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ON A PROBLEM OF 0. TAUSSKY

BERNARD W. LEVINGER AND RICHARD S. VARGA

Recently, 0. Taussky raised the following question. Given
o

a nonnegative n X n matrix A = (aifj)f let ΩA be the set of
all n x n complex matrices defined by
(1.1) ΩΛ = {B = (bi,j)\\bi,j\=ai,j for all 1 ύ i, j ^ n} .

Then, defining the spectrum S(Wl) of an arbitrary set Wl of
n X n matrices B as

(1.2) S(Ίfl) == {a I det {pi - B) = 0 for some

what can be said in particular about S(ΩΛ)1 It is not difficult
to see that S(ΩA) consists of possibly one disk and a series of
annular regions concentric about the origin, but our main
result is a precise characterization of S(ΩA) in terms of the
minimal Gerschgorin sets for A.

Introduct ion* We shall distinguish between two cases. If there is
a diagonal matrix D — diag (xu , xn) with x ^ 0 and x Φ 0 such t h a t AD
is diagonally dominant, then A is called essentially diagonally dominant.
In this case, the set S(ΩΛ) is just the minimal Gerschgorin set G(ΩΛ) of
[6], rotated about the origin (Theorem 1 and Corollary 2). Determining

o

S(ΩΛ) in this case is quite easy, since it suffices to determine those
points of the boundary of G(ΩA) which lie on the positive real axis
(Theorem 2). This is discussed in § 2.

In the general case when A is not essentially diagonally dominant,
we must use permutations and intersections (Theorem 3) to fully

o

describe S(ΩΛ), in the spirit of [3]. These results are described in § 3.
Also in this section is a generalization (Theorems 3 and 4) of a recent
interesting result by Camion and Hoffman [1]. Our proof of this
generalization differs from that of [1].

Finally, in §4 we give several examples to illustrate the various
o

possibilities for S(ΩΛ).
Before leaving this section, we point out that the question posed

by 0. Taussky [5, p. 129] has an immediate answer in terms of the
results of [3]. In [3], the authors completely characterized the spectrum
S(Ωσ) of a related set Ωo of matrices, where C = (citj) was an arbitrary
n x 7i complex matrix and
(1.3) Ωo = {B = (bUj) I I btj - I citj I and hi>3 = cifj for all ISiJ^n).

Clearly, ΩΛ c ΩA. On the other hand, if D(θ) represents an n x n
diagonal matrix all of whose diagonal entries have modulus unity:
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dj,j = exp (iθ3), l^jSn, then AD(Θ) c ΩΛ and ΩΛ = \JθΩΛD{θh where
the union is over all possible choices of D(θ). Thus,

(1-4) S(ΩA) = U S(ΩΛmθ)) .

While this answers the question posed, it neither gives an insight into

the nature of S(ΩΛ), nor allows S(ΩΛ) to be effectively calculated.
o

We shall show that in fact S(ΩΛ) is more easily determined than S(ΩΛ).

2 The essentially diagonally dominant case* Let A = (aitj)
be given n x n nonnegative matrix. In order to develop the material
of this section, we recall some definitions and results concerning the
minimal Gerschgorin set G(ΩΛ) associated with A. In [3, 6], a con-
tinuous real-valued function v(σ), defined for all complex numbers σ,
was characterized by

(2.1) v(σ) == inf max \ Y, aUjuά — | σ — aiti \ uλ \ .
M>0 i I Ui Lj^i A)

Using the Perron-Frobenius theory of nonnegative matrices [7, §2.4
and §8.2], it can be shown that there exists a nonnegative vector
Λ: Φ 0 such that

(2.1') — I σ - a i f i \ %{ + Σ <*>%>& i = v ( ° ) x i , l ^ i ^ n .

From v{σ), G(ΩΛ) is defined by

(2.2) G(ΩΛ) = {σ I v(σ) ^ 0} .

In view of (2.1') and (2.2), a complex number σ is contained in G(ΩΛ)
if and only if there is a nonnegative vector x Φ 0 such that

(2.3) [ σ — aUi \ xi ^ J] aitjXj, 1 ^ i S n .

The set G(J24) is a closed bounded set, and its boundary, denoted by
, satisfies,

(2.4) dG(ΩΛ) c S(ΩΛ) c G(ΩΛ) .

