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THE DEDEKIND COMPLETION OF

J. E. MACK AND D. G. JOHNSON

The question to which this study addresses itself is the
following: given a completely regular space <%f, is the
Dedekind completion of G{<%f) isomorphic to C(g^) for some
space ^/η. Here, C(J^) denotes the ring of continuous real-
valued functions on <%f under pointwise order. Affirmative
answers were provided by Dilworth for the class of compact
spaces in 1950 and by Weinberg for the class of countably
paracompact and normal spaces in 1960. It remained an open
question whether there were any spaces for which a negative
answer held. In this paper, we provide a necessary and
sufficient condition that the Dedekind completion of Cί^ 7 ) ,
for ^ a realcompact space, be isomorphic to C(^/) for some
^/. Using this, we are able to provide an example of a space
gf for which the Dedekind completion of G(<%?) is not
isomorphic to C{^/) for any space f .

Specifically, we define and characterize a class of spaces which we
call weak cb-spaces: those spaces J2f with the property that every
locally bounded, lower semicontinuous function on ^ is bounded above
by a continuous function. We then prove that for an arbitrary
(completely regular) space J2f, the Dedekind completion of C{^f) is
isomorphic to some C(^/) if and only if v^7 (the Hewitt realcompac-
tification of g?) is a weak cδ-space. The sufficiency of this condition
actually generalizes Weinberg's result, as is shown by examples; the
necessity provides the negative result referred to above.

The preliminary investigation of the Dedekind completion is done
in Section 1, in the setting of an arbitrary (^-algebra. In Section 2,
we study the connection between the lattice of normal upper semi-
continuous functions on a completely regular space ^ and the minimal
projective extension of gf'. This leads to the observation, in Section
4, that for a weak c6-space g? the Dedekind completion of C{^f) is
isomorphic to C(3/)y where ^/ is the minimal projective extension of
gf. Weak cδ-spaces are studied in Section 3, and Section 4 contains
our main result.

It is a pleasure to acknowledge fruitful conversations and cor-
respondence on the subject of this paper with G. A. Jensen, J. E.
Kist, and E. C. Weinberg. Their contributions and encouragement
are sincerely appreciated.

The Dedekind completion of an arbitrary 0-algebra* A Φ-
algebra is a real archimedean lattice-ordered algebra with identity
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element 1 that is a weak-order unit. A homomorphism of a 0-algebra
is an algebra homomorphism that also preserves lattice operations.
The kernel of a homomorphism is an £f-ideal: a ring ideal I which
satisfies the condition: if ael and | 6 | 5£ \a\, then be I. If I is an
«5f-ideal in A, then A/I is a lattice-ordered algebra and the natural
algebra homomorphism A —> A/I is a homomorphism: for α € A, we
let I(α) denote the image of under this natural homomorphism. The
set of positive elements of A is denoted A+.

^-algebras are studied in [7], where it is shown that for any
0-algebra A, the set ^f(A) of maximal »2f-ideals of A is a compact
(Hausdorίf) space under the hull-kernel topology. Moreover, A is
isomorphic to a 0-algebra of extended real-valued functions on ^(A)
(i.e., continuous functions on ^f(A) into the two-point compactification
of the real line that are real-valued on dense subsets of ^C(A)). The
set of real ideals of A (those Me ^ ( A ) with A/M the real field) is
denoted &(A); A is a Φ-algebra of real-valued functions if f)^(A) =
{0} (i.e., if &(A) is dense in ^T(A)).

Let A be a <?>-algebra. In [8], it is shown that A can be embedded
in a complete ^-algebra. Precisely, there is a complete ^-algebra A
and an isomorphism a of A onto a subalgebra aA of A such that the
following conditions hold.

( i) aA is dense in A, in the sense that each aeA satisfies
sup {ab: be A and ab^a} — a = inf {ab: be A and ab ^ α}. It follows
from this that a preserves all suprema and infima in A.

(ii) A is unique in the following sense: if β is an isomorphism
of A onto a dense subalgebra of a complete lattice-ordered algebra B,
then there is an isomorphism 7 of B onto A such that 7/3 = a.

