A TOPOLOGICAL CHARACTERIZATION OF GLEASON PARTS

JOHN GARNETT

Let A be a function algebra on its maximal ideal space M(A), and let P be a Gleason part of M(A). It is easily seen that P is then a σ -compact completely regular space. We prove the converse: if K is completely regular and σ -compact, then there exists a function algebra whose maximal ideal space contains a part homeomorphic to K. Every bounded continuous function on that part is the restriction of a function in the given algebra. Consequently no subset of the part can have an analytic structure.

Suppose X is a compact Hausdorff space and A is a subalgebra of C(X), the algebra of continuous complex valued functions on X. Assume A separates the points of X, contains the constant functions, and is uniformly closed. A is then called a function algebra on X. With the weak star topology, the maximal ideal space M(A) of A is a compact Hausdorff space. We consider X as embedded in M(A) and A as a function algebra on M(A).

In [4] Gleason noted that an equivalence relation could be defined on M(A) by setting $x \sim y$ when the functional norm $||x - y||_{4^*} < 2$. The equivalence classes for this relation are called the "parts" of M(A). In certain cases parts have been used to impose an analytic structure on M(A) (see for example [7]).

Let P be a part of some M(A). Then clearly P is a completely regular space and fixing $p \in P$ we have

$$P=igcup_{n=1}^\infty \{q\in M(A): ||\ p-q\,||\leq 2-1/n\}\;,$$

where each term in the union is weak star closed, and hence compact, so that P is σ -compact.

Some results in this paper have been announced in [3].

2. We begin with a theorem which will be our basic tool in constructing parts.

THEOREM 1. Let A be a function algebra, S a hull-kernel closed subset of M(A) and P a part of M(A). Then there is a function algebra B such that M(B) contains a part Q homeomorphic to $P \cap S$. Moreover, B | Q is isometrically isomorphic to $A | P \cap S$.

JOHN GARNETT

Let α be a positive irrational number, and denote by A_{α} the function algebra on the torus T^2 generated by the functions $z \to z_1^m z_2^m$ where $m + n\alpha \geq 0$. Let m^0 be the point in $M(A_{\alpha})$ represented by Haar measure on T^2 (which is multiplicative on A_{α}). Then $m^0 \notin T^2$ and $\{m^0\}$ is a part of $M(A_{\alpha})$ ([5] p. 316). If J is a proper closed subset of T^2 , then $A_{\alpha} \mid J$ is dense in C(J) ([8] pp. 69–70), so that when $x \in M(A_{\alpha}) \setminus J$ there is a function $f \in A_{\alpha}$ such that $|f(x)| > \max_{z \in J} |f(z)|$, as otherwise evaluation at x would induce a complex homomorphism of C(J).

Proof of Theorem 1. Let $A_{\alpha} \otimes A$ be the function algebra on $M(A_{\alpha}) \times M(A)$ generated by the functions of the form $(x, y) \rightarrow f(x)g(y)$ where $f \in A_{\alpha}$ and $g \in A$. $M(A_{\alpha} \otimes A)$ is homeomorphic to $M(A_{\alpha}) \times M(A)$ in a natural fashion.

Set $J = \{z \in T^2 : \text{Real } z_1 \leq 0\}$ and

$$X = (J imes M(A)) \cup (M(A_lpha) imes S)$$
 .

X is a compact subset of $M(A_{\alpha}) \times M(A)$. Our algebra B is the uniform closure on X of $\{h \mid X : h \in A_{\alpha} \otimes A\}$. M(B) is then the $A_{\alpha} \otimes A$ -hull of X,

$$\{q\in M(A_lpha\bigotimes A): | \ g(q) \ | \ \le \max_{p\in x} | \ g(p) \ | \ ext{ for all } g\in A_lpha\bigotimes A\}$$
 .

If $(x^{0}, y^{0}) \in M(A_{\alpha} \otimes A) \setminus X$, then $x^{0} \notin J$ and $y^{0} \notin S$. As S is hull-kernel closed, there is a function g in A with $g(y^{0}) = 1$ and g(S) = 0. As $x^{0} \notin J$, there is a function f in A_{α} with $f(x^{0}) = 1$ and $\max_{z \in J} |f(z)| < 1$. Replace f by a suitable power f^{n} so that $\max_{z \in J} |f^{n}(z)| < (1/||g||)$. Then $h(x, y) = f^{n}(x)g(y)$ is in $A_{\alpha} \otimes A$ and $h(x^{0}, y^{0}) = 1$ while $\max_{x \in X} |h(p)| < 1$. Hence M(B) = X.

