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REPRESENTATIONS OF DIRECT PRODUCTS
OF FINITE GROUPS

BURTON FEIN

Let G be a finite group and K an arbitrary field. We
denote by K(G) the group algebra of G over K. Let G be
the direct product of finite groups Gι and G2, G — G1 x G2,
and let Mi be an irreducible iΓ(G;)-module, i— 1,2. In this
paper we study the structure of Mί9 M2, the outer tensor
product of Mi and M2.

While Mi, M2 is not necessarily an irreducible K(G)~
module, we prove below that it is completely reducible and
give criteria for it to be irreducible. These results are applied
to the question of whether the tensor product of division
algebras of a type arising from group representation theory
is a division algebra.

We call a division algebra D over K Z'-derivable if D ~
Hom^s) (Mf M) for some finite group G and irreducible ϋΓ(G)-
module M. If B(K) is the Brauer group of K, the set BQ(K)
of classes of central simple Z-algebras having division algebra
components which are iΓ-derivable forms a subgroup of B(K).
We show also that B0(K) has infinite index in B(K) if K
is an algebraic number field which is not an abelian extension
of the rationale.

All iΓ(G)-modules considered are assumed to be unitary finite
dimensional left if((τ)-modules. If Mi is a i^G^-module, ί — 1, 2, the
outer tensor product Mt # M2 of M1 and M2 is the iΓ(G)-module whose
underlying space is Mx ®κ M2 and where (glf g2) e G acts on M1 ® r M2

by

(0i, #2) Σ ^ O ^ ^ Σ » Θ^mj, m, GMi, m\e M2, gάe Gd, j = 1, 2 .

It will be necessary to refer to the theory of the Schur index of
absolutely irreducible representations of finite groups. In § 1 we
present a treatment of this theory where the relevant theorems
are proved for arbitrary fields. This treatment is included in the
author's doctoral dissertation supervised by Professor Charles W. Curtis
at the University of Oregon. During the preparation of this paper
the author held a National Science Foundation Graduate Fellowship.

l The Schur index. The method used in [3, §70] to prove the
relevant theorems about the Schur index for fields of characteristic zero
does not seem to generalize to arbitrary fields. In that treatment atten-
tion is focused on the enveloping algebra of the representations rather
than on the representations themselves. We work directly with modules
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over group algebras. After Theorem 1.1 has been proved, the methods of
[3, § 70] can be generalized to arbitrary fields. However, this approach
seems to be unnecessarily long and complicated and we have chosen
to present a unified treatment independent of these methods. For the
convenience of the reader we have included several short arguments
that are similar to ones appearing in [3].

Before we can state our main results we need to introduce some
terminology. We refer the reader to [3] for the relevant theory.

Let G be a finite group. A field E is a splitting field for G if
every irreducible £r(G)-module is absolutely irreducible. Let K be a
field. By Theorem 69.11 of [3] there is a finite normal separable
extension E of K which is a splitting field for G. For if K has
characteristic p, there is a finite field F of characteristic p which is
a splitting field for G. Since F is an extension of its prime field by
roots of unity, a composite E •= F- K of F and K is a splitting field
of the desired type. We shall assume throughout this section that
E is a normal separable extension of K which is splitting field for
G. K will be assumed to be an arbitrary field.

We denote the Galois group of E over K by <&(E \ K). Let JV be an
£r(G)-module with basis mu * ,m% over E, and let the action of G
on JV be given by gπii — ̂ s α*i(#)mi> 9 ^G, aίj(θ) £ E. Let V be an n-
dimensional vector space over K with basis vu , vn and let σ e &{E\ K).
Under the action gv{ = Σs σ(aij{9))v'i> 9 &G, V becomes an £r(G)-module
which we denote by σN. σN is called a conjugate module of JV. If
χ is the character of JV, then we denote by σχ the character of σJV,
where (σχ)(g) = σ(χ(g)), geG. σ and τ will always denote elements
of ^(E\K) while χ and ψ will always be characters of modules over
group algebras.

Let JV be an irreducible E(G)-modu\e and let E* denote an alge-
braic closure of E. All fields considered will be assumed to be sub-
fields of E*. N* = N(g)EE* is an irreducible £7*(G)-module. AT*
is said to be realizable in a subfield / o f E* if there is a J(Gί)-module
V such that F ® , E* s JV*. Let χ be the character of JV, χ* the
character of JV*. Then χ*(g) = χ(g) for all geG. We denote by K(χ)
the field generated over K by the values χ(g), geG. The Schur index
mκ(N) of JV over K is the minimum value of (J: K(χ)), the degree
of J over K(χ), taken over all fields J in which JV* is realizable,
where K(χ)(zJc:E*. In general, there will not exist a subfield J of
E in which JV is realizable and such that (J: K(χ)) = mκ{N) [2],