The complete 0-algebra A (together with the mapping a) is called
the Dedekind completion of A.

Let A be a (^-algebra and A its Dedekind completion. Thus, we
may view A as a dense subring of A which contains the identity
element 1 of A.

For any .^-ideal I of A, set

J = {be A: \ b \ <Ξ a for some ael} .

It is readily verified that I is an j^-ideal of A and that if 1(1) is a
strong order unit in A/I, then 7(1) is a strong order unit in A/I.
Hence, if M e &(A) and if M denotes any maximal ^f-ideal of A
containing M, then Me&(A). Conversely, if Me&(A), then
in A

PROPOSITION 1.1. If A is a Φ-algebra of real-valued functions,
then so is A.
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Proof. Let 0 Φ b e A; we may suppose b > 0. Since A is dense
in A, there is an element 0 Φ a e A with 0 ̂  a g b. Take M e&(A)
not containing a. If M is any maximal ^Sf-ideal of A containing M,
then α ί M, so 6 $ M. Thus, Π ^ ( A ) = {0}.

Thus, if A is an algebra of real-valued functions, then we may
view A as a subring of C{&(A)). By Theorem 5.6 of [7], A —
C(&(A)) if and only if A is closed under inversion: i.e., whenever
αe A with α£ M for each M e &(A), we have 1/αe A. Now, A forms
an order-convex subset of the set of all extended real-valued functions
on ^f(A) ([7], Lemma 3.7). Hence, in order to verify that A is
closed under inversion, it is enough to suppose α ^ O and to show
that from αg M for each I e ^ ( A ) it follows that there is be A
with b Ξ> 1/α. In case A is closed under inversion, it suffices to exhibit
be A with 0 <L b <L α and 5g M for each M e

LEMMA 1.2. If A is closed under bounded inversion (i.e., if
Iff e A whenever 1 ̂  / e A), and if 0 rg α e A αm£ M" G ̂ (A) are such
that a&M for each maximal ^f-ideal M of A with M ~Ξ2 M, then
there is be A with 0 <; b ̂  a and bg M.

Proof. By the hypotheses on a and M, the jSf-ideal of A
generated by α and M is all of A. Hence, there are ceA and de M
with 1 g αc + d. Since A is dense in A, we may choose c' e A with
c' ^ c, so 1 — ώ g αc'. Since we may also choose cr Ξ> 1, v/e have

since A is closed under bounded inversion.
Set δ = ((1 - d)(l/c')) V 0. Then O ^ B α , and

M(b) = [M(1 - d)Λf^i)l V M(0) - Λί(Λ) v

since d e l . Now M(l/cf) > 0, so 6g M.

THEOREM 1.3. Lβί 4 te α Φ-αlgebrα of reαl-vαlued functions
that is closed under inversion. Then A ĉ  C(,^?(A)) ί/ and only if
A satisfies the following condition.

If S is a set of positive elements of A such that for each
M e &{A) there is an se S with s$ M, then there is 0 <S b e A such
that b&M for each M e &(A) and b 5Ξ c whenever c ̂  s for each
seS.
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Proof. By the remarks preceeding the lemma above, A —
if and only if whenever O g α e i satisfies αg M for each M e
there is be A with O ^ B α and b 0 M for each M e &(A)m

Suppose A satisfies the condition of the Theorem, and let 0 <£ a e A
satisfy a g M for each M e &(A). Let S = {seA:0 ^ s ^ a}. By
1.2, for each Me&(A) there is an s e S with s&M. By hypothesis,
there is O^beA such that fegilf for each M e &(A) and b^c
whenever ce A and c ^ s for each s e S . Since a = supi S = infijc e A:
c Ξ> α}, we have in particular that a ^ 6. Thus, A = C(&(A)).

Conversely, suppose A = C(&(A)), and let S be a set of positive
elements of A such that for each M e ^ ( A ) there is s e S with s $ M.
We may suppose that S is bounded above and let a — supi S. Then
O ^ α e i and a&M for each I e ^ ( i ) , so there is be A with
0 g δ ^ α and 6 ί ϋf for each ikf 6 ^ ( A ) . Clearly, if c e A and c ^ s
for each seS, then c ^ α, whence c ^ b. Thus, the condition of the
theorem is fulfilled.