We first prove a result concerning G(ί24) which will have later
applications.

LEMMA 1. //, for zQ > 0, zQeiθeG(ΩΛ) for all real θ, then all z
with \z\ ^ zQ are in G(ΩA)1 and z=0 is an interior point of G(ΩΛ).

Proof. This is a simple application of (2.3). By assumption,
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- zQ e G(ΩΛ). Since z0 > 0 and aifi ^ 0, 1 ^ ί ^ w, then

Thus, for any z with \z\^z09

and (2.3) holds for z with the same vector x ^ 0 which satisfies (2.3)
for — z0, which completes the proof.

We next introduce the notion of rotating a given point set P about
the origin. Let

(2.5) rot P = {σ | σeiθ e P for some real θ) .

With this notation, we have

LEMMA 2. rot S(ΩΛ) = S(ΩΛ).

Proof. It is clear that S(ΩΛ) c rot S(ΩΛ). If σeτotS(ΩΛ), then

σeiθ is an eigenvalue of some B in ΩΛ and thus σ is an eigenvalue of

e~iθB. But fiθBeΩA and hence σeS(ΩΛ), which completes the proof.

This elementary result already establishes that the spectrum S(ΩΛ)
can be described as the union of a family of circles concentric about
the origin.

L E M M A 3. If σe S ( i 5 j , then \σ\e G(ΩΛ).

Proof. For any σe S(ΩΛ), there is a matrix B = (bitj) in ΩΛ and
a vector y Φ 0 such that 2?# = σ#. Equivalently, we have

(2.6) (σ — bi,i)yi = Σ ^UJVJΊ 1 ^ i ^ n .

If we take absolute values in (2,6) and note that

ί σ - bi9i I ̂  I I σ I - | 6 ί f ί | | = | | σ | - aifi | ,

w e o b t a i n

(2.7) I \σ\ - α < t i | | ^ | ^ | σ - 6 ί f i | 1^1 = ί Σ δ ^ i I ^ Σ ^ , i I ̂  I ,
• ^ i

so that I σ \ satisfies (2.3) with the nonnegative vector x = \y\, which
completes the proof.

From the definition (2.5), it follows that, if P and R are any sets
with PdR, then rot P e r o t s . Thus, (2.4) and Lemma 3 combine to
give

COROLLARY 1. rot dG(ΩΛ) c S(ΩΛ) c rot G(ΩΛ).
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We now study the case for which the inclusions of Corollary 1
become equalities.

THEOREM 1. Let A be a nonnegatίve n x n matrix. Then,
o

rot dG(ΩΛ) = S(ΩΛ) = rot G(ΩΛ) if and only ifz^O is not an interior
point of G(ΩΛ).

Proof. First, assume that z = 0 g int G(ΩA), and let σ be an
arbitrary nonzero point of rot(?(ί?J, so that σeiθ°eG(ΩΛ) for some real
ΘQ. The circle | z \ — \ σ | cannot lie entirely in G(ΩΛ). For otherwise,
by Lemma 1, the entire disk \z\ ^ \σ\ would be contained in G,(ΩΛ)
and z = 0 would be an interior point of G(ΩA). Thus, the circle
\z\ = \σ\ necessarily intersects the boundary dG(ΩΛ), and there exists
a real θx such that σeiθle dG(ΩΛ). It follows that σeτotdG(ΩA), and
thus from Corollary 1, σ is also a point of S(ΩΛ). To complete this
part of the proof, we need only examine the point z = 0. Clearly,
the statement that 0 £ int G(ΩΛ) is equivalent to the statement that
either 0eG'(flJ, the complement of G(ΩΛ), or 0edG(ΩΛ). Thus, if
0eτotG(ΩΛ), i.e., 0eG(ΩΛ), then the previous remark shows that
0edG(ΩΛ), which completes the proof of the first part. Now, assume
that mtdG(ΩΛ) = S(ΩΛ) = rot G(ΩΛ), and call this common set of points
H. If Oei ϊ , then 0edG(ΩΛ), and hence 0 g int G ( ^ ) . If 0 g if,
then 0 g G(£J, which implies that Oe G'(βJ, and again 0 g intG(flκ),
which completes the proof.

