnegative matrices [7, §2.4
and §8.2], it can be shown that there exists a nonnegative vector
x # 0 such that

@.1) — o —ag| @ + 3 a2 = (o), l=i=mn.
JFi

From y(o), G(2,) is defined by

(2.2) G2, ={o|v(o) = 0}.

In view of (2.1’) and (2.2), a complex number ¢ is contained in G(2,)
if and only if there is a nonnegative vector x = 0 such that

(2.3) [O'—‘ai,ilxié%ai,jxj, 1 éié%.

The set G(2,) is a closed bounded set, and its boundary, denoted by
0G(2,), satisfies,

2.4) 8G(2,) < S(2) < G(2,) .

We first prove a result concerning G(2,) which will have later
applications.

LEmmA 1. If, for z, > 0, z,6*°c G(2,) for all real 6, then all z
with |z]| < z, are in G(R,), and z=0 is an interior point of G(2,).

Proof., This is a simple application of (2.3). By assumption,
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— 2,6 G(2,). Since 2z, >0 and a;,;, =0, 1 =<1 < n, then
| — 20— @i | = 20+ @i; ©
Thus, for any z with [z = z,,
[z —a,:| =2+ aii 2 + ai;,

and (2.3) holds for z with the same vector x = 0 which satisfies (2.3)
for — z, which completes the proof.

We next introduce the notion of rotating a given point set P about
the origin. Let

(2.5) rot P = {0 |0¢?c P for some real 6}.

With this notation, we have

o

LEMMA 2. rot S(2,) = S(QOA).

Proof. It is clear that S(.(L) C rot S(QOA). If oerot S(QZ), then
oe” is an eigenvalue of some B in .Qc‘.1 and thus ¢ is an eigenvalue of
e B, But ¢ *Beg¢ [54 and hence o€ S(QDA), which completes the proof.

This elementary result already establishes that the spectrum S(.Q:)
can be described as the union of a family of circles concentric about
the origin.

LEMMA 3. If o S(Q,), then |o|e G(Q,).

Proof. For any o€ S(.Q:), there is a matrix B = (b;,;) in QOA and
a vector y # 0 such that By = oy. Equivalently, we have

(2.6) (0 — b))y = > 05,95, 1Zit=n.
FEDS

If we take absolute values in (2.6) and note that
(o —b: |z ]lo]— byl =1l0]— ai] ]
we obtain
@1 ol —al iyl =lo— bl |yl = fj;.bi,jyﬂ é%ai,jlyil )

so that || satisfies (2.3) with the nonnegative vector x = |y |, which
completes the proof.

From the definition (2.5), it follows that, if P and R are any sets
with PC R, then rot Pcrot R. Thus, (2.4) and Lemma 3 combine to
give

COROLLARY 1. rotdG(2,)  S(2,)  rot G(2,).
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We now study the case for which the inclusions of Corollary 1
become equalities.

THEOREM 1. Let A be a mommegative n X m matric. Then,
rot 0G(2,) = S(2,) = rot G(2,) if and only if z =0 is not an interior
point of G(R2,).

Proof. First, assume that 2 =0 ¢ intG(2,), and let ¢ be an
arbitrary nonzero point of rot G(2,), so that gei® e G(2,) for some real
;. The circle |z| = |o| cannot lie entirely in G(2,). For otherwise,
by Lemma 1, the entire disk |z| =< |o| would be contained in G(2,)
and 2 =0 would be an interior point of G(2,). Thus, the circle
|2| = | 0| necessarily intersects the boundary 0G(2,), and there exists
a real 0, such that ce®1c 0G(2,). It follows that o erotoG(2,), and
thus from Corollary 1, ¢ is also a point of S(!L). To complete this
part of the proof, we need only examine the point z = 0. Clearly,
the statement that 0 ¢ int G(2,) is equivalent to the statement that
either 0 e G’(2,), the complement of G(2,), or 0€dG(2,). Thus, if
Oerot G(2,), ie., 0€ G(R2,), then the previous remark shows that
0edG(2,), which completes the proof of the first part. Now, assume
that rot 0G(Q,) = S(.Qo 1) = rot G(2,), and call this common set of points
H. If 0eH, then 0€dG(2,), and hence 0 ¢ int G(2,). If 0¢ H,
then 0 ¢ G(2,), which implies that 0e G’(2,), and again 0 ¢ int G(2,),
which completes the proof.