2* The lattice of normal upper semicontinuous functions*
Throughout this paper, ^ will denote a completely regular (Hausdorff)
space and C — C ( ^ ) the Φ-algebra of continuous real-valued functions
on <%?. As usual, C* — C*(^f) represents the set of bounded elements
of C and C denotes the Dedekind completion of C.

A real-valued function / on ^ is locally bounded if it is bounded
on a neighborhood of each point of <%?m The upper and lower limit
functions of / will be denoted by /* and /*, respectively: for each
xεX

f*{x) = inf {supj,€ r̂/(2/) . ^ is a neighborhood of x] ,

and

f%(x) = sup {mΐye%ίf(y): <%S is neighborhood of x} .

Then the extended real-valued functions /* and /* are, respectively,
upper and lower semicontinuous; they are both real-valued if and only
if / is locally bounded. Since ^ is completely regular, /* is a
pointwise infimum of continuous functions if and only if / is bounded
above by a continuous function. An analogous statement holds for
/*. A real-valued function / is normal upper semicontinuous if /*
is real-valued and / = (/*)*; it is normal lower semicontinuous if /*
is real-valued and / = (/*)*. The properties of /* and /* given in
[3, Section 3] hold for locally bounded functions as well. Also, the
properties of the star elements listed in § 9 of [10] are valid in the
present context.

In [5], Gleason showed that in the category of compact spaces
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and continuous maps the projectives are the (compact) extremally
disconnected spaces and that for each compact space there is a unique
minimal protective extension.

Here we consider the category of completely regular spaces and
fitting maps (a map r from & to 3f is fitting if it is continuous,
closed, and τ~\x) is compact for each xejzf). In view of [6; 1.5],
the program outlined in §4 of [5] carries through for the category
of completely regular spaces and fitting maps. In particular, every
completely regular space ^ has a minimal protective extension; i.e.,
an extremally disconnected space ^/ and a tight fitting map τ from
Ψ onto £? (the mapping r is tight if it maps no proper closed sub-
space of ^/ onto ^f). Moreover, <%/ is essentially unique.

THEOREM 2.1. // Jϊf is a completely regular space, *%/ its minimal
protective extension and τ is the tight fitting map of ^/ onto <%f,
then f —>(/or), is an isomorphism of the lattice of normal upper
semicontinuous functions on jgf onto

Proof. First, we shall prove the following lemmas.

( I ) // / and g are normal upper semicontinuous functions on
and (/or)* ^ (goτ)*, then f <g g.

(II) If Fe C(%/) and f(x) = sup {F(y): y e τ~\x)}, then f is normal
upper semicontinuous on <%?'.

Proof of (I). Initially, we show that ( / o r ) ^ ( ^ 4 implies
(/ - / Λ g)* = 0. Suppose (f - f Λ g)* > 0. Since £f is completely
regular, there exists heC such that 0<h^f-fΛg. Then
h o τ + [(/ Λ g)°τ}* g (/or),, By [10, (9.6)], we have

K/*r) Λ (flfor)]* = (/or)^ Λ (flfoτ)# ,

whence hoτ + (/or), Λ (got)* g (/or),. Since h > 0, this implies
that (/or), £ (firor),. Now let us prove (I). Using [10; (9.8)], we
get/Λ flr = [/Λ g)]* = [/- (/ - (/Λ g)]* ̂ / , ~ ( / - / Λ g)* - / , when
(/or)* g (goτ)*; hence / - (/,)* ^ f A g ^ g.

