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ASYMPTOTIC EXPANSIONS OF FOURIER
TRANSFORMS AND DISCRETE
POLYHARMONIC GREEN’S FUNCTIONS

MoSHE MANGAD

The results in M. J. Lighthill’s book, Fourier Analysis and
Generalized Functions, dealing with the asymptotic develop-
ments of Fourier transforms and Fourier series coefficients,
are extended to the n-dimensional case, Together with several
theorems due to L. Schwartz’s work on distribution theory,
integral representations and asymptotic develspments of the
n-dimensional discrete (generalized) pelyharmonic Green’s func-
tions, are then obtained. A few examples of these Green’s
functions are illustrated and compared with known results,

With a considerable simplification of L. Schwartz’s Theory of
Distributions [6], Lighthill [4] has developed through the theory of
generalized functions of a single variable, an asymptotic technique
which leads quickly to estimating asymptotically Fourier transforms
(F.T.). This technique was also applied without change, to the
asymptotic determination of Fourier coefficients in trigonometrical
series.

In the papers by Duffin and others [1-3], classical techniques
were employed to estimate asymptotically two and three dimensional
Fourier transforms. These techniques were then applied to determine
the asymptotic behavior of discrete harmonic and biharmonic Green’s
functions. However, only the leading asymptotic terms of the n-
dimensional discrete polyharmonic (p > 3) Green’s functions, were
obtained.

This paper is primarily concerned with the extension of Lighthill’s
one-dimensional asymptotic theory into nm-dimensions. Using this ex-
tension, together with several results due to L. Schwartz, a method
for obtaining all the terms of the asymptotic expansion of the n-
dimensional discrete polyharmonic Green’s functions, is derived. Known
results [1-3] and more generalized ones concerning these Green’s func-
tions, are noted here.

Since the concern here is with functions of # independent vari-
ables, the following notations and conventions, unless otherwise
specified, will be employed:

T = (L, By 000, 2,),
a = (ala a?y Y a’n) ’
w2k = (v.)2k,, 2,/2k, - - -, 2,/2k,) ;
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r=lo|= (@ + o+ ... a2
E=lal=E +E+ -0 + B,
T = A+ AT, e+ oa,

QP1tP2tety

A7 = = ;
0xP10x2 « -+ JaTn

gia) = F.T.LA@)]

Cm = Cm]m2~~~mn ’
o o oo
= 2 e 2 lemz'--mn =2 Cu .
ty= oo my=—co P y

Finally, f will designate a generalized function whereas f* will
represent an ordinary function.

2. The asymptotic estimation of Fourier transforms in n-
dimensions. An n-dimensional asymptotic method involving F.T.’s is
developed here. The method involves writing a given function f(x)
as f(x) = F(x) + fgr(x), where F(z) is a simpler function whose F.T.
G{a) is known, and f.(») is a remainder such that F.T. [47f(2)] — 0
as k— oo, Then, g(a) = F.T.[f(x)] satisfies

g{a) = Gla) + gg(@) = G(a) + o(k™7)

as k— oo, To develop such a method, a simple technique of identify-
ing functions whose F.T.’s tend to zero as k— co, is needed. The
Rieman-Lebesgue lemma as we know, is the classical result which does
this for ordinary integrable functions.

By means of the following two definitions, the Rieman-Lebesgue
lemma may be extended to generalized functions.

DerFiNiTION 2.1. For a generalized function f(z), any statement
like f(x) — 0, f(x) = OlA(z)], or f(x) =olh(x)] as & —c¢ (or o — oo)
means that f(x) is equal in some nm-dimensional parallelepiped = = ¢
(or outside some n-dimensional parallelepiped containing |x;| > p;, ¢ =
1,2, ---, %) to an ordinary function f*(x) satisfying the stated con-
dition.

DEFINITION 2.2, If f(x) = f*(x) in the n-dimensional parallelepiped
Pic,<ua;<d;;7=1,2, ---, n, and f*(x) is absolutely integrable there,
then we say that f(x) is absolutely integrable in P,

By use of the above two definitions, the extension of the Rieman-
Lebesgue lemma to generalized functions, follows immediately.

To obtain a criteria for estimating asymptotically F.T.’s of gener-
alized functions, the following definition will be used.
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DeFINITION 2.3. The generalized function f(x) is said to be “well
behaved at infinity”, if for some number R, the function f(z) — Fi(x) is
absolutely integrable over the region |2,| > R, |2,| > R, ---, |2,| > R,
where F'(x) is absolutely integrable in every finite region and G(a) =
F.T.[F(z)]— 0 as k— oo.