The statement z = 0 g int G(ί2J can be seen to be equivalent to
y(0) ^ 0, and this has an interesting connection with diagonally
dominant matrices, i.e., n x n matrices B = (6,-̂ ) satisfying

(2.8) I 6 i f l I ^ Σ I b<,, I , 1 ^ i ^ w .

Obviously, if y(0) ^ 0, then from (2.1'), there is a nonnegative vector
y Φ 0 such that

(2.9) αίf<3/t. ^ Σ α i f^y , 1 ^ i ^ w .

Thus, if Z) is the diagonal matrix D = diag (yu . , yn), then (2.9)
asserts that the product AD is diagonally dominant. Conversely, if
D — diag (yu . , $/n) where y ^ 0 and ί/ ^ 0 and AZ> is diagonally
dominant, then it follows from (2.3) that v(0) ^ 0.

The statement that v(0) ^ 0 can also be coupled with results of
Ostrowski [4] on H-matrices, which are defined as follows. Let
B ~ Φi,i) be an arbitrary n x n complex matrix, and associate with
B the new matrix C — (citί), where citj = — | bitj |, i Φ j , and

citi = I biti \ , 1 ^ ί ^ n .
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Then, B is an ίf-matrix if and only if all the principal minors of C
are nonnegative. [That is, the matrix C is a possibly degenerate
M-matrix.] In [4], it is shown that B is an iϊ-matrix if and only if
there exists a diagonal matrix D = diag (yu ---,yn) with y ^ 0, y Φ 0,
such that BD is diagonally dominant. Thus we have

COROLLARY 2. Let A be a nonnegative n x n matrix. Then,
0

rot dG(ΩΛ) = S(ΩΛ) = rot G(ΩΛ) if and only if A is an H-matrix.

Summarizing, we have shown that the sets rot dG(ΩΛ), S(ΩΛ), and
rot G(ΩΛ) are equal in the case that A is an iϊ-matrix, and this might
logically be called the essentially diagonally dominant case, the title
of this section.

We have already shown that S(ΩΛ) is a collection of annuli and
disks concentric about the origin. It is now logical to ask how the
radii of these regions can be determined. For convenience, we will
assume that A is irreducible (cf. [7, p. 20]). The reducible case
requires only minor modifications.

We consider the function v(t) along the nonnegative real axis
t ^ 0. Let {t^™=1 define the finite sequence of points tL > t2 >
> tm > 0, such that v(tt) = 0 and v{U + ε).y(^ — ε) < 0 for all sufficiently
small ε > 0. Then, these points tt indicate strong sign changes in
i>(£). In [6], it was shown that the spectral radius of A,

ρ(A) = max {| \ \ | det (Xj — A) = 0} ,
i

is such a point, and since it was further shown that v(p(A) + δ) < 0
for all 3 > 0, it is evidently the largest such point, i.e., tx = p(A) and
m ^ 1. We define tm+1 — 0, and now show that the points ti divide
the nonnegative real axis into intervals in which v(t) ^ 0.

LEMMA 4. For t ^ 0, v(t) ^ 0 if and only if t2i ^ t ^ ί2i-1 for
some i with l ^ i ^ [(m + l)/2].

Proof. Since v(t) is continuous for t ^ 0, it suffices to show that
there is no μ > 0, corresponding to a degenerate change of signs, with
v(μ) = 0 such that v(μ — ε) < 0 and v(μ + ε) < 0 for all sufficiently
small ε > 0. This assertion is basically a consequence of the assump-
tion that A is irreducible. For, if such a μ > 0 exists, then μ e dG(ΩΛ).
Moreover, since | teiθ — aiti \ > \ t — aiti \ for any ί > 0 and any real θ
with 0 < I θ I ̂  7Γ, it follows from (2.1) that y(ίβίθ) < y(ί) and hence
that v(z) < 0 for all complex z Φ μ in a neighborhood of μ. Thus, μ
is an isolated point of G(ί2χ). As such, it follows [6] that μ is
necessarily a diagonal entry of A, i.e., μ — ahύ for some^. But, since
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A is irreducible, it is known [6] that v{aktk) > 0 for every 1 ̂  k ̂  n.
This contradiction establishes the desired result.