Proof of (II). Since r-1^) is compact for each xz<^,f is a
real-valued function on <%?. Let £0 e <%? and ε > 0 be given, and
choose yQ e τ~\xQ) so that f(x0) = F(?/o). To show that / is upper semi-
continuous, let ? = { | / e g / : 2%) < F(yQ) + e}. Then ^ is a neigh-
borhood of τ-\x0). Since r is a closed mapping, there is a neighborhood
3^ of α;0 such that r~x( 5^) c ^ . Then /(a?) < i*7^) + ε = f(χQ) + ε
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for each x e 3^. Thus, / is u.s.c. To prove that / is normal, let
x0, y0 and ε be given as above and let <%S be an open neighborhood of
x0. Then 5^ = {y e T~\^)\ F(y) > F(y0) — ε} is an open neighborhood
ofy0. Since r is both closed and tight, 3T = £f\c\3/\ ^ ] is a nonempty
open subset of <%?. Clearly, 3^ c ^ and f(x) > i^/0) — s = /(α0) = s
on %

We now return to the proof of 2.1. For a normal upper semi-
continuous function / on <gf, / o r is upper semicontinuous on ^/. It
follows that (/or)* is normal lower semicontinuous on gΛ Since ^
is extremally disconnected, ( / O Γ ) * G C ( ^ ) [3, p. 431], Clearly, the
mapping /—»(/oτ)* is order preserving. By (I), this mapping is
one-to-one and its inverse is order preserving. It remains to show
that every Fe G(β/) is the image of some normal upper semicontinuous
function on gf. Let / be the function given by (II). Clearly,
foτ^F. If (/or)* Φ F, then there exists a positive number r such
that ^ ^ { p ^ : (f°τ)*{y) > F(y) + r} is nonempty. Then 3^ =
<%?\c\&\2S\ is a nonempty open subset of ^ . Let heC(^) vanish
on X\ 3^, while 0 < A ̂  r l . Then Aor + ί7 ^ (/or)* g /or ; hence
for each # e X and yeτ~1(x) we have h(x) + F(y) ^ f(x). This is
impossible if A(a?) > 0. This contradiction completes the proof of
Theorem 2.1.

We now consider the relation that the space ^/ in Theorem 2.1
bears to &{C). Observe that if Me^f(C), then l n C e
Conversely, every element of ^C(C) is contained in a maximal
ideal of C. Since ^/ί(C) and ^/ί(C) both have the hull kernel topology,
the mapping M —> iίϊ Π C is continuous. Also, since C is dense in C,
this mapping is tight. It follows from [9, 3.2] that ^/ί{C) is extremally
disconnected. Hence ^€{C) is the minimal protective extension of

For x e X, let Mx = {f e C: f(x) = 0}. Then the subspace {Mx:
x G ̂ } of ^/ί(C) is homeomorphic with ^ " . Let ^ be the set of
elements M in ^£(C) such that M=)Me for some xeX. Then
g ^ c ^ ( C ) . Asjn 1.1, it follows that Π{M: M e ^/} = {0}; hence :f
is dense in ikΓ(C). Therefore, ^ is extremally disconnected and
βψ^^/ίφ) [4, 6M]. Since %/ is the preimage of {Mx: x e J^}, it
follows from [6, 1.5] that ^ is the minimal protective extension of
{Mx: x e ^} and hence, also, of the space J2f'. Similarly, it is seen
that &(C) is the minimal protective extension of &{C) •==• v^f. Thus
we have proved the following:

THEOREM 2.2. C(&(C)) is isomorphic with the lattice of normal
upper semicontinuous functions on
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The question as to whether C(^/) and C(&(C)) are isomorphic
can be stated as follows: If ^/ is the minimal protective extension
of Jzf, must v^/ he the minimal protective extension of vj^fΊ An
alternative form of this question is: Can every normal upper semi-
continuous function on J^ he extended to a normal upper semi-
continuous function on v^fΊ An affirmative answer can be given
when v^ is locally compact or when g? is a weak cδ-space (see 3.7
below). However, the example given at the end of the next section
shows that the answer to this question is, in general, negative.