THEOREM 2.1. If a generalized funmction f(x) s “well behaved
at infinity” and absolutely integrable over every finite region of
E", then its F.T.g(a)— 0 as k— oo,

Proof. Consider F(x) — f(x), where F(x) is the function defined
in Definition 2.3. Since both f(x) and F(x) are absolutely integrable
in every finite region of E", so is f(z) — F(x). Furthermore, by
Definition 2.3, f(z) — F(x) is absolutely integrable over the region
|la;| >R,j=1,2, ---,n. Hence, f(») — F(x) is absolutely integrable
in the entire E*™ space. Thus, in view of Rieman-Lebesgue lemma
for generalized functions, F.T.[f(x) — F(x)] = [9(a) — G(a)] — 0 as
k— . But G(a)— 0 as k— <o by Definition 2.3. Therefore, g(a) =
F.T.[f(2)] — 0 as k— oo.

DEFINITION 2.4. A generalized function is said to have a finite
number M of singularities at the points @, @., - -, @y, if in any region
G C E™ not containing any of these points, f(z) is equal to an ordinary
function with partial derivatives of all orders at every point of the
region,

THEOREM 2.2, Assume the following:

(1) f(®) has M singularities at the points Q,, Q. ---, Qy and
A?f(x) where p = p, + Dy + ++ + p,, 1s well behaved at infinity.

(ii) For m=1,2, .-+, M, 47| f(x) — F,(x)] are absolutely in-
tegrable in a region containing Q, but mo other singularity. Also,
APF(x) are absolutely integrable in every finite region mot contain-
ing Q, ard are well behaved at infinity.

(iii) Let N be a positive even integer and let p,, p,, -+, D, above
hold mot only for a single n-tuple but for all such n-tuples with
P+ Do+ -+- +p,=N. Then,

9(a) = F.T.[flw)] = mi G(a) + ok~ as k— oo
G,.(a) = F.T.[F,(x)] .

(2.1)

Proof. Defining fp(x) = flx) — ¥ F,(x) whose F.T. is gz(a), then
by [5] or [6],
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(2.2) F.T.[42fp(x)] = (2mia,)*(2mia.)?? « - - (2mwia,)? gR(a) .

Next, A2fz(x) is absolutely integrable in a finite region containing
Q, but no other singularity. This is so because A7[f(x) — F,(x)] is
absolutely integrable in the same region as are

ApFl(x)y APF2(JJ), Tty Ame—l(x)y Ame+l(x)a M} APFM(:’U) ’

by hypothesis. Since this is true for m =1, 2, --., M, it follows that
A2fp(x) is absolutely integrable in every finite region of E”*. Further-
more, since each A?F,(x) and A?f(x) are well behaved at infinity by
(ii), so is A2fr{x). Thus, by Theorem 2.1,

F.T.[42f=(x)] = (2wia,)?(2wia,)?2 - - - (2wia,)?rgR(a) — 0

as k— oo, ie.,

(2.3)  lim (2mia)(2mia,)™ - - - (2ma,,)w[g(a) -5 Gm(a)] =0.
k—oo m=1

Using now hypothesis (iii), then

. ! X
lim > ________N i arqiz - .. aZn{g(a) —_ Gm(a)}
koo prtpat-toa=0 Pyl Pyl oo e P! =1

(2.4)

3. Asymptotic expansion of #%-dimensional Fourier coef-
ficients, In dealing with Fourier coefficients of generalized periodic
functions, integration according to [4, 5], must be carried out over
the entire E" space, rather than over the period parallelepiped as
done ordinarily with ordinary functions. To overcome this, one can
extend Lighthill’s “unitary” function [4] into n-dimensions and then
utilize it to show the equivalency of the two schemes. The exten-
sion goes as follows.

LEmma 3.1, If Vi(x), Vi), ---, V.(x,) are one dimenstonal
unitary functions in Lighthill’s sense, then

Viz) = Vl(xl) m(mz) te Vn(xn)

18 @ good (testing) function [5, p. 3] satisfying
(i) V@)y=0 for |z;|=1,5=1,2,---,m,

(3-1) (11) Z V(x =+ m) - Z V1(x1 =+ mx) Vz(mz + mz) ce Vn(xn + mn) =1

for all x,
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(iiliy W(e) = F.T.[V(2)] ts such that W(0)=1 but W(m) =0 if
otherwise.