The statement z = 0 ¢ int G(2,) can be seen to be equivalent to
v(0) =0, and this has an interesting connection with diagonally
dominant matrices, i.e., m X n matrices B = (b;,;) satisfying

(2.8) bosl = S 1bisl, 1=isn.
JF

Obviously, if v(0) < 0, then from (2.1’), there is a nonnegative vector
y # 0 such that

(2.9) @il = 2 04,5, 1=i=mn.
FED

Thus, if D is the diagonal matrix D = diag (y,, +--, ¥.), then (2.9)
asserts that the product AD is diagonally dominant. Conversely, if
D = diag (y,, +--,v,) where y =0 and y+ 0 and AD is diagonally
dominant, then it follows from (2.3) that v(0) < 0.

The statement that v(0) = 0 can also be coupled with results of
Ostrowski [4] on H-matrices, which are defined as follows, Let
B = (b;,;) be an arbitrary » x n complex matrix, and associate with
B the new matrix C = (c;,;), where ¢;; = — |b;,;|, © # J, and

i = bl 15t=n.
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Then, B is an H-matrix if and only if all the principal minors of C
are nonnegative, [That is, the matrix C is a possibly degenerate
M-matrix.] In [4], it is shown that B is an H-matrix if and only if
there exists a diagonal matrix D = diag (y,, -+, ¥.) with g = 0,y # 0,
such that BD is diagonally dominant. Thus we have

COROLLARY 2, Let A be a monnegative m X n matrix. Then,
rot 6G(2,) = S(2,) = rot G(Q,) if and only if A is an H-matrix.

Summarizing, we have shown that the sets rot dG(2,), S(QOA), and
rot G(£,) are equal in the case that A is an H-matrix, and this might
logically be called the essentially diagonally dominant case, the title
of this section,

We have already shown that S(.QOA) is a collection of annuli and
disks concentric about the origin. It is now logical to ask how the
radii of these regions can be determined. For convenience, we will
assume that A is irreducible (cf. [7, p. 20]). The reducible case
requires only minor modifications.

We consider the function v(¢) along the nonnegative real axis
t = 0. Let {t}~, define the finite sequence of points &, >t, > ---
> t,, >0, such that v(¢;) = 0 and v(¢; + €)-v(¢; — €) < 0 for all sufficiently
small ¢ > 0. Then, these points ¢; indicate strong sign changes in
y(t). In [6], it was shown that the spectral radius of A,

P(A) = max {|\; | | det (I — A) = 0},

is such a point, and since it was further shown that v(o(4) + 0) <0
for all 0 >0, it is evidently the largest such point, i.e., t, = 0(4) and
m = 1. We define ¢,,, = 0, and now show that the points ¢; divide
the nonnegative real axis into intervals in which v(¢) = 0.

LEMMA 4. For t = 0, v(t) = 0 if and only if t, <t = ty_, for
some 1 with 1 < ¢ < [(m + 1)/2].

Proof. Since v(t) is continuous for ¢ = 0, it suffices to show that
there is no ¢ > 0, corresponding to a degenerate change of signs, with
v(#r) = 0 such that v(¢r —¢) < 0 and v(¢ + ¢) < 0 for all sufficiently
small ¢ > 0. This assertion is basically a consequence of the assump-
tion that A is irreducible. For, if such a ¢ > 0 exists, then e dG(2,).
Moreover, since |te*® — a;,;| > |t — a;,;| for any ¢ > 0 and any real 6
with 0 < |6| = &, it follows from (2.1) that v(te*®) < v(t) and hence
that v(z) <0 for all complex z = g in a neighborhood of g. Thus, g
is an 1solated point of G(2,). As such, it follows [6] that g is
necessarily a diagonal entry of A4, i.e., ¢t = a;,; for some j. But, since
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A is irreducible, it is known [6] that v(a,,,) > 0 for every 1 < k < n.
This contradiction establishes the desired result.

