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GENERALIZATION OF A THEOREM OF
MARCINKIEWICZ

By H. D. MILLER

Let P(z) be a polynomial of degree m > 2 and g(z) an
entire function of order less than m. According to a result
of Marcinkiewicz the function g(z) exp {P(z)} cannot be the
characteristic function of a probability distribution. The special
case, that exp {P(z)} cannot be a characteristic function, is
generally known as Marcinkiewicz's theorem. In the present
paper it is shown that if f(z) is any nonconstant entire func-
tion then neither g(z)f[ exp {P(z)}] nor f{P(z)} can be char-
acteristic functions. Also, necessary and sufficient conditions
are discussed for functions of the form /[ exp {P(z)}] to be
characteristic functions.

1* Marcinkiewicz's theorem and its extensions* Let F(x) be a
distribution function, that is a nondecreasing, right-continuous function
satisfying F{— <χ>) = 0, F(co) — 1. The Fourier-Stieltjes transform

(1.1) φ(z) = ί" eiz*dF(x) ,
J-oo

which always exists for real z, is the characteristic function of F(x).
We shall be interested in cases where φ(z) exists for all complex z
and under such circumstances ψ(z) is an entire function of z (Lukacs
[4], p. 132). One of the problems connected with characteristic func-
tions is that of characterizing them, i.e., given a function, can we
say whether or not it is a characteristic function. Necessary and
sufficient conditions are given by Bochner's theorem (see e.g. Lukacs,
[4], p. 62) but these are difficult to apply in individual cases and so
it seems worthwhile to seek characterizations of a more particular
kind.

If Φ(z) is an entire function, then the moment generating func-
tion (m.g.f.),

(1.2) M(t) = Γ etxdF(x) ,
J-oo

is an entire function of t. We prefer to work with the m.g.f. rather
than the characteristic function since this avoids frequent and slightly
inconvenient multiplications by ί.

In connection with the characterization of entire m.g.f/s, Mar-
cinkiewicz [5] proved a strong necessary condition, namely that an
entire function of finite order p > 2, the exponent of convergence of
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whose zeros is less than p, can not be a m.g.f. In particular this
result implies that if P(t) is a polynomial then exp{P(ί)} is a m.g.f.
if and only if P(t) = a2f + axt with α2 Ξ> 0 and ax real. This latter
result is usually known as the theorem of Marcinkiewicz. Lukacs
([4], p. 146) has extended this result to functions of the form ckek{P(t)}
where ek(z) is the kih iterated exponential function defined by e^z) ~
ez, ek(z) — exp {ek_1(z)}(k = 2, 3, •) and ck is a normalizing constant.
Lukacs [3] has also shown that the function

(1.3) exp [λ^β* - 1) + λ^β-* - 1) + P(t)]

is a m.g.f. if and only if X± Ξ> 0, λ2 Ξ> 0 and P(t) = a2f + axt with
α2 Ξ> 0 and ^ real. Some further extensions of Marcinkiewicz's theorem
have been given by Christensen [2], who shows, in particular, that
for certain specified m.g.f.'s g(t), a function of the form

ckg(t)ek{P(t)}

cannot be a m.g.f. if the degree of P(t) exceeds 2. Some of the
results of Ostrovskiί [6] partially overlap those of the present paper;
see Section 7.

Some further generalizations are stated in the following section
and proved in subsequent sections. We rely on certain elementary
properties of m.g.f. ?s. Firstly the function M(t) defined by (1.2) is
obviously real and positive when t is real. Further, M(t) is a strictly
convex function of t when t is real unless M(t) = 1 (Lukacs, [4],
p. 136). Further if t — u + iv(ιc, v real) then

(1.4) I M(u + iv) I ̂  M(u)

or, writing t = reiθ,

(1.5) 1 M(reiθ) \ ̂  M(r cos θ) .

In establishing that certain functions are not m.g.f.'s we shall, in
common with previous authors, show that these functions contradict
the elementary inequality (1.4) or (1.5).