Proof. The proof follows immediately from the definition of V(x)
and the proof of Lighthill [4, p. 61].

The idea of integrating a generalized periodic function f(x) over its
period 2k can now be replaced by the idea of integrating f(x)V(x/2k)
over the entire E™ space. This is so because each value of f(x)
which also equals f(x + 2k) is multiplied by just 3., V(m + »/2k) = 1.

Since the primary concern here is with asymptotic estimates of
Fourier coefficients, the following three useful theorems which are
well known in classical theory, will be stated without proofs (their
proofs for generalized functions are found in [5, § 3]).

THEOREM 3.1. The multiple trigonometrical series
(3.2) >3 C, exp [mi(m-x/k)]

converges to a generlized function f(x), if and only if, C,, = O(|m |¥)
Jor some N as |m|— o, in which case

(3.3) g(@) = F.T.[f(@)] = > Cod(a@ — m/2k) .
Here 6 is the n-dimenstonal dirac delta function.
THEOREM 3.2. If f(x) = X, C, exp [wi(m-a/k)], then

54 Co = (W2t - )|+ |flw) Viay2h)

X exp [—mi(m-x/k)|dx.dx, - - - da,, .

THEOREM 3.3. If f(x) is any periodic generalized function with
periods 2k, 2k,, + -+, 2k, 1n %, &,, -+ -, 2, respectively and if C, is as
stated in Egq. (3.4), then

(3.5) fx) = %_‘, C,. exp [mi(m-x/k)]

and
g(a) = F.T.[f(x)] = ; C..0(a — m/2k)

(3.6) = 3, 9(a)V(2k-a — m)

COROLLARY. Under the hypotheses of Theorem 3.3, C,, = O(| m |¥)
for some N as |m|— . This follows from Theorems 3.1 and 3.3.
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We wish to apply now the asymptotic method of §2 to the
asymptotic estimation of Fourier coefficients., To do so, the following
theorem is needed.

THEOREM 3.4. If f(x) ts a generalized pertodic function with
periods 2k, 2k, - -+, 2k,, 1M Xy, %y, ¢+, T, respectively, then

(3.7) C(a) = F.T.[(1)2"\k, - -« K, )f(2) V(x/2k)]

18 a continuous function whose value for a, = m,/2k,, «--, a, = m,[2k,,
is the Fourier coefficient C,, of f(x), t.e., C(m/2k) = C,,.

Proof. It is well known [6] that one may take the F.T.’s of an
infinite series of generalized functions, term by term, i.e., C(a) may
be obtained by taking the F.T. of

(1/2%k ks +«+ k) Z C,. exp [wi(m-x/k)]| V(x/2k) ,

term by term. Thus, C(a) = X\, C,,W(2k-a — m), which is an abso-
lutely and uniformly convergent series of continuous functions in any
finite region. This follows from the corollary above and from the
fact that W(2k-a — m) is a good (testing) function in view of Lemma
3.1. Hence, C(a) is a continuous function. The second part of the
theorem follows from property (iii) in Lemma 3.1,

If a periodic generalized function f(x) has any singularities, it
has an infinite number. However, if f(x/2k) has a finite number of
singularities, then Theorem 3.4 shows that the methods of §2 may
be applied to determine the asymptotic behavior of C(a) and there-
fore of C,.

DeFINITION 3.1, The periodic generalized function f(x) with
periods 2k., 2k,, +--, 2k, in =z, 2., ---, ®,, respectively, is said to have
a finite number M of singular points @, -, @y, in the n-dimensional
parallelepiped —Fk; < a; =k;, j=1,2,---.m, if, for some ¢; > 0, f(x)
is equal to an ordinary function differentiable any number of times
in the region S — 7. Here S is the region {—k; < z; = k;(1 + ¢,),
=12 .-, n}and T=1{Q, Q,, +-+, Qu}.

Using Definition 3.1, the following important theorem follows.

THEOREM 3.5. Let f(x) be a generalized periodic function with
singularities at the points Q,, @, - -+, Qy, 1 the period parallelepiped:
—k;<a;=£k;,5=1,2,+--,m. Let also

(1) for each m = 1,2, -+, M, A7 f(x) — F,(x)] is absolutely in-
tegrable in a region containing @, dbut no other singularities,
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(ii) for each m =1,2, ---, M, A?F,(x) is absolutely integrable
. every finite region mot containing Q, and s well behaved at
nfinity.