Let M be an irreducible iΓ(G)-module. M is isomorphic to a
minimal left ideal of a simple component A of K(G)/raά K{G) [3, Th.
25.10]. A is isomorphic to a complete matrix ring (D)n, D a division
algebra with center L,Lz)K, and D = Hom*^ (M, M) [3, Th. 26.8].
The index m(D) of D is (F: L) where F is any maximal subfield of
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D [3, Th. 68.6]. We shall let rM denote the direct sum of r copies
of M, where r is a natural number. We set ME = M(g)κ E. N will
be assumed to be an irreducible E(G)-module which is a composition
factor of ME. χ will be the character of N. Since A is associative,
A may be viewed as an L-algebra. We denote this algebra by LA.
A will denote KA. We shall maintain the above context throughout
this entire section.

THEOREM 1.1. The center L of D is K{χ). A§§κK{χ) is iso-
morphic to a direct sum of t copies of K{X)A, where t — (K(χ): K).

We begin with a lemma which is essentially proved in [3, Th.
70.15].

LEMMA 1.2: ME ~ ^(σJVφ φ σtN) where the σi e 5?(E\K),
σγ — 1, k is a natural number, the {σiN} form a complete set of
nonisomorphic conjugates of the irreducible E(G)-module N, and t —

: K).

Proof. ME is a completely reducible and E ®κ (K(G)/mά K{G)) ~
E(G)/rad E(G) [3, Ths. 69.9, 69.10]. AE is a component (not neces-
sarily simple) of £7(G)/rad E(G). Since AE is semi-simple [3, Th. 69.4]
we have AE ~ C ~ Cex φ φ Cet where the e{ are primitive orthogo-
nal central idempotents of C For any σ e 5f(E\ K) we define a K-
automorphism of AE by σ(X a5 0 /_,-) = 2 α i ® σfό> ade A, fi e E. σ(fi)
is again a primitive central idempotent of C and so coincides with
some fd, 1 <; j ^ ί. If fl9 , fr are the different conjugates σ{fϊ) of
/x then f = fx + . . . + fr is a central idempotent of A. Since A is
simple, r = t. Let fx = Σifu ^ e ^^e decomposition of f± into primi-
tive idempotents. Cfu = N for some irreducible £'(G)-module N and
Cσ(fu) ~ σN. Since C - Cf, φ Cσt{fx) φ φ Cσ^Λ), we see that
N, σ2N, , σtN are the distinct ί/((τ)-components of ME and that the
{σiN} form a complete set of nonisomorphic conjugates of N. This
proves that ME = d(ΐ)Nφ d(2)σ2N@ ®d(t)σtN, where the d(i)
are natural numbers. Since σME = ME for all σe

By the Krull-Schmidt Theorem d(l) = d(2) = = d(t). It only re^
mains to prove that t = (ϋΓ(χ): iΓ). Let ^ ^ = {σ e &(E \ K) | σN ~ N}.
From Galois Theory t = [S?(E\K): £ί?\. But σiV ^ iV if and only if
aχ = χ, where χ is the character of N. Therefore
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and so t = (K(χ): K).

Let h be the exponent of G. For g eG, χ(g) is a sum of h-th
roots of unity. Therefore K(χ)dK(VT) and since &(K(\/T)\K)
is abelian K(χ) is a normal separable extension of K. lί σ e^{E\K),
then K(σχ) = JSΓ(χ).

Proo/ 0/ Theorem 1.1. Let A (g^ ϋΓ(χ) ^ JBX φ -.. φ J5S, the J5,
simple iΓ(χ)-algebras. If the irreducible K(χ)(G)-module £7 is isomor-
phic to a minimal left ideal of Bly then UE ~ r(σιN'φ •) by Lemma
1.2. However, since K(σχ) = K(χ) for all σe Sf(#|iΓ), it follows
that IP = r(criV) for some σ e &(E\K). Since AE has ί distinct non-
isomorphic simple components we have s <L t and J54 sέ B̂  for all i, i .
Therefore s — t and each ^ ®^(Z) E is simple with center E [3, Th.
29.13], If Fi is the center of Bi9 then the centroid of Bi§t)K{1)E is
Fi(^)κίχ)E [7, Th. 1, p. 114]. Counting dimensions we see that
F% ®κn) E = E if and only if Ft = jBΓ(χ). Therefore the centroid of
A ®κ K(χ) is isomorphic to a direct sum of t copies of K(%). The
center of D is L. Then the centroid of A (g)̂  iΓ(χ) is L (g)̂  iΓ(χ) and
so L 0X- iί(χ) is a direct sum of ί copies of K(χ), t = (JSΓ(χ): ϋΓ). If
J is a maximal ideal of L (g)̂  X"(χ), then (L (g κ K(χ))/I = jK"(χ) and so
every composite of ϋΓ(χ) and L over iΓ is isomorphic to K(%) [8, p.
84, Th. 21]. Therefore iΓ(χ) — L. But then A is an algebra over
K(χ) and we have

A ®κ L = (LA (gz L)0KL^ LA 0L (L ®κ L)
^ z A ( g ) z ( L φ .. . φ L ) ^ z A ( g ) z L φ .. . 0 z A ( g z L

= zA φ φ LA .