2* Statement of results. Essentially, Marcinkiewiez's results
can be stated as follows: if P(t) is a polynomial of degree m > 2
and if g(t) is an entire function of order p < m, then g(t) exp{P(t)}
cannot be a m.g.f. More generally, we prove the following.

THEOREM 1. Let f(t) be a nonconstant entire function, P(t) a
polynomial of degree m > 2 and g(t) an entire function of order
p < m. Then g(t)f[ exp {P(t)}] cannot bs a m.g.f.

COROLLARY. // f(t) is a nonconstant entire function and P(t)
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a polynomial of degree greater than 2, then f[ exp {P(t)}] cannot be
a m.g.f.

Necessary and sufficient conditions for /[ exp {P{(£)] to be a m.g.f.
are available if we restrict the class of entire functions as in the
following theorem.

THEOREM 2. / / f(t) = Σ ζ=Qfnt
n is a nonconstant entire function

satisfying /(I) = 1, fn ^ 0(n = 0, 1, •) and if P(t) = axt + +
amtm, then /[exp{P(£)}] is a m.g.f. if and only if P(t) — axt + α2ί

2

with au α2 real and α2 ̂  0.

It may be thought that the condition of nonnegativity on the
coefficients fn is a necessary condition for /[exp {P(£)}] to be a m.g.f.
when P(t) = aj + a2t

2(aί real, α2 > 0). (It clearly is necessary if α2 =
0.) That is not necessary is shown by the simple example given by
taking f(t) = 2t2 - t, P(t) = tf/2, so that

which is the m.g.f. of

dF(x) = { — = e~(*2/4) - 1 e~{χ212) \dx .

(It is easily verified that (d/dx)F(x) ^ 0.)
However, we can, as in the following theorem, write down neces-

sary and sufficient conditions for /[exp{P(£)}] to be a m.g.f. without
restrictions on f(t). But these conditions are rather obvious and at
the same time difficult to apply to individual cases; i.e., it would be
difficult to determine whether a given entire function f(t) = 2 / X
satisfies the condition (2.1) below.

THEOREM 3. If f(t) — Σ n=ofnt
n is a nonconstant entire function

and if P(t) — a{t + ••• +amtm, then f[exp{P(t)}] is a m.g.f. if and
only if P(t) = axt + a2t

2 with at real, fn is real (n = 0, 1, •), /o ^ 0,
/(I) — 1 and

(i) α2 > 0 and

(2.1) Σ fnn~m \ exp (- ^)}ylln ^ 0 (0 < y ^ 1)
n=i I \ 4α 2 J)

or

(ii) α2 = 0 αnrf /Λ ^ 0 (n = 1, 2, •).

One may also ask what may be said of functions of the type
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f{P(t)} where / is an entire function. Clearly, even if P(t) were of
degree 2, / would have to be rather special for f{P(t)} to be a m.g.f.
However, in the following theorem we show that we may rule out
all entire functions if the degree of P(t) exceeds 2.

THEOREM 4. Let f(t) be a nonconstant entire function and P(t)
a polynomial of degree greater than 2. Then f{P(t)} cannot he a
m.g.f.

Finally, the following result generalizes that of Christensen ([2],
Theorem 3.1) and partially generalizes that of Lukacs ([3], p. 489 or
[4], p. 158), in connection with (1.3).

THEOREM 5. Let g(t) = Σ Γ=—0***, On S 0 (n = 0, ± 1, •), be
regular and nonconstant for 0 < 1t \ < oo and let f(t) = 2 n=ofJn>
fn ^ 0 (n = 0,1, •), be a nonconstant entire function. If P(t) =
ad + ••• + amtm and if a is real, then g(eat)f[exp{P(t)}] is a m.g.f.
if and only if g(l)f(l) — 1 and P(t) = aλt + a2t

2 with alf a2 real and
α 2 ^ 0.