We conclude this section by commenting on a problem which is
related to our main question. If ^ is locally compact, then the
minimal protective extension ^/ of J^ is locally compact ([4, 10.16]
or [5, 4.3]). Let CK(CJ) denote the lattice-ordered ring of continuous
functions which have compact support (which vanish at infinity,
respectively). Then Cκ and CL are isomorphic to subrings of C*.
Since C* = C*(&) [3] and since τ and τ" 1 both preserve compactness
(where τ denotes the tight fitting map from ψ onto <%?), it follows
that Cκ = Cκ(^) and (L = CJ&).

3* Weak eδ-spaces* Let ά^ be a topological space. Then J7~ is
a cb-space if each locally bounded function on J^~ is bounded above by
a continuous function. See [11] for a study of c6-spaces. A space
^~ is weak ch if each locally bounded, lower semicontinuous function
on J?~ is bounded above by a continuous function. It follows that Jif
is a cδ-space if and only if J7~ is both countably paracompact and
weak ch [11, Theorem 10],

A subset & of ^~ is regular-open if ^ — int cl 5^ and a set Jf
is regular-closed if j^~ — cl int t_^r. Clearly, the interior of a closed
set is regular-open and the closure of an open set is regular-closed.
A zero-set is a set f~\§) for some / e C(^~); the complement of a
zero-set is a cozero-set. A regular-open (cozero) cover is a cover
consisting of regular-open (resp., cozero) sets. A countable cover will
be termed increasing if it can be indexed so as to form an increasing
sequence of sets. A family F of continuous functions is locally finite
(subordinate to a cover U) if the collection of cozero-sets associated
with F is locally finite (resp., is a refinement of U). A family F is
a partition of unity if F c [C(^)]+ and Σ/e^/(^) = 1 for each x e

THEOREM 3.1. The following statements are equivalent for any
topological space J7~.

(a) J7~ is weak ch.
(b) Given a normal upper semicontinuous function h on Jif,

there exists f e C(^r) such that f ^ h.
(c) Given a positive (nonvanishing) normal lower semicontinuous
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function g on J7~, there exists f e C(<3Γ) such that 0 < f(x) ^ g(x)
for each x e J7~.

(d) For each countable increasing regular-open cover of Jf,
there exists a locally finite partition of unity subordinate to that
cover.

(e) For each countable increasing regular-open cover of J7~',
there is a partition of unity subordinate to that cover.

(f) Each countable increasing regular-open cover of ^~ has a
locally finite cozero refinement.

(g) Each countable increasing regular-open cover of J7~ has a
σ-locally finite cozero refinement.

(h) Each countable increasing regular-open cover of ^~ has a
countable cozero refinement.

(i) Given a decreasing sequence {J^} of regular-closed sets with
empty intersection, there exists a sequence {%*n} of zero-sets with
empty intersection such that %*n ZD J^n for each n.

Moreover, if ^7~ is a normal space, then the word "cozero" may
be deleted from (f) and "closed G^-set" may be substituted for "zero-
set" in (i).

Each normal and countably paracompact space is weak cb. Also,
every extremally disconnected space is weak cb [11, Theorem 11]. It
follows from (i) of 3.1 that each regular-closed subspace of a weak
cδ-space is weak cb.

PROPOSITION 3.2. Each cozero-subspace of a weak c6-space is weak
cb.

PROPOSITION 3.3. The product of a weak cδ-space and a locally
compact paracompact space is weak cb.

The proofs of 3.1, 3.2, and 3.3 are similar to the proofs given in
[11] for the corresponding theorems for cδ-spaces.

EXAMPLE. The local compactness requirement in 3.3 cannot be
suppressed. To show this, we use Michael's example [12]. Let J^f
be the reals with the usual topology refined so as to make the irra-
tionals discrete, and let ^/ be the space of irrationals. Then 3f x ^/
is not a weak cδ-space, even though it is the product of a paracompact
space and a metric space. To show that ^ x IV is not weak cb, let
{ĵ ς} be a sequence of mutually disjoint, dense subsets of ^/. For
each n, define h(x, x) = n for x e JK and h(x, y) = min {(x — y \~\ n},
x Φ y, on JK X ^ let h vanish elsewhere. Then h is a locally
bounded, lower semicontinuous function which is not bounded above
by any continuous function.
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This space can also be used to show that a closed subspace of a
weak c6-space need not be weak cb. Let ΓQ be the upper half-plane
(including the horizontal axis) with the usual topology refined by
allowing, for irrational x, the set

{ (» , 0 ) } U {(u, v ) : ( u ~ x f + ( v - rf < r 2 }

to be a neighborhood of (a?, 0) for each r > 0. Then gf* = {(x, 0):
xeR} is homeomorphic with the space <%? above. Now Γϋx^/ (where
^/ is, as above, the metric space of irrationals) is weak cb while
<gf* x Ψ is a closed subspace that is not weak cb.