THEOREM 2. Let A be a nonnegative irreducible n x n matrix,
and let tx > t2 > > tm > 0 be positive real numbers such that
v(ti) = 0 and v(ti + ε) v{U — ε) < 0 for all sufficiently small ε > 0.
// m > 1 and z is any complex number with \z\ ̂  t2ίmj2h then
z e S(ΩΛ) if and only if t2i ^ \z\ ̂  ί2ί-1 /or some i with 1 5g i ^ [m/2].

Proof. If 20 is any complex number with 1201 ̂  [̂m/2]
^ί ^ I ô I ̂  £2t-i for some 1 ̂  i ^ [m/2], then from Lemma 4, v(| 201) ̂  0.
Also, from Lemma 4 it follows t h a t v(| z \) < 0 for any | « | with
tii+i < I 2 I < t2i. Thus, all points in the disk \z\ ̂  \zo\ are not points

0

of G(ΩΛ), and we deduce from Lemma 1 that \zo\ e
ίθ e dG(ΩΛ) for some

real θ. Thus, z0erotdG(ΩJ, and thus from Corollary 1, zoeS(ΩA),
o

which proves one part of this result. Conversely, for any zoeS(ΩA)
with |2;01 ^ £2[m/2], y(l ô I) = 0 from Lemma 3. Then from Lemma 4,
it follows that t2i ^ \zo\ ^ £2i-i for some i with l g i ^ [^/2], which
completes the proof.

Using the results of [6], it is now simple to determine the exact

number of eigenvalues of any matrix Be ΩΛ which lie in each of the

outer annuli: tH ^ | z \ ̂  tu_λ for 1 ̂  i g [m/2].

COROLLARY 3. Let A be a nonnegative irreducible n x n matrix
o

with m > 1. Then, for any B e ΩΛi B has Pi eigenvalues in the
annulus tu ^ | z \ ̂  t2i_u 1 ̂  i ^ [m/2], i/ and onϊ?/ ί/ ^ has p{

diagonal entries in this annulus.

Proof. By a familiar continuity argument, going back to Gersch-
gorin, each connected component of S(ΩΛ) contains the same number
of eigenvalues for each B e ΩΛ, and hence, the same number as A.
But from [6], A has pt eigenvalues in this annulus if and only
if A has Pi diagonal entries in this annulus, which completes the
proof.

As final remarks in this section, we mention that Theorem 2
precisely gives S(ΩΛ) and the radii of its associated concentric annuli
in the case that m (the number of strong sign changes in v(t) for
t ^ 0) is even. In this regard, it is interesting to point out that the
geometrical result of Theorem 1 and Corollary 2 is basically contained
in Theorem 2, since it can be obtained by applying Theorem 2 to a
family of nonnegative irreducible matrices A(e), ε ̂  0, where A(ε)—> A
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as a I 0, for which m is again even for each A(e) for all sufficiently
small e > 0. We also mention that computing the points ^ or Theorem
2, whether m is even or odd, is not difficult because of the inclusion
relationships of (2.1).

Im the case that m = 21 + 1 is odd, Theorem 2 gives no informa-
tion about the final disk 0 ^ | z \ S t2l+1, and different techniques are

o

necessary to decide which points of this disk are points of S(ΩΛ).
This will be discussed in § 3.

3* v(0) > 0. If z = 0 is an interior point of G(ΩΛ), i.e., v(0) > 0,
o

we can still give a precise characterization of S(ΩΛ) using the methods
of [3], but these results are considerably more complicated than those
given in §2. We shall show by means of examples in §4 that these
complications cannot, unfortunately, be avoided.

We first give a more or less well known result.

LEMMA 5. Let 0 ^ αx ^ α2 ^ ^ αn be nonnegαtive real numbers,
and p an arbitrary complex number. Then, there exist real numbers

n n—1

(3.1) δ α ' - IH^^-Σtf

Proof. This lemma is precisely Lemma 1 of [1] applied to the
τι + 1 nonnegative numbers al9 , an, \ρ\. However, for completeness,
we give a proof by induction.

Only the fact that (3.1) implies the existence of the θ5 is nontrivial.

For n = 2, \a% + a,eie | = i/~a\ + 2a,a2cosTfl + a\ which varies conti-

nuously from a2 + a1 to a2 — aγ as θ varies from 0 to π.

