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A TOPOLOGICAL CHARACTERIZATION
OF GLEASON PARTS

JOHN GARNETT

Let A be a function algebra on its maximal ideal space
M(A)9 and let P be a Gleason part of M(A). It is easily seen
that P is then a <;-compact completely regular space. We prove
the converse: if K is completely regular and <x-compact, then
there exists a function algebra whose maximal ideal space
contains a part homeomorphic to K. Every bounded continuous
function on that part is the restriction of a function in the
given algebra. Consequently no subset of the part can have
an analytic structure.

Suppose X is a compact Hausdorff space and A is a subalgebra
of C(X)9 the algebra of continuous complex valued functions on X.
Assume A separates the points of X, contains the constant functions,
and is uniformly closed. A is then called a function algebra on X.
With the weak star topology, the maximal ideal space M(A) of A is
a compact Hausdorff space. We consider X as embedded in M(A) and
A as a function algebra on M(A).

In [4] Gleason noted that an equivalence relation could be defined
on M(A) by setting x ~ y when the functional norm || x — y \\Λ* < 2.
The equivalence classes for this relation are called the "parts" of M(A).
In certain cases parts have been used to impose an analytic structure
on M(A) (see for example [7])β

Let P be a part of some M(A). Then clearly P is a completely
regular space and fixing p e P we have

P = U {Q e M(A): 11 p - 9 11 <ς 2 - 1/n} ,
n—l

where each term in the union is weak star closed, and hence compact,
so that P is o -compact.

Some results in this paper have been announced in [3],

2* We begin with a theorem which will be our basic tool in
constructing parts.

THEOREM 1. Let A be a function algebra, S a hull-kernel closed
subset of M(A) and P a part of M(A). Then there is a function
algebra B such that M(B) contains a part Q homeomorphic to PΓ\S.
Moreover, B\Q is isometrically isomorphic to A | P Π S.
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Let a be a positive irrational number, and denote by Aa the
function algebra on the torus Γ2 generated by the functions z—^zfzl
where m + na ^ 0. Let m° be the point in M(Aa) represented by
Haar measure on T2 (which is multiplicative on Aa). Then m°? Γ2

and {m0} is a part of M(Aa) ([5] p. 316). If / is a proper closed
subset of T\ then Aa \ J is dense in C(J) ([8] pp. 69-70), so that when
x e M(Aa)\J there is a function feAa such that \f(x) \ > max2€J \f(z) |,
as otherwise evaluation at x would induce a complex homomorphism
of C(J).

Proof of Theorem 1. Let 4 f f i 0 4 be the function algebra on
M(Aa) x M(A) generated by the functions of the form (x,y)-+f(x)g(y)
where fe Aa and g e A. M(Aa (g) A) is homeomorphic to M{Aa) x M(A)
in a natural fashion.

Set J = {zeT2: Real z, ^ 0} and

X = (J x M(A)) U (M(Aa) x S) .

X is a compact subset of M(Aa) x M(A). Our algebra 5 is the uni-
form closure on X of {h \ X: h e Aa <g) A}. M(B) is then the Aa (g) A-
hull of X,

{g 6 ilf(Λ- ® A) : I #(g) | g max, 6 X | g(p) | for all g e Aa (g) A} .

If (x0,̂ /0) e ikf(Aα ® A)\X, then x°gJ and 2/° g S . As S is hull-kernel
closed, there is a function g in A with #(τ/°) = 1 and #(£) = 0. As
x°ί J, there is a function / in Aa with /(#°) = 1 and maxβ 6j |/(«) I < 1.
Replace / by a suitable power fn so that m a x ^ |/*(z) | < ( l / | | g | | ) .
Then h(x, y) = fn(x)g(y) is in Aa (g) A and A(.τ°, ?/0) = 1 while
maxp 6χ I A(ί?) I < 1. Hence M(B) = X.

Take Q = {m0} x ( P n S ) . Then Q is subset of X. For s e P π S ,
let ps = (m°, s) 6 Q. Let (x°, ?/0) e X\Q. If x° ^ m\ then using functions
of the variable x e M(Aa) alone we see that (x°, y°) ^ ps for any s e Pf] S.
Similarly if y° £ P, then (x°, y°) η^ ps for all such s. Finally if y° g S,
then by the choice of X, x° Φ m°. Hence Q is a union of parts.

If sePf]S and geB, then

9(,

where λ is normalized Haar measure on T\ because λ represents m°
for Aa. Take s and t in P Π S, g e B with || g \\ ^ 1. Then

I g(ps) - g(Pt) I ^ \

[ I g ( x , s) - flr(a;, t ) \ d x .
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Now if xeJ, then {x} x M(A) c X so that y —> g(x, y) is in A with
norm S 1. Therefore there is a constant c < 2 such that for each

(x, s) — g(x, t)\ < c, because s ~ t. Hence

g(ps) - g(Pt) I ̂  ( 2dx+\ cdx<2

and ps ~ pt. Thus Q is a part.
It is obvious that Q is homeomorphic to P Π S and that J? | Q =

A I P Π S, because the coordinate x is constant on Q.
As a corollary to Theorem 1 we now prove a special case of our

main result because in this case the proof is much simpler.
D denotes the closed unit disc in the complex plane and D° its

interior. Ao is the algebra of all functions continuous on D and
analytic on D\ If if is a locally compact Hausdorff space, then
K* — K (J {°°} is its one point compactification.