(iiiy Let N be an even positive integer and P = (P, Do **+, Dn)
above holds not only for a single n-tuple p but for all such n-tuples
with p, + P, + +++ + p, = N, If Gla) = F.T.[F{x)], then

(3.8) C, = (1/2kfe, - -+ k) :_fgl G (m/2k) + ol m |7)

as |m|— o,

Proof. Take the “unitary” function V{(x) in Theorem 3.4 to be
defined as

Vieg) =1 for —(1 —¢)2=2;, =1 +¢,/2)/2

=0foro, = —1—¢;/2)/20r z; = (1 +¢;)/2,
j=1,2 2,1,

(3.9)

Here ¢; are those of Definition 3.1 assumed chosen so small that
every singularity in the period parallelepiped is such that z7 (=jth
coordinate of @,) > —k,(1 —¢;). One such “unitary” function is
Viz) = Vi(w) Vy(x,) - - - V,(2,), where each V (z;) is taken in Lighthill’s
sense, Then, (1/2"k.k, --- k,)f(x) V{x/2k) is a generalized function with

only the singularities @, ---, @, and equals (1/2"k.k, - - k,)f(x) in the
n-dimensional parallelepiped:
——kj(l—sj)<m]'<kj(1+sj/2)$ .7:17 27""%1

including all of them, and all its partial derivatives are “well behaved
at infinity”. This is so since they all vanish outside the region
;| > k{1 +¢),ij=1,2 ---,n So, the F.T. by Theorem 2.2 satisfies

lim ariags - - - a,’;n[C(a) — (2 ke, -+ k) S Gt(a)] —0,

f—oo

or in view of Eq. (3.7),

lim apag - - - agn[cm (Y2 - k) S G (m/2lc)] ~0.
i=1

[m|—e

The theorem therefore follows from hypothesis (iii).

4. The asymptotic development of discrete polyharmonic
Green’s functions. In applying the theory developed in §3 to
the asymptotic development of discrete polyharmonic Green’s funec-
tions, the following is noted, According to Theorem 3.1, a discrete
function p(x) may be identified with the coefficients C,, of the Fourier
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series of a generalized periodic function, if and only if, p(x) = O(r¥)

for some N as r— oo, Conversely, by Theorem 3.3 and its corollary,

the Fourier series representation of any generalized periodic function

f(x), defines a discrete function which is O(r¥) for some N as r— oo,
The polyharmonic difference operator D? is defined by

DU(mly Mgy ==+, mn)
= U(m; + 1, m, + oo, m,) + Ulmg — 1, m, -+, m,) 4 -0

4.1) + Umy, my + « -, m, + 1) + Ulmy, my, « -+, m, — 1)
— 20U(My, My, » -+, M,) ;
D»**U(m) = D*[DU(m)] , p=1,2 .

The following relation may easily be verified
(4.2) Dr{exp [—2ni(m-x)]} = exp [—2ni(m-x)]<——4 i sin® mc])p .
2=1
THEOREM 4.1. Let g(x) be a periodic generalized function with
period 1, 1.e.,

(4.3) g{x) = mz M €XD | 2nt(m-2)] .

If the discrete function p, is a fundamental solution for D? (i.e.,
Dru,, =4, =11if m =0; 0 of m = 0), then

(4.4) <—4 S sine nxj>pg(x) —1,

Proof. By hypothesis, Theorem 3.2, and relation (4.2),
0n = D?pt,, = D{F.T.[g(2) V(2)]}

- DP{S“ . Sg(x) Viw) exp [ 2ri(m-)|dw, - - - da,
(4.5) -

= S‘» <. gg(x) V(x)<—4 i sin® mc,~>p

—oo

X exp [—2xi(m-x)|dx.dx, -« - dz, .

Next, (—4 S rsin®zx;)Pg(x) is a periodic generalized function, since
g(x) is. Hence, the result follows by Theorem 3.3. Indeed,

(-—4 i sin® nxj>pg(x) = 3,0, exp[2xi(m-2)] = 1.