For n + 1, we distinguish two cases. Consider first the case where
I p\ i£ I #»+i — Σi=iai l Then, as in the previous case for n = 2, for
some 0 we can write \p\ = \<xn+J + eiθ J%=i&iU Otherwise, if

p I < I αn + 1 - Σil=i<Xi I, then from (3.1) we deduce that | p \ < Σ?=iα« — α*+i>
which gives us the inequalities

an-
nχiai^an^\p\ + an+1 £ ±a{ .

Thus, from the inductive hypothesis, an+1+ ρ\, and hence also p,
have the representations of the desired form.

With this, we now characterize S(ΩΛ) by a set of linear inequalities.
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LEMMA 6. Let σ be an arbitrary complex number. Then σ e S(ΩΛ)
if and only if there exists a nonnegative vector x Φ 0 such that

(3.2) Σ
3=1

^ aiikxk -

for each i and k with 1 ^ i, k ^ n.

Proof. If σe S(ΩΛ), there exists a matrix Be ΩΛ and a vector
i b l dz Φ 0 with Bz = σz. Taking absolute values and setting

we obtain for the i-th component
— x j 9

Σ a^Xi ^ i^ ai}kxk -

for each 1 ^ k ^ n, which establishes the first part of this theorem.
Conversely, if (3.2) is satisfied by a nonnegative vector x Φ 0 for each
i and k, 1 <̂  i1 k ^ ^, we can repeatedly apply Lemma 5 to find real
constants θk>j such that σxk = Σi=iα*»ie<β*fia?i ^ o r ^ = ^ = >̂ s o ^ a ^

o

σeS(ΩΛ), which completes the proof.
We now remark that the inequalities of (3.2) are equivalent to

the following set of n2 linear inequalities

(3.3) ( I σ \ + ( - l)8* *α i f i | x, ^ 0 ,

1 ^ if k ^ n ,

where δitk is the Kronecker delta function. For k Φ i, the second
inequality of (3.2) is identical with (3.3). For k = ΐ, (3.2) yields

Σ α ί ,Λ ^ (I ̂  I — α;>;)^ ^ — Σ αί>Λ >

which is equivalent to

Σ — I <71 — aiti I Xi ^ 0

In order to develop the material of this section, we recall some
definitions and results [3] concerning the minimal Gerschgorin set Gφ(Ωσ)
associated with a matrix C relative to the permutation φ. Let
C — (citj) be an arbitrary n x n complex matrix, and let φ be any
permutation of the first n positive integers. If σ is any complex
number, we can define a continuous real valued function vφ,0(σ) by

(3.4) vφt0(σ) = inf max
u>0 i

citj uj

σ -
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The minimal Gerschgorin set Gφ{Ω0) is given as in (2.2) by

(3.5) G*(Ωσ) = {σ I vφ,a(σ) έ 0} .

Equrvalently, σ e Gφ(Ω0) if and only if there exists a nonnegative vector
x Φ 0 such that

(3.6) Σ ( - l)*'>(i) I citί I Xj + ( - l)*i><pw I σ - c i f i | α< ̂  0 , 1 ^ i ^ % .

In order to couple the inequalities (3.3) to those of (3.6), let
Aφ ~ « j ) be an n x w matrix derived from A as follows:

It is clear from Lemma 6 and the definition of Aφ that σ e
implies that | σ | e Gφ(ΩΛv) for βαcΛ permutation ς?. Note that this
result generalizes Lemma 3 of §2 to arbitrary permutation. Hence,
it follows that | σ | c f)φ Gφ(ΩΛ<p), so that

(3.8)

We now show that equality is valid in (3.8).

THEOREM 3. Let A = (aitj) be a nonnegative n x n matrix. Then,

S(ΩΛ) - rot (Π G*(ΩΛ<»)) .