PROPOSITION 3.4. If £f is a completely regular weak cfr-space,
then v ^ is weak cb.

Proof. Let A be a locally bounded, lower semicontinuous function
on v^f. Then h \ g? is locally bounded and lower semicontinuous on
gf. Thus, there is / e C(gf) such that f^h\£f. It fv denotes
the element of C{v^) which extends /, then fv — h is upper semi-
continuous on v^ and is nonnegative on the dense subspace <%?.
Hence, fv ^ h.

PROPOSITION 3.5. The product of any collection of separable
complete metric spaces is a weak cδ-space.

Proof. Let & be any such product and let Σ denote a ^-product
of the same spaces. In [2], it is proved that Σ is normal and countably
paracompact and that & = vΣ. Thus, & is a weak cδ-space.

PROPOSITION 3.6. Let £f be a completely regular space such that
is locally compact. Then ^ is weak cb if and only if vg? is

weak cb.

This proposition is a direct consequence of the following:

LEMMA 3.7. If h is a positive, locally bounded function on X,
then the (extended real-valued) function g on v^f defined by

g = ptwise sup {fv: f e C(JT), / ^ h}

is real-valued and bounded on each compact subset of v^\ Moreover,
g is an extension of A#.

Proof. Suppose that g is either infinite or unbounded on the
compact set J%Γ. For each positive integer n, set
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g(p) <Ξ n} and choose xn e ^Γ\^Z. Since g is lower semicontinuous,
^l is a closed set. Thus there exists fn e C(<%?) such that ft(xn) = n
while ft vanishes on ^ n . The local boundedness of h implies that
{<Sf\j^~n\ n = 1, 2, •} is locally finite on <%?. Hence / = V»Λ exists
in C(JT'). Now / ^ /„ implies that / v ^ ft. In particular />(aΛ) ^
ft(xn) = n for each positive integer n. This is impossible, since fp is
finite and bounded on the compact set 3ίΓ.

The fact that h* is a pointwise supremum of continuous functions
implies that g is an extension of h*.

COROLLARY 3.8. Each (completely regular) pseudocompact space
is weak cb.

Proof. If <%f is pseudocompact, then vgf is compact [4, 8A.4];
hence <%f is weak cb, according to 3.6.

If & is an uncountable product of real lines, then & is a weak
eδ-space that is not normal. However, there is a normal and countably
paracompact space Σ such that C(Σ) is isomorphic to C(^). On the
other hand, the spaces Γ in [4, 3k], E in [1, p. 116, Ex. 4], and
S x S, where S is Sorgenfrey's example [15], are weak e&-spaees for
which C is not isomorphic to the ring of continuous functions on any
normal and countably paracompact space [4, 8.18 and 8A]. Proofs
that these spaces are weak cb can be based on Theorem 3.1.

A weak cfr-spaee may fail to be countably paracompact (e.g., the
Tychonoίf plank); the example below shows that a countably para-
compact space need not be weak cb, even if it is locally compact. It
is not known whether every normal space must be weak cb.

EXAMPLE. Let ^" be a completely regular space and let sf and
be closed subsets of ^~ such that Szf Π & is compact. In

x JV, identify Ssf x {2n - 1} with Jϊf x {2n} and & x {2n} with
<3l? x {2n + 1}. (The construction used here was suggested by the
referee of [11].) Clearly, the resulting topological space ^ inherits
any of the following properties that J^" may possess: normality,
σ-compactness, realcompactness, paracompactness, and countable para-
compactness. Moreover, if Stf and & are disjoint, then local
compactness of ^~ will imply local compactness of J*f. If J7~ is
countably paracompact but nonnormal and if Stf and £% are disjoint
closed sets that are not contained in disjoint open sets, then Mf is
not a weak cδ-space.