COROLLARY. Let K he a locally compact σ~compact Hausdorff
space. Then there exists a function algebra B such that M(B)
contains a part Q homeomorphic to K. Moreover B\Q is isometrically
isomorphic to C(K*) \ K.

Proof. Let A = {/e C(K* xD):f\ {x} x DeAQ for each x e K*
and f\K*x {0} is constant}. Then M(A) = K* x D/p& where ^
identifies K* x {0} to a point, and P = {(x, z) e M(A): | z \ < 1} is a
part in M(A), as P is a union of discs with the centers identified.

Since K is σ-compact, {co} is a (?δ set in K*. Hence there is a
continuous function h: K* —> [1/2, 1] such that h~\l) = {co}. Let
S c M(A) be the graph oth,S = {(x, h(x)): x e K*}. Then the function
g(x, z) = (h(x) — zβh(x) — z) is in A and vanishes exactly on S, so that
S is hull-kernal closed. And clearly S f] P is homeomorphic to K.
Finally if / G C(ίΓ*), then f'(x,z) = zf(x)/k(x) is in A and / r ( ^ , A(.τ)) =
/(a;) when xeK. Thus A | S Π P = C(ϋΓ *) | if. The conclusion of the
corollary now follows directly from Theorem 1.

3* Before proving our main theorem we construct the algebra
to be used in place of the disc algebra AQ. Let I be an index set, and
let YΣ be the product of discs, Yτ = J[(D:ieI)m Denote by Aτ the
subalgebra of C{Yx) generated by the coordinate functions zi9iel
where z^p) = p,. Then M(AX) = Yl9 for if φ e M(AZ)9 then | φ(Zi) \ ̂  i
so that φ is evaluation at XeYτ where λ; = φfa). Let θ be the
"origin" in Yl9 ^(0) = 0 for all i e I, and let Po be the part of M(AZ)
containing θ. We now need a well known fact which is proved using
elementary conformal mappings of the disc D. If (gn)n=i is a sequence
in A with \\gn\\ ^ 1 and gn(x) —> 1, then a; — 2/ implies #n(2/) —> 1.
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LEMMA. Let peM(Aj). Then peP0 if and only if there exists
a < 1 such that | Zi(p) | ^ a for all iel.

Proof. If no such number exists, then there is a sequence {gn)ζ=1

of coordinate functions zi such that gn(p) —•* 1 while gn(θ) — 0. Hence
pη^θ, by the above remark. If such an a exists, then let p: D—^YT

by (p(t))i = t/a-Pi. Then p(0) = 0, ρ(a) = j> and for feAΣjfopeAQ

with I!/op || ^ | | / | | . Then a s O - α for Ao we have 0 ~ p .

THEOREM 2. Lβ£ K be a σ-compact completely regular space.
Then there is an algebra B and a part Q c M(B) such that Q is
homeomorphic to K and B\Q — Cb(K), the algebra of bounded con-
tinuous functions on K.

Proof. Let βK be the Stone-Cech compactiίication of K. Take(1)

I = βK\K and set A = {fe C(βK x YΣ) :f\{x}xYIeAI for all xeβK
and f\βKx{θ} is constant}. Then M(A) = βK x YJ^ where ^
identifies βK x {θ} to a point, and P = {(x, z) e M(A): zeP0} is a part
of M(A).

Write iΓ = U«=i %n, where Kn c jBΓn+3 and each JSΓW is compact.
Then for each teβK\K there exists a continuous function ht:βK—>
[1/2, 1] with ht(t) = 1 and A^α;) ^ 1 - 2"w when α e ίΓΛ. Let p: /5iί->
M(A) be defined by p(a ) = (x, H(x)) where (H(x))t = ht(x) for each
t e βK\K. Then p is a homeomorphism of /3iΓ onto S = p(βK) and
|θ(JSΓ) = S Π P by the above lemma. S is hull kernel closed in M(A)
because S = f\ {97\0):t e BK\K} where gt(x,z) = (λt(a) - ztβht(x) - zt).
And A | S n P ^ C5(if), because if feC\K) and / is its unique ex-
tension to βK, then for any t e βK\K, f'(x, z) = ztf(x)/ht(x) is in A
and / ' = f°p~1 on S. The conclusion now follows from Theorem 1.

We remark that with these arguments one can get some restriction
algebras B\Q different from C*(K). For example, if K is compact
and Aj. is an algebra with M(A±) = K, then there is an algebra B
with part Q homeomorphic to K and B \ Q — AlΛ
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significantly. We thank Professor Lewis Robertson for a helpful
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1 If K is compact, let I be a singleton, and proceed as in the corollary.
2 She observed t h a t X= {(z,w) :\z\^l,w= ±1/2} U {{z,w): \z\ = 1, Imz > 0, \w\ ̂  1}

is a polynomially convex subset of C2 containing a part consisting of two discs.
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