Take $Q = \{m^0\} \times (P \cap S)$. Then Q is subset of X. For $s \in P \cap S$, let $p_s = (m^0, s) \in Q$. Let $(x^0, y^0) \in X \setminus Q$. If $x^0 \neq m^0$, then using functions of the variable $x \in M(A_\alpha)$ alone we see that $(x^0, y^0) \not\sim p_s$ for any $s \in P \cap S$. Similarly if $y^0 \notin P$, then $(x^0, y^0) \not\sim p_s$ for all such s. Finally if $y^0 \notin S$, then by the choice of $X, x^0 \neq m^0$. Hence Q is a union of parts.

If $s \in P \cap S$ and $g \in B$, then

$$g(p_s) = \int_{T^2} g(x, s) d\lambda$$

where λ is normalized Haar measure on T^2 , because λ represents m^0 for A_{α} . Take s and t in $P \cap S$, $g \in B$ with $||g|| \leq 1$. Then

$$egin{aligned} &|\,g(p_s)-\,g(p_t)\,| &\leq \int_{T^2} |\,g(x,\,s)-\,g(x,\,t)\,|\,d\lambda \ &\leq \int_{T^2ackslash J} 2d\lambda + \int_J |\,g(x,\,s)-\,g(x,\,t)\,|\,d\lambda \ . \end{aligned}$$

60

Now if $x \in J$, then $\{x\} \times M(A) \subset X$ so that $y \to g(x, y)$ is in A with norm ≤ 1 . Therefore there is a constant c < 2 such that for each $x \in J \mid g(x, s) - g(x, t) \mid < c$, because $s \sim t$. Hence

$$||g(p_s) - g(p_t)| \leq \int_{T^2 \setminus J} 2d\lambda + \int_J cd\lambda < 2$$

and $p_s \sim p_t$. Thus Q is a part.

It is obvious that Q is homeomorphic to $P \cap S$ and that $B | Q = A | P \cap S$, because the coordinate x is constant on Q.

As a corollary to Theorem 1 we now prove a special case of our main result because in this case the proof is much simpler.

D denotes the closed unit disc in the complex plane and D° its interior. A_{\circ} is the algebra of all functions continuous on D and analytic on D° . If K is a locally compact Hausdorff space, then $K^* = K \cup \{\infty\}$ is its one point compactification.

COROLLARY. Let K be a locally compact σ -compact Hausdorff space. Then there exists a function algebra B such that M(B)contains a part Q homeomorphic to K. Moreover B|Q is isometrically isomorphic to $C(K^*)|K$.

Proof. Let $A = \{f \in C(K^* \times D) : f \mid \{x\} \times D \in A_0 \text{ for each } x \in K^* \text{ and } f \mid K^* \times \{0\} \text{ is constant}\}$. Then $M(A) = K^* \times D/\approx$ where \approx identifies $K^* \times \{0\}$ to a point, and $P = \{(x, z) \in M(A) : |z| < 1\}$ is a part in M(A), as P is a union of discs with the centers identified.

Since K is σ -compact, $\{\infty\}$ is a G_{δ} set in K^* . Hence there is a continuous function $h: K^* \to [1/2, 1]$ such that $h^{-1}(1) = \{\infty\}$. Let $S \subset M(A)$ be the graph of $h, S = \{(x, h(x)) : x \in K^*\}$. Then the function g(x, z) = (h(x) - z/3h(x) - z) is in A and vanishes exactly on S, so that S is hull-kernal closed. And clearly $S \cap P$ is homeomorphic to K. Finally if $f \in C(K^*)$, then f'(x, z) = zf(x)/h(x) is in A and f'(x, h(x)) = f(x) when $x \in K$. Thus $A | S \cap P \cong C(K^*) | K$. The conclusion of the corollary now follows directly from Theorem 1.

3. Before proving our main theorem we construct the algebra to be used in place of the disc algebra A_0 . Let I be an index set, and let Y_I be the product of discs, $Y_I = \prod(D: i \in I)$. Denote by A_I the subalgebra of $C(Y_I)$ generated by the coordinate functions $z_i, i \in I$ where $z_i(p) = p_i$. Then $M(A_I) = Y_I$, for if $\varphi \in M(A_I)$, then $|\varphi(z_i)| \leq i$ so that φ is evaluation at $\lambda \in Y_I$ where $\lambda_i = \varphi(z_i)$. Let θ be the "origin" in $Y_I, z_i(0) = 0$ for all $i \in I$, and let P_0 be the part of $M(A_I)$ containing θ . We now need a well known fact which is proved using elementary conformal mappings of the disc D. If $(g_n)_{n=1}^{\infty}$ is a sequence in A with $||g_n|| \leq 1$ and $g_n(x) \to 1$, then $x \sim y$ implies $g_n(y) \to 1$. LEMMA. Let $p \in M(A_I)$. Then $p \in P_0$ if and only if there exists a < 1 such that $|z_i(p)| \leq a$ for all $i \in I$.