THEOREM 2. Let A be a nonnegative irreducible n X n matrix,
and let t;, >t > -+« >t, >0 be positive real numbers such that
Y(t) =0 and v(t; + €)-v(t; — ) < 0 for all sufficiently small ¢ > 0.
If m>1 and z is any complex number with |z| = ty,y, then
2€8(Ry) if and only if ty; = |2| < ty_, for some ¢ with 1 <1 < [m/2].

Proof, If 2, is any complex number with |2,| = ¢y, and
s = [2,| £ ¢y, for some 1 < 7 < [m/2], then from Lemma 4, v(|2,|) = 0.
Also, from Lemma 4 it follows that v(jz|) < 0 for any |z| with
toiss <°|z\ < ty. Thus, all points in the disk |z| =< |z,| are not points
of G(2,), and we deduce from Lemma 1 that |z,|e® € 0G(2,) for some
real §. Thus, zerotdG(2,), and thus from Corollary 1, zoeS(QoA),
which proves one part of this result. Conversely, for any z,¢ S(.(jA)
with [2,| = topme, Y(|%]) = 0 from Lemma 3. Then from Lemma 4,
it follows that t,; < |2,| < t,_, for some 7 with 1 < ¢ < [m/2], which
completes the proof.

Using the results of [6], it is now simple to determine the exact
number of eigenvalues of any matrix Be 2, which lie in each of the
outer annuli: t,; < |2| = £y, for 1 =4 = [m/2].

COROLLARY 3. Let A be a nonnegative irreducible n X n matrix
with m > 1, Then, for any Be .(54, B has p; eigenvalues in the
annulus ty; < 2| < tyy, L=1 = [m/2], if and only if A has p;
diagonal entries in this annulus.

Proof. By a familiar continuity argument, going back to Gersch-
gorin, each connected component of S(QOA) contains the same number
of eigenvalues for each Be!jA, and hence, the same number as A,
But from [6], A has p; eigenvalues in this annulus if and only
if A has p, diagonal entries in this annulus, which completes the
proof,

As final remarks in this section, we mention that Theorem 2
precisely gives S(QOA) and the radii of its associated concentric annuli
in the case that m (the number of strong sign changes in y(t) for
t = 0) is even. In this regard, it is interesting to point out that the
geometrical result of Theorem 1 and Corollary 2 is basically contained
in Theorem 2, since it can be obtained by applying Theorem 2 to a
family of nonnegative irreducible matrices A(¢), ¢ = 0, where A(e) — A
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as ¢ | 0, for which m is again even for each A(¢) for all sufficiently
small ¢ >0. We also mention that computing the points ¢; or Theorem
2, whether m is even or odd, is not difficult because of the inclusion
relationships of (2.1).

In the case that m = 2I + 1 is odd, Theorem 2 gives no informa-
tion about the final disk 0 < |z| < ¢,,,, and different techniques are
necessary to decide which points of this disk are points of S(héd).
This will be discussed in § 3.

3. v(0)>0. If 2= 0 is an interior point of G(2,), i.e., ¥(0) > 0,
we can still give a precise characterization of S(Q° ) using the methods
of [3], but these results are considerably more complicated than those
given in §2. We shall show by means of examples in §4 that these
complications cannot, unfortunately, be avoided.

We first give a more or less well known result.
LEMMA 5. Let0=a, =, < --- =, be nonnegative real numbers,

and p an arbitrary complex number. Then, there exist real numbers
O,y ++-,0, such that p = S"_x;e" if and only if

llV
IIV

(3.1) e §=;

Proof. This lemma is precisely Lemma 1 of [1] applied to the
n + 1 nonnegative numbers «, ---, «,, | 0|. However, for completeness,
we give a proof by induction.