3* Proof of Theorem 1* We require the following lemma.

LEMMA A. Let R be a large positive number and let φ(R) be a
bounded function of R. Let

P(t) = amtm + α ^ r 1 + + a,t + α0 (m ^ 1)

where am = am exp (iβm) Φ 0. Then the roots tk(R) of the equation.
P(t) == R + iφ{R) satisfy

Proof. Clearly, the result is exact if P(t) = aJT and φ(R) = 0.
The result is also intuitively clear in general, since P(t) ~ amtm and
R + iφ(R) — R for large 11 \ and R respectively. However, a proof
is easily obtained by means of Rouche's theorem. Without loss of
generality we may take am = 1, for otherwise we make a change of
variable s = {am exp (iβjm)}t. The result is clear if m = 1. Suppose
m > 1 and let J? = Cm(C > 0). Define

A(t) -tm + a^t™"1 + + aj + α0 - Cw -

For given ε, 0 < s < sin (π/m), consider a circle with centre
C exp (2iπ/m) and radius εC. For t on this circle and for C large, it
is easily seen that



GENERALIZATION OF A THEOREM OF MARCINKIEWICZ 265

and hence for C sufficiently large | B(t)jA(t) | < 1, so that A(t) and
A(t) + B(t) have the same number of zeros inside the circle. But
A(t) + B(t) = tm — Cm has exactly one zero in this circle, namely
C exp (2iπ/m). The corresponding zero, t(C) say, of A(t) therefore
satisfies | t(C) — C exp (2iπ/m) \ < e C. Hence

t(C) ~ C exp (2ίπ/m) (C -> oo) .

The conclusion of the lemma therefore follows for k — 1 and similarly
for k = 2, , m.

We proceed now to the proof of Theorem 1. Let F(R) be the
maximum modulus of f(z) on the circle \z\~eR and suppose that this
maximum is attained at a point z — exp {R + i^(i?)} where 0 5* ̂ (i?) <
2ττ. Let

m

P(ί) - Σ α ^

where αm = αm exp (iβm) Φ 0 (0 ̂  /Sm < 2ττ). Let ίΛ = tλ(R) be a root
of the equation P(t) — R + iφ(R), so that by Lemma A,

(3.1) ta

m

If tR — uR + ivB(uR, vR real) then as R—> oo;

~ (AY" cos ( ^ " ^ M f cos f2*-'8-

- O(Rι'm) ( cos (— &LΛ = Oj .

Hence for large i2 it follows that

R cos βm cosm ^ 2 7 Γ "~ &*

(

m

cos βm Φ 0, cos ( 2 ^ - ^ Λ Φ 0

(otherwise) .

ISίow for m ̂  3 and for any θ satisfying 0 < θ ̂  2π we have | cos (̂ /m) | < 1.
It follows that | cosw {(2π - βm)/m} \ < 1 and hence

(3.2) &[P(tΛ) ~ P(uR)] - R - J [ P W ] > KR

for all sufficiently large R and some fixed K > 0.
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Now if f(z) is not a linear function, i.e., f(z) Φ f0 + fiZ, then the
function

(3.3) - m a x \f(z)\

is ultimately a steadily increasing function of r. This can be seen by
applying the maximum modulus principle to the function f(z)/z in the
annulus 0 < r* < \ z \ < r for rf fixed and r increasing. If f(z) — f0 +
fMfi Φ 0), then the function (3.3) tends to a finite limit, namely | / x | ,
as r - > o o . In all cases, however, it follows that if R > Rf and if R
is sufficiently large, then

F(R) F(R>)
— ^ c

 D —

(3.4) i .e . , x y"' > ceR-R> ,
V ' ' F{R')

for a fixed c(0 < c ̂  1). We may take c = 1 if /(z) is nonlinear, but
we must take 0 < c < 1 if / (z) is linear. It therefore follows that
for all sufficiently large R,

F(R)

/|exp{P(O}]

F(R)

> e*i« (K, > 0) ,

the last inequality following from (3.2).
We now turn to the function g(t). Suppose g(t) has an infinity

of zeros, τn — rne
ίθn(n — 1, 2, •), where rt g r2 ^ . If

ε(0 < ε < m — p)

is given then outside the circles with centre τn and radius r~2m we
have, according to a theorem of Borel (Cartwright, [1], p. 22), that

(3.6) log I g(t) I > - 11 | p + s (| * | > Γ(e)) .