Proof. F r o m (3.8), i t suffices t o s h o w t h a t \σ\eΓ\φG
φ(Ωdφ) implies

0

that I σ 16 S(Qd). To prove this, we define the sets MUk(\ a |) from
(3.3) by

(3.9) Milk{\ σ I) = \x 0 x3- = 1 X ( -

{ ^ θ} .
o

By (3.3), I σ | 6 S(β^) is equivalent to the existence of a vector Λ: with

xe Π MiΛ{\σ\),

and thus we must prove that Γϊi^i^n Mitk(\ σ |) is nonempty. We shall
show that the hypothesis, \σ\ef\φ GΨ{ΩA<P)1 implies that any n of the
sets AfίfJfc(|σ|) have a nonempty intersection. Then, the conclusion
will follow from Helly's Theorem [2, p. 33], which states that if K
is a family of at least n convex sets in Euclidean (n — l)-space,
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Rn~\ such that every subclass containing n members has a common
point in 22*"1, there is a point common to all members of K. Since
the Mitk(\ σ |) are convex and of dimension at most (n — 1), this implies
our theorem.

It remains to show that any collection {Mijtkj(\ σ \)}n

j=1 has a
nonempty intersection. This is always true if the second subscript k5

fails to take on the integer value kQ, 1 ̂  k0 S n. For, if y is the
vector with components yko = 1, yά = 0 for j Φ k0, we see that (3.3)
is satisfied and thus ye Πl=iMirkj(\ σ |). By (3.6) and (3.7), the
condition | σ \ e Gφ{ΩΛφ) is equivalent to the assertion that f)φ Mitφ[i)(\ σ |)
is nonempty. Thus, | σ \ e Γ\φ Gφ(ΩΛφ) implies that Γ\%i Mirkj{\ σ |) is
nonempty whenever kό = φ(i3) for some permutation φ. Finally,
consider a collection {Mj{k),k}ΐ=1 where j(k) is not one-to-oήe. In this
case, there is evidently a repeated first index, and for convenience, we
assume that 1 = j(T) — j(2) = = j(r), r ^ 2. Then let y be any
nonnegative vector with 7/1 + 2/2 = 1, 2/y = 0 for 2 < j ^ n. For such
vectors, it follows from (3.9) that

(3.10) yeM1}1 if and only if a1Λy2 - | | σ | - α l f l | y1 ^ 0 ,

(3.10') yeMU2 if and only if - altiy2 +\\σ\ + α l f l | yx ^ 0 ,

(3.10") yeMj{k)tkj k > 2 if and only if aj{k)Λyx + αi(fc),22/2 ^ 0 .

Clearly, from (3.10") all such vectors y are in Γ\k>zMj{k),k. If α1>2 > 0,
then the vector y with y2 = (| | α | — α l f l | i/OM^ is in Λfjfl Π M1Λ, and
if α1>2 = 0, then the vector y with y2 — 1 y1 — 0 is in Λf1}1 Π Aflt2. Thus,
ΠLi^jfe),* is nonempty, and we conclude that any collection of n
sets Mitj has a nonempty intersection, which completes the proof.

o

We can further show that, if σ g S(ί2J, then as in [1] there is
a unique permutation φ such that | σ \ g Gφ{ΩA<p). This will permit us
to show that at most (n + 1) permutations are necessary to characterize
S(ΩΛ) in Theorem 3.

o

THEOREM 4. Ifσί S(ΩΛ), then there exists a unique permutation
φ such that I a \ g Gφ(ΩAφ).

Proof. If σ g S(ί3J, then, by Theorem 3, there is at least one
permutation φ with | σ | g Gφ(ΩΛv). Thus, if | σ | g G^(ΩΛψ), we must
show that α/r = φ, i.e., α/r(i) = <p(ί) for 1 g i ^ n.

To prove this, we introduce the sets

Ni9h = j x ̂  0
(3.11) l
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with 1 S i, k ^ n. Clearly, Nitk is the complement of Mitk(\ σ |) relative
to the (n — l)-simplex S = {x ^ 0 | Σ * β l x5 = 1}. It is also clear that
JVilib is empty if and only if aitk = 0 when i Φ k, and | | σ \ — aiti | = 0
when i = k, and Λ/^ does not intersect the face of the simplex S
defined by xk = 0. Further, it is readily verified that Nitk Π Ni9k, is
empty if k Φ k\

lf\σ\ g Gφ(ΩΛή, it follows from (3.6) and (3.7) that S = ΠUNi>φ{i).
On the other hand, \σ\ $ Gφ(ΩΛv) implies from (3.5) that vφ,Λ<p(\ σ \) < 0,
and hence, from the definition of (3.4), there must exist (by continuity)
a positive vector u > 0 with ue Nitφa) for all 1 g ί <Ξ n, i.e., if u is
normalized, then w e Π L i ^ w . Similarly, | σ | g G*(ΩAΨ) implies that