Only the fact that (3.1) implies the existence of the 6, is nontrivial,
For w =2, |&, + a,e?®| = /a2 + 2a,@, cos § + a2 Wwhich varies conti-
nuously from «, + «, to a, — @, as 6 varies from 0 to

For n + 1, we distinguish two cases. Consider first the case where
|| = |,y — S|, Then, as in the previous case for n = 2, for
some 6 we can write |p|= |, + €?>ra;|. Otherwise, if
lo| < |, — St a; |, then from (3.1) we deduce that o] < 2ttt — Ay,
which gives us the inequalities

a; .

M

n—1
i=

Thus, from the inductive hypothesis, «,,, + |p|, and hence also p,
have the representations of the desired form.

With this, we now characterize S(f) ) by a set of linear inequalities.
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LEMMA 6. Let o be an arbitrary complex number. Then e S(2 4)
if and only if there exists a monnegative vector x # 0 such that

(3.2) g ;= 0| T = a2, — Zk a;,%;
for each ¢ and k with 1 =1,k < n.
Proof, If oe S(Q 4), there exists a matrix BeQ and a vector

z# 0 with Bz = gz. Taking absolute values and setting |z;| = z;,
we obtain for the ¢-th component

n n
2‘1 0,05 = Z
= =

=|0|®; = a;,%, — Z As,5%5
i7k

for each 1 < k < n, which establishes the first part of this theorem.
Conversely, if (3.2) is satisfied by a nonnegative vector x = 0 for each
tand k,1 <4,k < n, we can repeatedly apply Lemma 5 to find real
constants @,,; such that 0w, = X\j_.a,, ¢ xix; for 1 =k =mn, so that
oe S 4) which completes the proof.

We now remark that the inequalities of (8.2) are equivalent to
the following set of #® linear inequalities

(33 3= Dirage; + (= D[ |o] + (= Dvkan @20,

where 0;, is the Kronecker delta function. For k = ¢, the second
inequality of (3.2) is identical with (3.3). For k = 1, (3.2) yields

Za‘wax ._(IO']——-(IMM)J} = _Zazj i

which is equivalent to

Zazjy |]0'|—‘ai,.;|xi§0.

In order to develop the material of this section, we recall some
definitions and results [3] concerning the minimal Gerschgorin set G¥(2,)
associated with a matrix C relative to the permutation . Let
C = (ci,;) be an arbitrary n X n complex matrix, and let ¢ be any
permutation of the first » positive integers. If ¢ is any complex
number, we can define a continuous real valued function v, (o) by

(3.4) Vool0) = inf max {
u> )

?

[ 5 (= 1o s,

u’qa(t) 37

+ (— 1o g — cm-[ui]} .
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The minimal Gerschgorin set G¥(2,) is given as in (2.2) by
(3.5) G*(Q0) = {0 | Ypol0) = O} .

Equivalently, o e G*(2,) if and only if there exists a nonnegative vector
x # 0 such that

(3.6) ]E#_“‘(— 1)8j’¢(i) lci’j [ xj + ('_' 1)81:’(0(1:) lO' - c’i:‘i I x,,; g 0 y 1 é ’i —é n.

In order to couple the inequalities (3.3) to those of (3.6), let
A? = (a?;) be an n x m matrix derived from A as follows:

37 9 .7& ) . .
3.7) af; = {? y z} l=i,5=mn.

— 1)Fhietiig, ;  J =1

It is clear from Lemma 6 and the definition of A, that aeS(SjA)
implies that |o|e G¥(Q,) for each permutation @. Note that this
result generalizes Lemma 8 of §2 to arbitrary permutation. Hence,
it follows that |¢| c N, G¥(24¢), so that

3.8) S(3,) c rot (n G‘”(.QAw)) .
@
We now show that equality is valid in (3.8).