Since L is normal over K, L §§K L is a direct sum of t copies of Lr

t = (L:K) [8, p. 87].

It will always be clear from the context whether we are viewing
A as a Z-algebra or as an L-algebra. We shall, therefore, not con-
tinue to distinguish between these algebras but shall simply write A
for both KA and LA. We recall that a finite extension F of L is a
splitting field for D(A = (D)n) if D (g)z F = (JP)S for some integer s.

LEMMA 1.3. Let K be a perfect field and F a finite extension
of L. Then F is a splitting field for D if and only if JV* is re-
alizable in F, ΛΓ* = N&EE*.

Proof. Since F is a separable extension of L.
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[3, Th. 69.10]. Let U be an L(G)-module so that U®LE* £*
r a natural number, and such that U is isomorphic to a minimal left
ideal of A (the existence of such a U was proved in the proof of
Theorem 1.2). A®LF is a simple component of F(G)/mdF(G). Let
V be a minimal left ideal of A 0 z F . Then RomFiO) (V, V) ~ D'
where A<ξ§LF ^ (D% ΛΓ* is realizable in F if and only if D' = F
[3, Th. 29.13], Since F is a splitting field for D if and only if
A 0 Z ί7 = (F) r we are done.

THEOREM 1.4. (a) ME ~ mκ(N)(N φ σ2N φ φ σt

(Tί e ^ ( J S | JK"), £&β {σ̂ iV} form a complete set of nonisomorphic con-
jugates of the irreducible E(G)-module N, and t = (K(χ): K).

(b) mκ(N) = m(D).
(c) If K has prime characteristic, then mκ{N) = 1, i.e.

Hom^(^) (ikf, M) is commutative.
(d) mκ(N) divides the dimension (N: E) of N over E.
(e) For any finite algebraic extension J of K in which N* is

realizable, mκ(N) divides (J:K(χ)).

Proof. We have A <g>κ E = C ^ Ceλ φ (g) Cσt{e^. Since E is
a splitting field for G, Cβt = Cσ̂ βO

(A®KE:E) = tr* = (A:K) = ((D)n : K) - π2(D: ίΓ)

= n\D : L)(L : K) = nH[m{D)f .

Therefore r = n-m(D). M is isomorphic to a minimal left ideal / of
A. Since A = (D)n, A is isomorphic to a direct sum of n copies of I.
Set m — m(D). Then A0KE is isomorphic to a direct sum of t
copies of (E)mn so A ξξ)κ E is a direct sum of tmn minimal left ideals.
σάN is isomorphic to a minimal left ideal I3 of yl 0 * E, j = 1, , t,
σx = 1. Since M ~ I, the {/,•} appear with equal multiplicity in 1 0 ^ E.
By Lemma 1.2 & = m(D) and i¥^ ^ m(D) (ΛΓφ ^ΛΓφ φ σ,iV). The
rest of the proof is divided into two parts.

Case 1. K is perfect. Let V be a maximal subfield of D. F is
a splitting field for D of minimal iΓ-dimension. By Lemma 1.3 iV*
is realizable in V. Therefore mκ(N) ^ (V: L) = m(D). Conversely,
if iV* is realizable in a finite extension F of L then ί7 is a splitting
field for D. Hence mκ(N) g m(D). This proves (a) and (b) when K
is perfect. Let K now have characteristic zero. We have seen that
N is isomorphic to a minimal left ideal of (E)nm. Then HomE (JV, N) ~
(E)mn so (N E) = ^m = n-mκ(N). If AP is realizable in a finite
algebraic extension J of K, then J" is a splitting field for D by Lemma
1.3. m(D) = mκ{N) divides ( J : K(χ)) by [3, Th. 68.7]. This proves
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(d) and (e) for K of characteristic zero.