By means of a “Laurent-type” expansion, one may define
(> sin® zrw;)~? as follows:
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DEFINITION 4.1. In the region

Bilo,|<1,5=12 - u, (ﬁljsin‘zﬂxj)
has the following Laurent-type expansion
<Z sint m])"” - (n“’rz)—”{l — (n/q»)i[pA2 )y x]

(4.6) — ey (=3 £ 20) gy 35 )

+ p(p + 1)A2A3fr2(§j; x§><§; x‘})

1
+pA47”4Z?:,50§-]+ "’}y

where

4.7) A, = (=1 S [(25 — DI @m — 25 + DI,

i=1

m =1, 2, ete.

Proof of comsistency. The first term of the expansion, (7*%)7?,
is a generalized function defined by L. Schwartz [6] as the solution of

(4.8) (@ry*f(x) =1

such that F.T. [f(2)] is given by Eqgs. (4.13) and (4.14). The series
in the curly parenthesis of Eq. (4.6) converges uniformly everywhere
in the region B. Hence, expansion (4.6) satisfactorily defines the
generalized function (37 sin®*zx;)~? in the region B.

We ecan therefore say now that the generalized function
(—4 S rsin*za;)™? is a solution of (—4 >sin*ze;)’g(x) =1 in the
interior to the region B.

The discussion above together with Theorems 3.2 and 4.1, lead
to the following important representation:

THEOREM 4.2. A fundamental solution p, for the polyharmonic
difference operator D? is given by

(4.9) = F.T.[(—4 3, sin’ mcj)"” V(x)] .

Note. This particular solution will designate the so-called “normal-
ized” fundamental solution or the discrete Green’s function g,(a) corre-
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sponding to the n-dimensional polyharmonic difference operator D2,
In relation to expansion (4.6), let us note first that the only
singularities of (>ysin®*zz;)™? or of its partial derivatives in the
region |z;|<1,7=1,2 ---,n, are at the origin. Next, only a
finite number of them are singular at the origin. This is so because
the limit as » — oo of the successive terms of the series in the curly
bracket of (4.6), are increasingly higher orders at zero. Thus, in
view of the discussion above and Theorem 3.5, the following result

is valid.
THEOREM 4.3. Let
4
(4.10) ha) = F.T.[(—4)—p(; h,~(x)>] ,

where hi{x) are all the terms of the series (4.6) which are singular
at the origin. If g,(a) = p, is the discrete Green’s fumction for
Dv? defined in Eq. (4.9), then

(4.11) g,(¢) = h{a) + o(1) as k— o,

Proof. This theorem is just a direct application of Theorem 3.5
for N=0,M =1 and F\(z) = (—4)7 >} h(x).

Next, since the successive nonsingular terms of the series (4.6)
(after a finite number ! say) have zeros of higher order at the origin,
Theorem 3.5 may be used again to obtain the asymptotic expansion for
g,{(a¢) to any desired order by taking more terms in the series (4.6).

THEOREM 4.4. If H(x) = S 7' h(x) extended to include not only
the singular terms of the expansion (4.6) but also terms with zero
at the origin of order s or less, the for an appropriate s,

(4.12) g,(@) = F.T[H(2)] + o(k~) as k— oo |

Proof. For an appropriate s, the conditions of Theorem 3.5 can
be satisfied for any positive even integer N.

Theorem 4.4 reduces the problem of finding the asymptotic
estimates for g,(a) to the problem of finding the F.T.’s of the
functions appearing in Eq. (4.6). These functions are of the type
of a polynomial divided by » to an even integral power.

L. Schwartz [6, Vol. II pp. 113-114] has computed the following
expressions:

(4.13) F.T.[r—"] = nm—"ﬂr(lfz_m)km—n/r(m/z) ,
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when 7 is odd, or when % is even but m < n;p =1, 2, ete.
F.T.[P.V.(r )] = (—1)"2z***2[p) I'(h + n/2)]7'k*

(4.14) [ 1,1 1 1 I + n/2)]
log — =1 il .o - S ALl
8 O*°ch+2(+2+ 3 ﬂ+ﬂm+m)

where # is even but m —w=22,=0,2=0,1,2, ..., and where
1+ (1/2) + (1/8) + «-- + (1/h) is replaced by 0 if 2 = 0. v is Euler’s
constant. The F.T.’s taken in Eq. (4.14) are in the principal value
(P.V.) sense because of the logarithmic singularity involved at the
origin. One may take explicit expressions for F.T.[P(x)r—*"], where
P(z) is a polynomial, as follows: if P(x) = >\, C,af --- 2, then

(4.15) F.TP@)r "] = 3 Cy(—2m0) A(F. Tl

Qi T oy + 200 T Qu; = Q.