Further, since g(t) is of order p, we have

(3.7) log I g(t) | < I ί Γ s (111 > Tx(ε)) .

It g(t) has no zeros, or a finite number of zeros, then (3.6) holds a
fortiori for all \t\ sufficiently large and (3.7) also holds.

Now define
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Then

(3.8) log M(tΛ)

M{uR)

= g(t)f[exj>{P(t)}]

= log I g(tΛ) I - log I g(uE) | + log/[exp{P(ίΛ)}]
f[exp{P(uΛ)}]

Consider the sequence of values P(τn)(n = 1, 2, • ••). If &{P(τn)} is
bounded above as n-^ oo, then for R sufficiently large, all the points
tR are outside the circles with centre τn and radius r~2w. We may
therefore apply the inequality (3.6) to (3.8). Using also (3.5) and
remembering that p + ε < m we obtain

(3.9) log
M(tR)

M(nR)

for R sufficiently large, in virtue of (3.6) and (3.1). If &{P(τn)} is
not bounded above, let R± g R2 ^ , Rn —> oo y denote all the positive
values of &{P(τn)} and let σu σ2, denote the corresponding members
of the sequence {τj. Let t\ t" be any two points in the circle with
centre σn and radius | σn \~2m. For all σn sufficiently large we have

and we can therefore find a constant K2 such that

} \<K2\σn I

Hence if R > 0 lies outside the intervals

(3.10) Rn
K,σ~m~\ Rn +

= 1, 2,

(n - 1, 2, .)

then tR lies outside the circles with centre τn and radius | τn

The sum of the lengths of the intervals (3.10) is 2K2^a~m~1 which is
finite since m + 1 exceeds the order p of g(t). Hence we can let
JB—> oo outside the intervals (3.10) and so again we obtain the inequality
(3.9). We have thus contradicted (1.4) and M(t) cannot be a m.g.f.

4* Proof of Theorems 2 and 3* We need the following result
which seems natural enough but a simple proof has eluded the author.

LEMMA B. Let f(z) ~ X Z=Qfnz
n be a nonconstant entire function

and P(t) = amtm + α ^ ί * " 1 + + axt(am Φ 0) a polynomial of degree
m ^ 1. If f[exip{P(t)}] is real for all real t, then the coefficients
fjn — 0, 1, •) and an(n — 1, m) are all real.

B{t)
Let ak~bk

Jr ick where ak, bk are real (k — 1, m) and define

C(t) = Σ * <>***• L e t P a n d Q b e degrees of B(t)f
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C(t) respectively. Then m = max (p, q) and

P(t) = B{t) + iC(t) .

Let

(4.1) Hit) = /[exp {P(ί)] = Σ / n exp {wJS(ί) + ™C(ί)} .

For real £, H(t) — H(t), where the bar denotes complex conjugate.
Hence, for real t

(4.2) ±fnexp[n{B(t) + iC(t)}] = ±fnexp[n{B(t) - iC(t)}] ,

but since both sides of (4.2) define entire functions of t, the relation
(4.2) holds over the whole ί-plane.

Suppose first that B(t) = 0. Then putting z — exp {ΐC(ί)} we obtain
from (4.2) that for all z Φ 0,

Since a Laurent expansion is unique, it follows that f0 — fθ9 fn~0
(n — 1, 2, •) so that /(#) = constant, contrary to our hypothesis.
Hence B(t) Φ 0.