Case 2. K has characteristic p, p > 0. Assume first of all that
K is finite. Then D is a finite skewfield and hence a field, D — K(χ)
[3, Th. 68.9]. Since K is perfect and K(χ) is a splitting field for D,
N* is realizable in K(χ). Therefore mκ(N) — 1 by Case 1. We have
m(D) = 1 also. We now assume that K is infinite. Let F == ZP(χ,
σΰL, -', <?tX) where Zv is the prime field and the {σ{i} are the char-
acters of the {OiN}. F is a finite field so the {σ̂ iV} are all realizable
in F, say V{ (g)̂  E ~ σtN, i = 1, , t, σ1 — 1. The F< are irreducible
î (G)-modules. Let TΓ = Fx φ φ V*. The character of W lies in
KΓ)F=R. Since F(g>BR(G)/radR(G) Zί F(G)/γa,dF(G), there is an
.β(G)~module Γ such that

TF ̂  TF = V, φ . . . 0 F, .

Therefore (m(D)T)κ = M; and since M is irreducible, m(D) = 1. Since
iV* is realizable in Zp(χ), it will be realizable in K(χ); so mκ(N) — 1.
(d) and (e) are now immediate.

COROLLARY 1.5. The characters of the nonisomorphic irreducible
K(G)-modules are linearly independent over K.

Proof. The characters of the nonisomorphic i?(G)-modules are
linearly independent over E [3, Th. 30.12]. Since the characters of
M and ME are identical, the desired result is immediate from Theorem
1.4 (a) and (c).

REMARK. We have only stated the results concerning the Schur
index that we will need in the following sections. Analogues of the
other important theorems found in [3, §70] can also be easily proved
by the methods used here.

It will be useful to have an expression for the relationship be-
tween the simple component A of iΓ(G)/rad K(G) and the irreducible
£τ(G)-module N.

DEFINITION 1.6. Let K be an arbitrary field, E a finite separable
extension of K. The simple component A of i£(G)/rad K(G) is associ-
ated with the irreducible i?(G)-module N if N is isomorphic to a
minimal left ideal of A &κ E.

2* Outer tensor products of irreducible modules* Throughout
this section K will denote an arbitrary field, G± and G2 will denote finite
groups, and G will be the direct product of G1 and G2, G = Gx x G2.
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E will denote a finite normal separable extension of K which is a
splitting field for G. Mi will be an irreducible ^(G^-module, i = 1, 2,
and Mλ # M2 will denote the outer tensor product of Mx and M2. Ai
will denote the simple component of i£(G;)/rad (KGi) corresponding (in
the sense of Definition lβ6) to Mif i = 1, 2. Let N{ be an irreducible
^(G^-component of Mf. For any σ, τ e g?(E\ K), σNx # τN2 is an
irreducible E(G)-module [1, Footnote, p. 587], σNx$τN2 will not, in
general, be a conjugate of Nλ§ N2. We shall let ψ{ denote the char-
acter of Ni, i — 1, 2. All fields considered will be assumed to be
subfields of E*, a fixed algebraic closure of E. Let L^ = K(ψ{),
βέ? — <&(E\Li), i = 1,2. Let Jgf be a fixed set of coset representa-
tives of Jgf in ^ ( £ Ί iΓ). Theorem 1.4 (a) implies that ikff ~
m^NiXJ] σiNi), the sum being over all σt G <%?. Since the {LJ are
normal over iΓ, there is an unique composite L of L2 and L2 over iΓ.

PROPOSITION 2.1. mi,(iV1#i\Γ2)=m^(σΛΓ1#rJV2) for a l l u r e Z?(E\K).

Proof. Let σ, r G S (̂2£ | JK"). We may clearly assume that σ e
r € ^ , In § 1 we observed that K(ψi) = K(σψi) = Lif ί = 1, 2, for
all σe &(E\K). Let L be the composite of L± and L2 over iΓ. Then

mAN, % N2) = m^N, # ΛΓ2), mκ(σiV3 # τN2) - m ^ σ ^ # τiV2) .

Because of Theorem 1.4 (c) we may assume that K has characteristic
zero. Let C, D be the simple components of L(G) associated with Nx # N2

and σNλ # τN2 respectively. In view of Theorem 1.4 (b) it is sufficient
to prove that C ~ D. Since K(G) ~ K(G^ ®κ K(G2), A, ®κ A2 is a
component of K(G). Therefore Aζ ® z A$ = (A1(^)κ A2)

L is a component
of L(G). It follows from Theorem 1.2 that Af ® z Af is a direct sum
of isomorphic simple algebras. From Theorem 1.4 (a) we have Mf ^

0iNi), the sum being over all σt e J%?m Then

t % M2γ ~Mf%Mξ^ m^NOm^N,) Σ ocN, #

where the sum is taken over all α e ^ , βe^ζ. From this we see
that both iVΊ # iV2 and σN1 # riV2 are associated with Ax 0 ^ A , for all
tf G ^g?, τ e <%%. This proves that C and D are components of Af(g)LAξ
and so C = D.