Proof. If no such number exists, then there is a sequence $(g_n)_{n=1}^{\infty}$ of coordinate functions z_i such that $g_n(p) \to 1$ while $g_n(\theta) = 0$. Hence $p \not\sim \theta$, by the above remark. If such an a exists, then let $\rho: D \to Y_I$ by $(\rho(t))_i = t/a \cdot p_i$. Then $\rho(0) = \theta$, $\rho(a) = p$ and for $f \in A_I$, $f \circ \rho \in A_0$ with $||f \circ \rho|| \leq ||f||$. Then as $0 \sim a$ for A_0 we have $0 \sim p$.

THEOREM 2. Let K be a σ -compact completely regular space. Then there is an algebra B and a part $Q \subset M(B)$ such that Q is homeomorphic to K and $B | Q \cong C^{b}(K)$, the algebra of bounded continuous functions on K.

Proof. Let βK be the Stone-Cech compactification of K. Take⁽¹⁾ $I = \beta K \setminus K$ and set $A = \{f \in C(\beta K \times Y_I) : f \mid \{x\} \times Y_I \in A_I \text{ for all } x \in \beta K$ and $f \mid \beta K \times \{\theta\}$ is constant}. Then $M(A) = \beta K \times Y_I \approx$ where \approx identifies $\beta K \times \{\theta\}$ to a point, and $P = \{(x, z) \in M(A) : z \in P_0\}$ is a part of M(A).

Write $K = \bigcup_{n=1}^{\infty} K_n$, where $K_n \subset K_{n+1}$ and each K_n is compact. Then for each $t \in \beta K \setminus K$ there exists a continuous function $h_t \colon \beta K \to [1/2, 1]$ with $h_t(t) = 1$ and $h_t(x) \leq 1 - 2^{-n}$ when $x \in K_n$. Let $\rho \colon \beta K \to M(A)$ be defined by $\rho(x) = (x, H(x))$ where $(H(x))_t = h_t(x)$ for each $t \in \beta K \setminus K$. Then ρ is a homeomorphism of βK onto $S = \rho(\beta K)$ and $\rho(K) = S \cap P$ by the above lemma. S is hull kernel closed in M(A) because $S = \bigcap \{g_t^{-1}(0): t \in BK \setminus K\}$ where $g_t(x, z) = (h_t(x) - z_t/3h_t(x) - z_t)$. And $A \mid S \cap P \cong C^b(K)$, because if $f \in C^b(K)$ and \tilde{f} is its unique extension to βK , then for any $t \in \beta K \setminus K$, $f'(x, z) = z_t \tilde{f}(x)/h_t(x)$ is in A and $f' = \tilde{f} \circ \rho^{-1}$ on S. The conclusion now follows from Theorem 1.

We remark that with these arguments one can get some restriction algebras B | Q different from $C^{\flat}(K)$. For example, if K is compact and A_1 is an algebra with $M(A_1) = K$, then there is an algebra B with part Q homeomorphic to K and $B | Q = A_1$.

4. Acknowledgments. Professor Eva Kallin Pohlmann³ simplified the example given in [3], enabling us to improve our arguments significantly. We thank Professor Lewis Robertson for a helpful conversation. Finally, we are deeply indebted to Professor Irving Glicksberg for introducing us to function algebras and for guiding our research throughout.

¹ If K is compact, let I be a singleton, and proceed as in the corollary.

² She observed that $X = \{(z,w) : |z| \le 1, w = \pm 1/2\} \cup \{(z,w) : |z| = 1, \text{Im } z \ge 0, |w| \le 1\}$ is a polynomially convex subset of C² containing a part consisting of two discs.

References

1. R. Arens, and I. M. Singer, *Generalized analytic functions*, Trans. Amer. Math. Soc. **81** (1956), 379-395.

2. E. Bishop, Representing measures for points in a uniform algebra, Bull. Amer. Math. Soc. **70** (1964), 121-122.

3. J. Garnett, Disconnected Gleason parts, Bull. Amer. Math. Soc. 72 (1966).

4. A. Gleason, *Function algebras*, Seminars on analytic functions, Vol. 2, Inst. for Advanced Study, Princeton, N. J., 1957.

5. K. Hoffman, Analytic functions and logmodular Banach algebras, Acta Math. 108 (1962), 271-317.

6. M. A. Naimark, Normed rings, P. Noordhoff, Groningen, 1959.

7. J. Wermer, Dirichlet algebras, Duke Math. J. 27 (1960), 373-382.

8. ____, Banach algebras and analytic functions, Advances in Math., Academic Press, New York, 1961.

Received January 12, 1966. The author holds a National Science Foundation Graduate Fellowship. This research is a part of his doctoral dissertation to be submitted to the University of Washington.