Having established relation (4.15), the asymptotic expansion of
g,(@) may now be evaluated explicitly to within o(k~¥) as k— « for
any even positive integer N, by computing the F.T.’s of the series
(4.8), by means of Eqgs. (4.13)-(4.15), term by term. For simplicity
and in order to compare the results here with those which are known
[1-3], only the first two terms of the asymptotic expansion will be
calculated below.

From Egs. (4.12) and (4.6) with A = —1/3 and from Eqgs. (4.13),
(4.15), the following holds,

THEOREM 4.5. If the dimension n of the space is odd, then

gp(a/ly Aoy o0y a/n) ~ Bp,nk2p_n - %Bp+1,nkm—4m(m — 2)
(4.16)

% [(m—— 4})5(41%— 6) ia; + (6m — 24 + Sn)],

where

B _ (“Ll(—p + nj2)
- 27 (p — 1)

and m = 2p + 2 — n,
Note. Relation (4.16) is also valid when % is even but 2p < n
for the leading asymptotic term and 2p + 2 <#» for the second

asymptotic term, ete.

EXAMPLES.
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g.(a;, ay a;) ~ —ﬁ — ﬁlg[~3 + %(ai + ai + a;)] ,
0:(0y s, 0) ~ ~_8% - 641:]5 [1 + 4T ;; - ag]’
Gl iy oy oy 0] = 87:1%3 B 6471r%5 [45 + 3t j:c = aj},)]’
llt @y @y ) 162% " 12817z%3 [4 + 2 ; = ag)],
0u(0 Gy G 0) ~ — 47z1%2 B 473%4 [1 —— - + ai)]-

The first example above agrees with the result obtained by Duffin [1]
except for sign. The difference in sign is due to the difference in
the definition of fundamental solutions being defined here by the
equation D*p, =4, and being defined in Duffin’s paper by D7y, =
(—=1)",. The remaining examples were not obtained previously.

Now, from Egs. (4.12) and (4.6) with 4, = —1/3 and from Eqgs.
(4.14) and (4.15), the following asymptotic expansion holds.

THEOREM 4.6. If the dimension n of the space is even but
20p+54)—nm=2L=0,h=0,1,2 --- (7 =0 corresponds to the first
asymptotic term and j = 1 corresponds to the second term), then

gp(a/ly a/29 ctcy a%)

_ (_4)~wF.T.[P.V.{(n2r2)“’°{1 +prt 3 ”/ 3"”2}}]

N (_ 1)%[2k2p———n
20t — 1) (p — n/2)!
1 1 1 .1 F’(p)]
><1__.<1~_..... ,.)__
[Ogﬂk+2 +2+ r1}0—~%/2 7 +2F(p)
(=1

+ 3.2 (p — Dl (p + 1 — n/2)!

X {k"‘“‘*{(in(m — 1) + 6(3m* — 12m + 8)

>
+ 4(m* — Im® + 22m — 12)——
(4.17) k

+ k™ *log lc{?mm(m — 2) + 6m(m — 2)(m — 4)

\

>al
+ m(m — 2)(m — 4)(m — 6) 1k‘* }
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b )

R — 2){(1% — 4)(m — 6) Zk L (6m — 24 + Sn)JL

4

1 1 1
x |1 —~—(1 e __________>
{ogn 5\ +2+ +p+1—n/2 Y

_ I+ 1 H
2r(p 4+ 1)/J0°

1

where v 1s Euler’s constant,

m=2p+2—mn, 1+—;—+---+
n
P73

wn the first term is replaced by zero if m = 0.

ExamPLES. By use of Theorems 4.4 and 4.5, we obtain:

1 1 Aat + a;)]
WAy Ag) ~ — 1 k — [—3 i St L et
001, 02) ~ o llog (k) + 9] — o] =3 + =g

2
0(as, @) ~ L [log (zh) + 7 — 1]
8

1 [ At + a")]
— | -3 —12(log 7k 2 T dy)
+ Joom (log 7k + ) + i
2(at + af + af + ai)]
k4
ai + ai + a; + at
247°kS :

—1 1
9@y Csy @y @) ~ Ar*k? o 4kt [1 +

(@, Gy s, ;) ~ —g%[log ok + v — 1/2] +
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