THEOREM 3. Let A = (a;,;) be a nonnsgative n X n matriz. Then,
S(3,) = rot <n G«’(Qﬂ)> .
(4

Proof. From (3.8), it suffices to show that |o|e M), GY(2,) implies

that IGIGS(EJA). To prove this, we define the sets M, ,.(c]) from
(3.3) by

(3.9) Mool ={xz0

é x;=1; 3 (— 1)%ka,,;;
7=1 77
(= 1%r] ] + (= Lferag| @ = 0} .
By (3.3), |o]e S(QOA) is equivalent to the existence of a vector x with

X € 1<1anMi’k(I al),
and thus we must prove that (V,<i,.z. M;,.(|0|) is nonempty. We shall
show that the hypothesis, |o|e N, G*(2), implies that any n of the
sets M;.(lo|) have a nonempty intersection. Then, the conclusion
will follow from Helly’s Theorem [2, p. 33], which states that if K
15 a family of at least m comvex sets im Euclidean (n — 1)-space,
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R, such that every subclass containing n members has a common
point in R"', there 1s a point common to all members of K. Since
the M;,.(lo|) are convex and of dimension at most (n — 1), this implies
our theorem,

It remains to show that any collection {M; . (o[)};-. has a
nonempty intersection. This is always true if the second subscript k;
fails to take on the integer value k, 1 =<k, < n. For, if y is the
vector with components y,, =1, y; = 0 for j # k,, we see that (3.3)
is satisfled and thus ye M-, M. (lo]). By (3.6) and (3.7), the
condition | o |e G¥(2,) is equivalent to the assertion that M, M, (/o)
is nonempty. Thus, |o|e M, G*(2,) implies that M}, M, (o) is
nonempty whenever k; = @(i;) for some permutation ¢. Finally,
consider a collection {M,).};=, where j(k) is mot one-to-one. In this
case, there is evidently a repeated first index, and for convenience, we
assume that 1= j(1) =4@2) = --+- =4(r), »r = 2. Then let y be any
nonnegative vector with y, + ¥, =1, y; = 0 for 2 < j = n. For such
vectors, it follows from (3.9) that

(3.10) yc Ml,l lf and Only lf Qy1,0Ys — ‘ ‘0-| — Qy,1 | Y. _>—.. 0 ’
(3.10") ye M, if and only if — a,.y. +||0]+ a,. |y, =0,

(3.10”) yec Mj(k);ky k > 2 if and Only if Q)1 Y1 + A jx),2Y2 =0,

Clearly, from (3.10”) all such vectors y are in Nyss M. If a1, > 0,
then the vector y with v, = (|| 0| — a,,. | ¥)/a,. is in M, N M,,, and
if a,, = 0, then the vector y with y, = 1y, = 0isin M,,, N M,,. Thus,
N;-. M, is nonempty, and we conclude that any collection of =
sets M;,; has a nonempty intersection, which completes the proof.

We can further show that, if ¢ ¢ S(.éA), then as in [1] there is
a unique permutation ¢ such that |o| ¢ G*(24). This will permit us
to oshow that at most (n + 1) permutations are necessary to characterize
S(2,) in Theorem 3.

THEOREM 4. If o ¢ S(QOA), then there exists a unique permutation
@ such that |o| ¢ G*(249).

Proof. If o ¢ S(!Z), then, by Theorem 3, there is at least one
permutation @ with |o| ¢ G*(2,). Thus, if |o| ¢ G¥(2,v), we must
show that « = ¢, i.e., ¥(t) = p(i) for 1 =1 = n.

To prove this, we introduce the sets

Ni;k = {x%()

S =15 5 (— D)% ka0,
(3.11) = 7
(= Dl 0] + (= Doraie | < 0}
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with 1 =14,k <n. Clearly, N;, is the complement of M, (| o |) relative
to the (n — 1)-simplex S = {x =2 0| >3-, «; = 1}. It is also clear that
N, is empty if and only if a;, =0 whent # k, and ||d]| — a;,;| =0
when ¢ =k, and N,, does not intersect the face of the simplex S
defined by z, = 0. Further, it is readily verified that N, ,N N, is
empty if k= k.