Now, let / = {j I α/r(̂ ) = 9>(i), 1 ^ i ^ ^}. Assuming that ψ Φ φ,
then I is a proper subset of the first n positive integers. From the
vector u> 0 above, form the vector veS as follows: vφU) — O,jel;
vφίj) — uφUh ^ ( i )/(Σy0r Uφ(3 )), j $ I. Since ueNi,φ{i) for all 1 S i ^ n,
it is easy to verify that v e Ni>φ{i) for any i ί J, and thus
ue flier<Wί.p«> Furthermore, ι ? e U i ί / ^ ( i ) since the union of the
^W(i) covers the simplex S, and Nj,ψ{j) does not intersect the face
ΊW = 0 ΐorjel. Thus, there is a kg I such that ve Nkfψ(k)ΠNktφ(k}.
But since Niίkf)Nitk, is empty if & ̂  fc', then it follows that ψ>(fc) = Φ(&),
i.e., feel, which contradicts the assumption that J is a proper subset
of the first n positive integers. Hence, φ(i) = ψ(i) for all 1 S i ^ n,
which completes the proof.

We remark that the special case σ = 0 of Theorems 3 and 4
corresponds to the main results of [1],

Letting Rf denote the complement of any set R in the complex
plane, then Theorem 4 implies:

COROLLARY 4. If K is an open connected component of (S(ΩΛ))',
the complement of £(42^), then there is a unique permutation ψ for
which Kc(G*(ΩΛir))'.

Proof. Since f\φ Gφ(ΩΛ<f) c S(ΩΛ) by Theorem 3, then obviously
(S(ΩΛ)Yc.(Γ)φG

φ(ΩΛφ)y = \JAGφ(ΩΛ<p)y. N e x t , w e r e m a r k t h a t i f \σ\
were replaced by σ in the definition of Nitk in (3.11), all subsequent
arguments remain valid. In particular, from the proof of Theorem 4,
it follows that the (Gφ(ΩΛ<p))' are nonintersecting open sets. Thus,
the open connected component K can be in only one set (Gf(ΩAΨ))',
which completes the proof. We remark that in general K Φ {G*(ΩAψ))r

because of the rotational invariance of any connected component of
(S(ΩΛ)Y.

We now consider the closed connected components of S(Ωj).
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o

THEOREM 5. Every connected component of S(ΩΛ) contains the

same number of eigenvalues for each matrix B in ΩΛ.

Proof. This is basically a continuity argument. For, given any

matrix B e ΩΛ, we can construct a matrix B(t) e ΩA whose entries are

continuous functions of t, 0 <; t g 1, such that B(0) = A and B(ΐ) = B.

Since the eigenvalues of B(t) then vary continuously with ί, each

matrix BeΩΛ must have the same number of eigenvalues as A in each

connected component of S(ΩΛ), which completes the proof.

Theorem 3 states that S(ΩΛ) can be determined from the n\ sets
GφψAφ). The next result shows that at most (n + 1) permutations
are necessary for the determination of S(ΩΛ).

THEOREM 6. There exist permutations φu φ2, ,φr with r S n + 1

such that S(ΩΛ) = rot (f|I=i Gφi{ΩΛvi)).

o

Proof. Since the matrix A has n eigenvalues, then S(ΩΛ) can

have at most n closed connected components by Theorem 6. Because

each closed connected component of S(ΩΔ) is either a (possibly degenerate)

disk or an annulus centered at the origin, then it is clear that the

complement of S(ΩΛ) consists of at most (n + 1) similar regions. By

Corollary 3, exactly one permutation corresponds to each open connected

component of (S(ΩΛ)), and thus at most (n + 1) permutations are

necessary to describe S(ΩΛ).
We remark that, since (S(ΩΛ)y always contains the unbounded

connected component {z | | z | > p(A)}, the identity permutation must
always occur as one of the r permutations of Theorem 6. This follows
from the fact [3] that Gφ(ΩA<p) is a bounded set only for the identity
permutation. Of course, if A is essentially diagonally dominant, then
r = 1 from Theorem 1. We now remark that the results of Theorem
2 and Corollary 3 can be used to obtain an improved upper bound for
r. For, if tm is, as in Theorem 2, the smallest positive number such
that v(tm) = 0, then by Corollary 3, the number of eigenvalues σ for

o

each Be ΩA with | σ | ^ tm is equal to the number, k, of diagonal entries
aiti of A with aiti ^ ίTO, and clearly k ^ [m/2]. Thus, by the same
argument as above,

r 5Ϊ n + 1 — k .