Using this result we can determine the structure of ik^ # M2 We
first recall some properties of principal indecomposable modules [3,
§54], Let Vu V2 be principal indecomposable jKΓ(G)-modules. Then
Vi = K(G)βi from some primitive idempotent eiy i = 1, 2. T^ has an
unique maximal submodule isomorphic to rad iΓ(G)e, . We denote this
submodule rad Vi% ϋΓ(G)eί/rad K(G)βi is an irreducible iΓ(G)-module
which we denote by Viy i = 1,2. V1 = F2 if and only if VΊ = y"2.
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THEOREM 2.2. M1 # M2 is completely reducible. Mx% M2 ~
&(TΊ0 ••• © Γr), where the {T{} are nonisomorphic irreducible K(G)-
modules and k — mκ(N^)mκ{N2)lmκ(N1^ N2). The {T,} have common
K-dimension s, where s — mκ(N1 # N2)(L : K)(NX # iV2: E).

Proof. Let F α , F ί 2, •••, F ί % ( ί ) be the set of (isomorphic) principal
indecomposable jR^G^-modules such that Vid = Mi9 i — 1, 2, j" = 1, 2, ,
rc(i). Let G, = V* © F ί 2 0 •_• 0 F i Λ ( i ) . C4 is a component of_ KiG,),
i = 1, 2. C4 = F^ © φ F i n ( i ) - M« φ © Mif i - 1, 2. G, is the
sum of all the minimal left ideals of ^(G^/rad K(Gi) which are iso-
morphic to Mifi = 1,2. Therefore Cf is a simple component of
K(Gi)/radK(Gi),i = l,2 [3, Th. 25.15]. Let iV be the radical of
CΊ®^G 2 . Then iVz is contained in the radical of CΪ(S)LC%. But
Cf = Ai φ φ Amu), i = 1,2, where the {Dίy} are central simple
algebras over L. Therefore Cf 0 Z Cf has zero radical, so N — 0, i.e.
^i 0^: ^2 = CΊ ® G2/rad (Gx §§κ G2). Since Gx 0 ^ G2 is a component of
K(G), we may express it as a direct sum of principal indecomposable
^(G)-modules, C, ®κ C2 = Y, © . . . © Γβ. Then G . ^ G . / r a d C ^ ^ G , ^

the {Yi} are irreducible iΓ(G)-modules. We have

Ϋi@ θ Ϋs = C l ( g) κ C2 = ,Σ ^ (8)^ F 2 i = Σ MX#M 2 .

Let Mi # M2 = Xt 0 0 Xr, the X^ being indecomposable K(G)~
modules. By the Krull-Schmidt Theorem each X{ is isomorphic to
some Ϋ3. Therefore M1§ M2 is completely reducible [3, Th. 15.3],
Let M, # M2 ~ Ϋ1 0 0 Ϋr. We have previously observed that

(M, # M2)
E = m^N^m^N^Σ σN, # τN2), σ e M, τ e

Let σl9 σ2 be elements of ^ . If σ1Nι # τ1N2 = σ2N2 # τ2iV2 where rx

and r2 are in 3ί^, then σΊ^i = σ2ψ2 and so σx = σ2. Since (Mi # M2)^ —
0 β 0 Ϊ 7 , it is immediate from Proposition 2.1 that M1^M2^

β 0 ϊ"r), where the Tt are nonisomorphic irreducible K(G)-
modules and k = mκ{N2)lmκ(N1 # N2). The ϋT-dimension of any of the
Tls is mκ(N^ N2)(L : K)(N^ N2: E) in view of Theorem 1.4 (a) and

u f 2) - J^(σti, ^f 2) = -̂  for all σ, τ e

REMARK. Let F 4 be a principal indecomposable
i = 1, 2. The proof of Theorem 2.2 shows that V± # F2 is a principal
indecomposable iΓ(G)-module if and only if V1 # F2 is an irreducible
K(G)-module. If the F* are indecomposable, but not necessarily prin-
cipal indecomposable ^(G^-modules, i — 1, 2, then Fj. # F2 is indecom-
posable if and only if dQl(V^) §§κdQ2(V2) is a division algebra, where

dff.(Vi) - Horn (Fi, Fi)/rad Horn (F l f F4) , i = 1, 2
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[5, p. 438].
We now turn to the question of when Mλ % M2 is irreducible.

THEOREM 2.3. Mι # M2 is an irreducible K(G)-module if and only
if the following conditions are satisfied:

( a ) m^N^mAN,) - mκ{Nx % N2).
(b) &(E\K) = 3^3^.
( c ) (Kif,) : K). (K(ψ2) : K) = (K(ψu ψ2): K).