Suppose we can find a path L extending to infinity in the ί-plane
such that as έ-^oo along L,

(4.3) &{B(t) + iC(t)} - &{B(t) - iC(ί)}

with both sides of (4.3) tending to — co. The exponential terms on
both sides of (4.2) tend to zero and we obtain /0 = fQ so that f0 is
real, possibly zero. The relation (4.2) now holds with the summations
starting at n = 1. Suppose fk is the first nonvanishing coefficient
after /0. Dividing through by exp [k{B(t) +iC(t)}] we have,

Λ + Σ A exp [(n - ft){J?(ί) + iC(ί)}]
(4.4) n=*+1

= fk e x p { - 2kiC(t)}

+ Σ Λ exp W5(ί) - iC(έ)}
n=k+l

If we now let έ —> oo along L all terms inside the summation signs in
(4.4) tend to zero and we have

l i m ^ exp {- 2kίC(t)} - fk/fk .

Since C(t) is polynomial with zero constant term, if follows that C(t) = 0.
From (4.2), therefore, fn is real for all n. It remains to show that
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the path L exists.
We choose L from among those curves in the ί-plane on which

= 0. We have, for t = reiθ,

C(t) = cqt
q + + cxί = cqr«eiqθ + + c±rei

and

cgr* sin g# + + cxr sin θ .

Each of the rays θ = θn =n(π/q)(n = 0, 1, •) is an asymptote to a
curve ^{C(t)} — 0. We choose n so that bp cos p#w < 0 and then take
L as the curve J^{C(t)} = 0 which is asymptotic to the ray θ = 0Λ.
Then, as ί —> oo along L,

6,r* cos pθn ,
( r —> oo)

~ ίC(t)} ~bpr
p cos pθn ,

and L therefore satisfies our requirements. We observe that since
q ^ 1 and p^l, we can always find an integer nx such that cos (pn^π/q) <
0 and an integer n2 such that cos (pn2π/q) > 0. We choose L asymptotic
to the ray θ ~θni or θ = ίΛa according as 5̂  > 0 or 6P < 0. This
completes the proof of Lemma B.

Turning to Theorem 2, we see that the sufficiency of the condi-
tion is clear since if P(t)~axt (αx real), then /[exp{P(ί)}] is the
m.g.f. of a lattice distribution, while if P(t) — aj + a2f(au a2 real,
a2 > 0), then /[βxp{P(ί)}] is the m.g.f. of an infinite mixture of
normal distributions together with a discrete probability f0 at the
origin.

To prove the necessity, we observe from Theorem 1 that if
/[exp{P(ί)}] is to be a m.g.f. at all, then P(t) can only be of the
form P(t) — axt + a2f, and from Lemma B, the coefficients ax and a2

must be real. Further we cannot have α2 < 0 for in this case
exp{P(£)} and, therefore, /[exp{P(ί)}J would be bounded as ί—> ± cx»,
which is impossible for a convex function. The theorem is therefore
proved.

In proving Theorem 3 we see from Theorem 1 and Lemma B that
for /[exp{P(ί)}] to be a m.g.f., it is necessary that P(t) = att + a2f
(au a2 real) and that fn be real (n = 0, 1, •). By the argument at
the end of the previous paragraph it is also necessary that α2 Ξ> 0.
Now let

(4.5) M(t) = /{expfoί + a2t
2)} = Σ Λ exp {n (aj + a2f)}

where fjn — 0, 1, •), <̂i and α2 are real and a2 > 0. We clearly
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have

M(t) = \ °°etxdF(x)

where

(4.6) dF{x) = fodH(x) + Γ Σ , fn exp {- {x ~ naiY X]dx ,

L^iy(4τmα2) I 4πα2 JJ

iϊ(x) being the unit step function with a jump at x — 0. We thus
have

(4.7) dF(a) = fQdH(x)

where y ~ exp (— x2/Aa2). We now see that for M(t) as defined by
(4.5) to be a m.g.f. it is necessary and sufficient that/ 0 ^ 0, /(I) = 1
and that the sum on the right hand side of (4.7) be nonnegative for
0 < y ^ 1.