In § 4, we give an example of a 3 x 3 matrix for which 3 permu-
tations are required to determine S(ΩΛ). In general, examples can
similarly be given where n permutations are required for the n x n
case, and we conjecture that the result of Theorem 6 is valid with
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n + 1 reduced to n.
To actually calculate S(ΩΛ) in the general case, it is necessary

from Corollary 4 to work with the complements of the sets Gφ(ΩA<p),
i.e., to determine those intervals of the positive real axis (t Ξ> 0) for
which vφtAψ(t) < 0 for some permutation φ. However, it is in general
not easy to determine a priori which r ( ^ n + 1) of the n\ permutations
suffice to characterize S(ΩA) in Theorem 6. For this reason, the
analogue of Theorem 2 which could be stated for the general case
seems computationally unattractive.

4* Examples* To illustrate the results of § 2, consider the
following diagonally dominant matrix A:

(4.1)

"1 1/2 0 "

1/2 3 1/2

_0 1/2 5

For this matrix, the minimal Gerschgorin set G(ΩΛ) is given by

(4.2)

From this, it can be verified that the intervals of the nonnegative
real axis for which v(t) Ξ> 0 are given by

(4.3) 0.88 ^ t g 1.14; 2.75 ^ t ^ 3.25; 4.86 ^ t ^ 5.12 .

From Theorem 2, S(ΩΛ) then consists of three concentric annuli, and
from Corollary 3, each B e ΩA has exactly one eigenvalue in each
annulus.

To illustrate the results of §3, consider the matrix 4̂(ε) where

(4.4) Λ(ε) =

1 0"

1 2

and e ^ 0. Note that .4(0) is the companion matrix for the polynomial
x3 — 2x — 1. It is not difficult to show that at most three permuta-

o

tions1, ψί — I, φ2 — (23), φ3 — (123), are necessary to describe S(ΩMs)),
i.e., G9(QAM<P) is the entire complex plane for all other permutations for
every ε ^ 0. Thus, from Theorem 3, S(ΩMs)) is determined by the
sets GφiψMΐ)φt), which turn out to be

(4.5)

- {σ : I σ - ε | ^ 1.62} ,

1 Here, we are describing permutations by their disjoint cycles.
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(4.6) G**(ΩMt)**) = {σ : 1 - 2 \ σ - e | - \σ - ε\ \σ + ε | 2 ^ 0 } ,

(4.7) G^(ΩMe)Φ3) = { < 7 : - l + 2 | σ + ε| + |σ + ε | 3 ^ 0 }

= {σ : I o + ε | ^ 0.45} .

The basic reason for considering such an example is that, for
suitable choices of ε, the actual number r of permutations in Theorem
6 which are necessary to describe S(ΩM2)) can be made to vary from one
to three. More precisely, for 0 g ε < 0.045, r = 3; for 0.045 ^ ε < 0.45,
r = 2; and for 0.45 ^ ε, r = 1. The first two cases are illustrated in
Figures 1 and 2.

FIG. l
ε = 0; iίi = 0.45, R2 = 0.62, R3 = 1.00, i?4 = 1.62

FIG. 2
ε = 0.05; Rι = 0.40, i?2 = 1.67
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This last example serves to answer some questions which might
naturally arise in reading the previous sections. First, it shows that
n x n matrices 4̂ exist for which at least n permutations φ are
necessary to determine S(ΩA). On the other hand, it shows that it is
not n-ecessary for A to be essentially diagonally dominant in order that

o

S(ΩX) coincide with rot G(ΩΛ) (cf. Theorem 1), since choosing ε = 0.5 in
(4.4) gives this condition. Finally, it demonstrates that, in general,

o o

it is not possible to find a single matrix Be ΩΛ for which S(ΩΛ) is
rotS(ΩB). This fact follows quite easily from the last example with
ε = 0.05, in particular.
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