Proof. We begin by showing that &(E\K) = 3ίfγ3ίfi if and only
if σ3έfΎΐ\τ3έf2 is nonempty for all σ, τ e <&?{E\ K). Since K(ψi) is a
normal extension of K, 3ίfi is a normal subgroup of &(E\K), i ~
1, 2. Assume that &(E\K) = ̂ ^ and let σ, τ e ^(£7| if). Then

t , τ£ί?2 - fe2^1 where h{ e 2ft, i = 1, 2. Then

Conversely, assume that σ£ίfλ ΓΊ τ^f2 is nonempty for all σ, τ e 5f(E\ K)
and let XG &(E\ K). Then x,̂ gt IΊ Sίζ is nonempty so α fei = h2 for
some Ax e ^f, fe2 € ̂ f. Therefore x e β^^f = 3ft 2ίζ so %?(E\K) =
<%fβέt. We have (M^ M2)

E ~ m^N^m^N.XΣ.σN^ τN2), the sum
take over all σ e Jft, τ e Sίζ. Assume that Mt # M2 is irreducible. By
Theorem 1.4 (a) we see that (a) is necessary. For each σ e <βft, τ e 3ft
there must exist a ye^(E\K) such that σNx$τNz ~ ΊNX$ΊN2 ~
7(iVi # iV2). Then λ e σ3ft Π r^gt so (b) is necessary. By Theorem 1.4
(a) the total number of composition factors of (M1 % M2)

E must be
m^N, # N2) (K(ψu ψ2) : K). Therefore

ψ2) : K) = (Kfa) : K) (K(ψ2) : K)

so (c) is necessary. The same argument shows that (a), (b) and (c)
are sufficient since (Mt # M2)

E = WB, W an irreducible jK"(G)-module,
implies Mx §M2~ W.

COROLLARY 2.4. Let G, = G2,G = G±x Glm Let Mί be an irredu-
cible K(G^)-module. Then M1%Mι is irreducible if and only if M1 is
an absolutely irreducible K(G^)-module.

Proof. The if part of the theorem is immediate from [1, Foot-
note, p. 587], Conversely, let M1$Mί be irreducible. In order for
condition (b) of Theorem 2.3 hold, K(ψ^) must equal K. If N? is
realizable (in the context of § 1) in a field F then so is Nu There-
fore m^N^N,) ^mκ{N^m But then condition (a) of Theorem 2.3
holds if and only if mκ{N^} •=• 1. Therefore N* is realizable in K
and so Mx is absolutely irreducible.
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The next result gives a more easily applied criterion for Mx # M2

to be irreducible.

THEOREM 2.5. Let K(ψ^ = K and assume that (mκ{N^ mκ{N2)) =
1. Then M1 # M2 is irreducible.

Proof. Since Kfa) = K, conditions (b) and (c) of Thereom 2.3
are satisfied so we need only prove that m^N^ N2) = mκ(N^mκ(N^.
It follows from Theorem 2.2 that mκ{N^mκ{N^ ^ mκ{N^N2). Since
(mjgr(iV1), mκ(N2)) = 1 we need only show that both rnκ(N^) and mκ(N2)
divide m^N^ N2). By Theorem 1.4 (c) we may assume that K has
characteristic zeroβ Let F be a maximal subfield of the division
algebra component of A1 §§κ A2. Then N* # JV2* is realizable in F and
(F:K(φuψs)) = mκ(N1$Ni) [3, Th. 68.6]. In view of Theorem 1.4
(e) it is sufficient to prove that JV? and iV2* are realizable in F. Let
Bi be the simple component of Ai ζ>Qκ F corresponding to N*. Since
Nf # N* is realizable in F, B, ®F B2 ^ (F)r. Therefore B, and B2 are
inverse isomorphic elements of the Brauer group of F and hence their
division algebra components have the same index. If Bi — (Di)n{i)

we have m(A) = w(A). From Theorem 1.4 (c) we have mF(N?) =
mF(N£). Since mF{N^) divides mκ{N^ and (m^Nj), mκ{N2)) = 1,

*MJV?) - W^JV?) - l.

COROLLARY 2.6. Let the orders of Gt and G2 be relatively prime.
If Kiψ,) = K, then Mλ # M2 is irreducible.

Proof. By Theorem 1.4 (d) m^N,) divides (Nt: E), i = 1, 2. For
JfiΓof characteristic zero, (Nt: £7) divides the order of Gt [3, Th. 33.7].
For K of characteristic p we have mκ{Ni) = 1, i = 1, 2. In both
cases Corollary 2.6 is immediate from the preceding theorem.

Given an irreducible i£(G)-module M, it is natural to ask when
M is isomorphic to Mλ # M2 for irreducible ^(G^-modules Mu i — 1, 2.
If such Λfi exist, i = 1, 2, we say that ikΓ is factorizable. If M" is a
iΓ(G)-module, we denote by MG. the left ^(G^-module obtained by
restriction of the set of operators on M from K(G) to K(Gi), i = 1, 2.