If α2 — 0, the result is obvious and so Theorem 3 is proved.

5* Proof of Theorem 4* We may assume without loss of
generality that the coefficient of the highest power of t in P(t) is
unity. For if P(t) = ajm + α ^ ί 1 - 1 + + ao(am Φ 0) and if f(z) =
Σ>fnz

n then f{P(t)} - Σ/»αi{^i(ί)}n w h e r e Pi® = tm + (^- iMJΓ- 1 +
. . . + (ao/an), and then /{P(ί)} - / ^ ( ί ) } , where Λ^) - Σ Λ O M is an
entire function. Accordingly, let

P(ί) = ί* + α^iί*-1 + + α0 (m > 2).

Consider the complex number i?eίφ, where the argument φ may
depend on R but is always defined to be in the interval π/2 ^ φ < 5π/2.
We consider the roots of the equation

P(t) = JKβ** .

We assert that for given s, 0 <ε<7r/2m, there is always a root
tR of this equation which satisfies

\tB\~ Rllm

(5.1) π 5π (12-oo)
0 < ^ - - ε ^ arg (tR) £ ^ - + ε .

2m 2m

We observe that if P(t) = tm and we take | tB \ = Rllm and arg tR =
, then ^ satisfies (5.1). In general, if we consider a circle CB
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with centre Rllm exp (iφ/m) and radius iΐ ( 1 / w )-δ(0 < δ < 1/m), then for all
sufficiently large R, the circle CR lies within the angle

(5.2) 7Γ

2m
ε < arg t <

δπ
2m

It is now easily verified that for t on CBy

P(t) - Reίφ\

Pit) -tm\ =
(R

Hence, since 1 — δ > 1 — (1/m), it follows from Rouche's theorem that
for all sufficiently large R, P(t) - Reiφ and £m - lϋeίφ have the same
number of zeros inside CR. Since tm — Reiφ has a zero at t = R1im

e

iφlm,
the centre of CΛ, if follows that P(ί) ~ i?βΐφ has at least one zero, say
t — tR, inside CR. It immediately follows that for all sufficiently large
R, tR lies in the angle (5.2) and that

I tR - R^

which gives the result (5.1).
Now consider the function

I < Rllm~δ

(5.3) M(t)=f{P(t)}

If M(t) is to be a m.g.f. then clearly f(t) cannot be a polynomial,
for if f (t) were a polynomial, then M(t) would also be and a polyno-
mial cannot satisfy the inequality (1.4). We suppose therefore that
f(t) has an essential singularity at infinity. If F(R) is the maximum
modulus of f(t) on the circle | z \ = R, then F(R)/R is ultimately a
strictly increasing function of R. Hence for all sufficiently large Ru

R2 with Rx < R2 we have

F(Rt)(5.4)

Suppose that | f(z) | attains its maximum on
where ώ is defined to be in the interval π/2 ^
that P(tR) — Reiφ and so that tR satisfies (5.1).

z \ = R at a point Reiφ

φ <5τr/2. Choose tR so
Let uB = ^ ί Λ . Then

(5.5)

M(tR)
M{uB)

f{P(tn)}
f{P(u«)}

F(R)

f{P(u*)}

F(E)

F{\P(us)\}
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Now in virtue of (5.1) we have, for all R sufficiently large,

0 < I tR I cos (^L + e) ^ uR ^ | tR | cos ( J L - e ) .
\2m / \2m /

Hence there exists RQ > 0 and 77(0 < η < 1) such that

\P(uR)\<η\tB\
m<R (R>RQ) ,

so that on applying (5.4) to (5.5) we obtain

M(tR)

M(uR)

R

\P{uR)

for ϋ! > JR0. It follows from (1.4) that M(t) cannot be a m.g.f. and
Theorem 4 is therefore proved.