If |o] ¢ G*(R,0), it follows from (3.6) and (3.7) that S = N1 Nipi-
On the other hand, |o| ¢ G?(2,¢) implies from (8.5) that v, (/o |) <0,
and hence, from the definition of (3.4), there must exist (by continuity)
a positive vector u > 0 with ue N;,,,; for all 1 =7 =< n, ie., if u is
normalized, then ue M, N, ;. Similarly, |o| ¢ G¥(2,») implies that
S = ﬂLl YP(i)e

Now, let I={j|v(j) = ¢(j), 1 =7 = n}. Assuming that ¢ # o,
then I is a proper subset of the first » positive integers. From the
vector u > 0 above, form the vector ve S as follows: v,; = 0,5¢€l;
Voiiy = i)y U] (Sjer Uoipy), 7 € I. Since ue N, for all 1 =1 =n,
it is easy to verify that veN,,;, for any 4¢I, and thus
ve MNier Niyiy. Furthermore, ve Uier Niywy since the union of the
Ny ;5 covers the simplex S, and N, does not intersect the face
Vo =0 for je I, Thus, there is a k¢ I such that ve N, v N Nepw-
But since N;,. N N,,,. is empty if k = k', then it follows that (k) = p(k),
i.e., kel, which contradicts the assumption that I is a proper subset
of the first n positive integers. Hence, @(7) = (1) for all 1 <7 = =,
which completes the proof.

We remark that the special case ¢ = 0 of Theorems 3 and 4
corresponds to the main results of [1].

Letting R’ denote the complement of any set R in the complex
plane, then Theorem 4 implies:

COROLLARY 4, If K 1is am open comnected component of (S([jd))',

the complement of S(2,), then there is a unique permutation + for
which KC (G¥(Qw)).

Proof. Since N, G“’(.QAW)CS(QOA) by Theorem 3, then obviously
SR c(N, G (249) = U, (G*(24))'. Next, we remark that if |o|
were replaced by ¢ in the definition of N;, in (3.11), all subsequent
arguments remain valid. In particular, from the proof of Theorem 4,
it follows that the (G¥(2,))’ are mnonmintersecting open sets. Thus,
the open connected component K can be in only one set (G¥(2,%)),
which completes the proof. We remark that in general K = (G¥(2,))
becabuse of the rotational invariance of any connected component of
(S(2))".

We now consider the closed connected components of S(QOA).
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THEOREM 5. Ewvery conmnected component of S(QOA) contains the
same number of eigemvalues for each matriz B in 2.

Proof, This is basically a continuity argument. For, given any
matrix Be QOA, we can construct a matrix B(t) € .(}4 whose entries are
continuous functions of ¢,0 < ¢ < 1, such that B(0) = A and B(l) = B.
Since the eigenvalues of B(f) then vary continuously with ¢, each
matrix Be !34 must have the same number of eigenvalues as A in each
connected component of S(QQA), which completes the proof.

Theorem 3 states that S(.(jA) can be determined from the n! sets
G*(2,). The next result shows that at most (n -+ 1) permutations
are necessary for the determination of S(.QOA).

THEOREM 6. There exist permutations @, @, =+, @, withr <n+ 1
such that S(3,) = rot (Miz G7:(2ee1).

Proof. Since the matrix A has n eigenvalues, then S(.(j_,_t) can
have at most % closed connected components by Theorem 6. Because
each closed connected component of S (.(5 ) is either a (possibly degenerate)
disk or an annulus centered at the origin, then it is clear that the
complement of S(QQA) consists of at most (n + 1) similar regions. By
Corollary 3, exactly one permutation corresponds to each open connected
component of (S(Qc ), and thus at most (n 4+ 1) permutations are

°

necessary to describe S(2,).

We remark that, since (S(Qc )’ always contains the unbounded
connected component {z||z| > p(A)}, the identity permutation must
always occur as one of the » permutations of Theorem 6. This follows
from the fact [3] that G¥(2,¢) is a bounded set only for the identity
permutation. Of course, if A is essentially diagonally dominant, then
r =1 from Theorem 1. We now remark that the results of Theorem
2 and Corollary 3 can be used to obtain an improved upper bound for
r. For, if ¢, is, as in Theorem 2, the smallest positive number such
that v(t,) = 0, then by Corollary 3, the number of eigenvalues ¢ for
each Be QOA with |o| = ¢, is equal to the number, k, of diagonal entries
a;; of A with a;,; = t,, and clearly k = |m/2]. Thus, by the same
argument as above,

r<n+1-—1Fk.