THEOREM 2.7. Lβί M δe α^ irreducible K(G)-module. Then
Mβ ~ βiMi for irreducible K(Gi)-modules Mif i — 1, 2. M is factori-
zable if and only if M1 # Λί2 is irreducible, in which case M = M±$ M2.

Proof. MG. ~ ei{Mi φ M[9) 0 0 M\h)), where the Mi9) are con-
jugates by elements of G of the irreducible iΓ(Gy-module Miy i — 1, 2
[3, Th. 49.2]. Since Gx and G2 commute, all conjugates of Mt are
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equivalent so MG. ~ e^Mi, ί = 1, 2. Let

ME ~ mκ(N)(Σ σ,N), σs e

where N is an irreducible £r(G)-module. Since N is factorizable, we

have N ~ iVΊ # N2 where the N{ are irreducible ^(G^-modules, i = 1, 2.

Then ikF ̂  m*(Λ0(Σ;tf;W # JV2). Since

iNΓ*. ~ / . # . , (ME)Gi ~ f.m

so (M0.)* ~ {ME)Gi ~ Am^NXΣs ^ ^ ) Therefore

so iVx#iV2 is a component of both ilfs and ( M ^ M ^ . If M ^
Mί#M^, {MJ} irreducible iΓ(G,)-modules, then MG. S kMl', and so (M?)^ and
{Mi)E both have iV̂  as a component, i = 1, 2. Therefore Mί = M[, i = 1, 2;
and similarly, if ikf, # ikf2 is irreducible, we have M = ikί, # ikΓ2β

The well known theory of central simple algebras over algebraic
number fields has an interesting application to outer tensor products.
Let K be an algebraic number field, G an arbitrary finite group, and
E 8L finite normal extension of K which is a splitting field for G.
We denote by G[r) the direct product of G with itself r times. Let
N be an irreducible ^(^-module. N{r} will denote the .£7(G(r))~module
N$N§ ••• #iV, the outer tensor product of N with itself r times.
Let ψ be the character of N.

THEOREM 2.8. mκ(N) is the smallest integer r such that N{r)

is realizable in K()

Proof. Since mκ(N) — mK{^)(N) we may assume that K(ψ) = K.
Let A be the simple component of K(G) corresponding to N. Then
A{r) — A φκ A (£)κ 0 ^ 0 ^ A, r times, is the simple component
of K(G{r)) corresponding to N(r). N{r) is realizable in K if and only
if A(r) ^ (K)s. Let t be the exponent of A. Then A{r) ^ (K)s if and
only if t divides r. Let D be the division algebra component of A.
Since A is central simple over an algebraic number field, t — m(D)
[4, Satz 7, p. 119]. The desired conclusion now follows from Theorem
1.4 (b).

3* Derivable division algebras* Let D be a division algebra
and K a subfield of the center of D.
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DEFINITION 3.1. D is K-derίvable if D ~ Hom (̂Gί)(M, M) for some
finite group G and irreducible iΓ(G)-module M.

Theorems 2.3 and 2.5 have an immediate application to the theory
of derivable division algebras.

THEOREM 3.2. Let A and A be K-derivable division algebras.
Let Llf L2 be the centers of A and A respectively. If A is central
over K, i.e. L1 — K, and if (m(A), w&(A)) = 1> then D1(^)KD2 is a
division algebra. In general, the following conditions are necessary
and sufficient for A (B)κ A to be a division algebra:

(a) m(D1)m(D2) = m(D3), where A is the division algebra com-
ponent of a simple component of (A (S)κ A) ®κ L1 L2f L^L2 being a
composite of Lx and L2 over K.

( b) Let E be a finite normal extension of K which is a split-
ting field for A and A. Then &{E\K) = £έ*£έζ where ^gf =
Sf(#|L4), i = l,2.

(c) (Li:K)(L2:K) = (LrL2:K).

Proof. Let A = H o m ^ , (Mif Mt), i = 1, 2. Set G = G, x G2.
Then

Horn (M, # Mt, M, # Λf8) = Horn (Mu M,) ® Horn (M2, M2) ^ A ® A .

If Mi # ikί2 is an irreducible iΓ((?)-module, then A 0 ^ A is a skewfield
[3, Th. 26.8]. Conversely, if A 0 ^ A is a skewfield, then M^M2

is indecomposable. By Theorem 2.2 MX%M2 is irreducible. Theorems
2.3 and 2.5 now yield the desired result.

If K is an infinite field of prime characteristic, there will, in
general, exist division algebras central over K which are not fields.
Theorem 1.4 (c) proves that such division algebras are not derivable.
We now consider fields of characteristic zero. If D is a Z-derivable
division algebra and L is the center of D, then Theorem 1.1 shows that
D is L-derivable. For this reason we shall consider only central divi-
sion algebras. Our final result shows the existence of infinitely many
division algebras D which are not iΓ-derivable for any subfield K of D.