6* Proof of Theorem 5* The sufficiency part of theorem 5 is
clear. For g(eat)/g(ϊ) is the m.g.f. of a lattice distribution and
/[exp{P(£)}]//(l) is the m.g.f. of a lattice distribution if α2 = 0 or of
a mixture of normal distributions if α2 > 0, with possibly a discrete
probability at the origin.

To prove the necessity part of the theorem, suppose that

(6.1) M(t) = g(e*')f[eκp{P(t)}]

is a m.g.f., where P(t) = axt + + amtm. Then M(t) is real for
real t and since g{eat) is real for real t so also is f[exp{P(t)}] . Hence
by Lemma B, the coefficients au , am must be real.

Suppose m ^ 3 and am > 0. If f is real and positive then P(ξ)
is a positive strictly increasing function of ζ for all sufficiently large
ξ. For given ζ, consider the equation

P(t) - P(ξ).

By Lemma A, there is a root of this equation, say t = ίe, which
satisfies

expexp f

Hence as ξ—>oo? we have ^ ί e — £ cos (2π/m)(m Φ 4), ^ ? ί f = O(£)
(m = 4). Since P(f) - αwfm, it follows that

(6.3) P(tξ) = P(ξ)
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for all sufficiently large ζ, say ξ > ξ0. Now ^ % is a continuous
function of ζ and ^ % ~ ξ sin (2π/m); hence we may choose ξλ > ξ0 in
order that ^tζ± is an integral multiple of 2πja. It then follows that

(6.4)

Hence

Now since f(x) is nonconstant and has nonnegative coefficients

we have /(&') >/(&") if α' > x" > 0. If therefore follows from (6.3)
that

which contradicts the inequality (1.4). A similar argument deals with
the case am < 0. It follows that if M(t) as defined by (6.1) is to be
a m.g.f. then we must have m ^ 2, i.e., P(t) = att + α2ί

2 with αx

and α2 real.
Finally if α2 < 0 then on letting t—>oo along the imaginary axis

through integral multiples of 2πi/a we find that M(t) —> oo on account
of the periodicity of g(eat) and the nonnegativity of the coefficients
fjn — 0, 1, •••). This again contradicts (1.4) and so we must have
P(t) = a{t + a2t

2 with au a2 real and α2 ^ 0. This completes the proof
of the theorem.

7* Remark on the results of OstrovskiL The author is in-
debted to the referee for drawing his attention to the paper of
Ostrovskiϊ [6] which he had unfortunately overlooked while writing
the present paper. Theorem 4 would follow from OstrovskiPs Theorem 4
under the more restrictive hypothesis that | / ( ί ) | ^f(\t\) for all \t\
sufficiently large. Otherwise, the results of the present paper are
independent of those of Ostrovskiϊ.

REFERENCES

1. Mary L. Cartwright, Integral functions, Cambridge University Press, London,
1956.
2. Inge Futtrup Christensen, Some further extensions of a theorem of Marcinkiewicz,
Pacific J. Math. 12 (1962), 59-67.
3. E. Lukacs, Some extensions of a theorem of Marcinkiewicz, Pacific J. Math. 8
(1958), 487-501.
4. E. Lukacs, Characteristic functions, Griffin, London, 1960.



274 H. D. MILLER

5. J. Marcinkiewicz, Sur une propriete de la lot de Gauss, Math. Zeits. 44 (1938),
612-618.
6. I. V. Ostrovskii, On the application of a rule of Wiman and Valiron to the study
of characteristic functions of probability laws, Dokl. Akad Nauk SSSR 143 (1962),
532-535

Received March 16, 1965. This research was supported by the Office of Naval
Research under contract No. Nonr-855 (09), and carried out while the author was a
visitor in the Department of Statistics, University of North Carolina, Chapel Hill,
N. C.

IMPERIAL COLLEGE, LONDON S. W.