In §4, we give an example of a 3 x 3 matrix for which 3 permu-
tations are required to determine S(.QZ). In general, examples can
similarly be given where n permutations are required for the # x n
case, and we conjecture that the result of Theorem 6 is valid with
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n + 1 reduced to n.

To actually calculate S(2,) in the general case, it is necessary
from Corollary 4 to work with the complements of the sets G¥(Q,0),
i.e., to determine those intervals of the positive real axis (¢t = 0) for
which v,,.(t) <0 for some permutation . However, it is in general
not easy to determine a priori which (< » + 1) of the n! permutations
suffice to characterize S(.(L) in Theorem 6. For this reason, the
analogue of Theorem 2 which could be stated for the general case
seems computationally unattractive.

4. Examples. To illustrate the results of §2, consider the
following diagonally dominant matrix A:

1 12 0
“.1) A=|12 3 1/2
0 12 5

For this matrix, the minimal Gerschgorin set G(2,) is given by
42 GR)={z:4|z—1]-|z—3|-|z—5|=|z—5|+|z—1]}.

From this, it can be verified that the intervals of the nonnegative
real axis for which v(f) = 0 are given by

4.3) 088 <t=114; 275 <t = 3.25; 4.86 <t < 5.12.

From Theorem 2, S(.(SA) then consists of three concentric annuli, and
from Corollary 3, each Be QOA has exactly one eigenvalue in each
annulus,

To illustrate the results of §3, consider the matrix A(¢) where

e 1 0
“.9) Ae) = l>0 e 11,
l_l 2 ¢

and ¢ = 0. Note that A(0) is the companion matrix for the polynomial
2® — 2x — 1. It is not difficult to show that at most three permuta-

tions', @, = I, p, = (23), ¢; = (123), are necessary to describe S(f?m)),
ie., G?(24.¥) is the entire complex plane for all other permutations for
every € = 0. Thus, from Theorem 3, S(!Lm) is determined by the
sets G¥(24¢), which turn out to be

(4.5) G Qyee) ={0:1+2]0—¢|—|o—¢c=0}
={o:]oc—¢| = 1.62},

1 Here, we are describing permutations by their disjoint cycles.
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48 G2Quew) ={o:1—2]|0—¢|—[o—c¢l-[o+el=0},

.7 G(Q400s) ={0: —1+2|c+¢|+|o+ef=0}
={o:]|o+ e| = 0.45}.

The basic reason for considering such an example is that, for
suitable choices of ¢, the actual number » of permutations in Theorem

6 which are necessary to describe S(.Qo ) can be made to vary from one
to three. More precisely, for 0 < ¢ < 0.045, » = 3; for 0.045 < ¢ < 0.45,
r=2; and for 0.45 < e, » = 1. The first two cases are illustrated in
Figures 1 and 2.

R, —

AR

Fic. 1
e=0; Ry =045, R =0.62, R; =1.00, R, = 1.62

=
—R‘)//

FiG. 2
e = 0.05; Ry =0.40, R; = 1.67
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This last example serves to answer some questions which might
naturally arise in reading the previous sections. First, it shows that
7 x 7 matrices A exist for which at least # permutations ¢ are
necessary to determine S(.QOA). On the other hand, it shows that it is
not necessary for A to be essentially diagonally dominant in order that
S(QZ) coincide with rot G(2,) (cf. Theorem 1), since choosing ¢ = 0.5 in
(4.4) gives this condition. Finally, it demonstrates that, in general,
it is mot possible to find a single matrix Be @, for which S(2,) is
rot S(2;). This fact follows quite easily from the last example with
¢ = 0.05, in particular.
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