Let B(K) denote the Brauer group of K. Let B0(K) be the sub-
set of B(K) consisting of those classes of central simple algebras
which have ^-derivable division algebra components.

THEOREM 3.3. BQ(K) is a subgroup of B(K). If K is an alge-
braic number field which is not an abelian extension of the rationals,
then B0(K) has infinite index in B(K).

Proof. K is iΓ-derivable since K = Hom^(β) (N, N) with G the
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identity group and N the trivial if(G)-module. Therefore B0(K) is
nonempty. Since every element of B(K) has finite order, to show
that B0(K) is a subgroup of B(K) it is sufficient to prove that B0(K)
is closed under (g)^. Let {Ax}, {AJ e B0(K) with A e {AJ, A a division
algebra central over K and A = Ή.omκ{Θi) (Mif M{), i = 1, 2. Let G =
(?! x G2. Then A (g)^ A = Hom*^ (Mγ # Af2, M2 # Λf2). From the proof
of Theorem 2.2 we see that M^M2~ kN, N an irreducible K(G)-
module. Let Hom s ( 0 ) (JV, N) = A , A a division algebra central over
ϋΓ. Then H o m ^ , {M1 # Λf2, Λfi # ilί2) ~ (A)* so A <g>* A = (A)r. There-
fore Ai <g)κ A2 ~ (A) s, so B0(K) is a subgroup of B(K).

Assume that K is an algebraic number field which is not an
Abelian extension of the rationale. Let L be the maximal abelian
subfield of K. There exists a rational prime p which splits completely
in K [6, Satz 114, p. 126], (As Dr. Basil Gordon has pointed out,
this result can also be proved purely algebraically.) Let Lo, Ko denote
the rings of algebraic integers of L, K, respectively. There exist
prime ideals % and 2)2 of KQ such that 3^ Π Lo = % Π LQ and 2)t ΓΊ Z =
% Π Z = (p), Z the ring of rational integers [9, Corollary, p. 287],
There exists a division algebra D central over K for which h(D, Ŝ ) =
1/3, h(D, 2)2) = 2/3, h(D, 2)) = 0 for all other primes S) of K, finite or
infinite, where h(D, 2)) denotes the Hasse invariant of D at 2) [4,
Satz 9, p. 119], We shall show that D is not iί-derivable.

Suppose D ~ HomjSΓ(G) (M, M) for some finite group G and irredu-
cible iί(G)-module M. Let E be a finite normal extension of K which
is a splitting field for G. Since D is central over K, ME = mκ(N)-N,
iVan irreducible £r(G)-module. Let ^ be the character of N. Let Q
be the field of rational numbers. Then Q(ψ) is a subfield of if and
since Q(ψ) is an Abelian extension of Q, Q{ψ) is a subfield of L. Let
A be the simple component of Q(ψ)(G) corresponding to N. Then A
is a central simple Q(^)-algebra, and A (g)Q{ψ) K = (D)r. Since 2)x Π A =
2)2 Π Lo we have 2).t Π Q(ψ\ = %Π Q(f)0 = 2)3. Let n(%) denote the
residue class degree of 2)̂  over 2)3, i = 1, 2. Since p splits completely
in JΓ, w(2)!) = n(%) = 1. Let h(A, 2)3) be the Hasse invariant of A at
2)3. Then n(%)h(A, 2)3) = fc(A, 2)3) is the Hasse invariant of D at 2), ,
i = 1, 2 [4, Satz 4, p, 1131. τ h ί s contradicts the fact that h{D, 2)0 Φ
h(D, 2)2).

We have shown that BQ(K) is a proper subgroup of B(K). Sup-
pose that BQ(K) has finite index n in B(K). Let 2)4 be a prime ideal
of KQ, 2)i distinct from both 2)x and 2)2. Let {Ax} be the class of
central simple if-algebras whose Hasse invariants are

h(Au 2),) = l/3w, fe(Λ, 2)2) - 2/3%, h(Au %) = (n - l)/n, h(Al9 2)) - 0

for all other primes of K, finite or infinite. Let {A$ι be the
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power of {A,} in B(K) i.e. {A^ = A, (g)^ A, (g)κ - - ® ̂  Aλ}. The Hasse
invariants of {A^n are precisely the Hasse invariants of {D} [4, Satz
3, p. 112]. Therefore {A,}" equals {D} [4, Satz 8, p. 119]. But B0(K)
has index n in B{K) so {AJ G J50(JK"). This contradicts {D}<*B0(K),
so B0(K) is a subgroup of infinite index in B(K).
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