In particular, let <W~ and 5^~* be the spaces of ordinals less then
and less than or equal to, respectively, the first uncountable ordinal ωu

and set ^~ = {(or, τ) e Wx W*: σ <L τ). This space is locally compact
and countably compact, but not normal: the diagonal j%? and the upper
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edge έ% are disjoint closed sets which cannot be separated by open sets.
If we set w = {ωu ωx), then β^~ = ^ * = ^~ (j W ( £ 3 ^ * x 2^*).
Next, let gf and <^* be the spaces obtained from ^Γ and ^ " * by
identifying images of J ^ and ^f, and those of S$f U {w} and £%? U {w},
respectively, as in the above construction. Then g? is locally compact
and countably paracompact but not weak cb, while <̂ Γ* is σ-eompact
(hence realcompact and weak cb). Note that <gf* is not locally compact.
Since each continuous function on j ^ ~ is constant on a deleted neigh-
borhood of w, it follows that g? is C-embedded in gf*, whence
^ * = v^ 7 . Thus, g? is a locally compact nonweak cδ-space such
that vjgf is weak cb.

4* The completion of C(J^).

PROPOSITION 4.1. If ^f is a completely regular, weak e&-spaee
and W is its minimal protective extension, then the Dedekind comple-
tion of C{gf) is isomorphic to

Proof. On a weak eδ-space, each normal upper semicontinuous
function can be identified with an element of C (Theorem 3.1), and
conversely (cf. [3, p. 432]). Therefore, by Theorem 2.1, there exists
a lattice isomorphism from C onto a C(Ψ). Moreover, the restriction
of this mapping to C preserves the ring operations. Since C is dense
in C, it follows that C and C(J/) are isomorphic as ^-algebras.

THEOREM 4.2. Let ^ be a realcompact {completely regular)
space. The Dedekind completion of C(^) is isomorphic to an algebra

for some space ^ if and only if J^f is a weak cb-space.

Proof. The Dedekind completion C of C ( ^ ) is isomorphic to some
if and only if C ~ C(&{C)). In view of 4.1, it suffices to show

that C ~ C{&{C)) implies that ^ is weak cb. Since ^ is real-
compact, we may identify £? with &{C) and apply Theorem 1.3.

Suppose that C ~ C(&(C)) and that g is a normal lower semi-con-
tinuous function with g(x) > 0 for each xe X. Let S — {s e C: 0 g s g g}.
Then g — ptwise supS. Hence, for each xe X, there is an sxeS
with sx(x) > 0. By 1.3, there is an feC with 0 < f(x) for each
xe X and / :g h for each heC with h ^ s for each se S. But g* =
ptwise inf {heC: h^ s for each s e S}; so / <£ g*, whence / <Ξ g. By
3.1, <Sf is a weak c6-space.

Thus, C ~ C(^/) for some ^/ if and only if v<Sf is weak cb.
Moreover, v<%f is weak cb if 3f is, but not conversely.

EXAMPLE. The space ^f x g^, considered in the example follow-
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ing 3.3, is a realcompact space which is not weak cb.

Finally, we consider the relation that this paper bears to [3], [14]
and [16], Theorem 2.1 represents a generalization of Dilworth's
characterization of the lattice of normal upper semicontinuous functions
on a compact space ([3]). In [16], Weinberg proves that if gf is
normal and countably paracompact, then C is isomorphic with C(g^)
for some space *£/ „ Since a normal and countably paracompact space
is weak cb, the examples given following 3.8 show that 4.1 generalizes
Weinberg's result.

The characterization of the lattice of normal upper semicontinuous
functions could have been developed along the lines of [14]. To see
this, let Cq(^f) be the set of locally bounded functions / on £? for
which {xe 3f\ (/* — /*)(#) > r} is nowhere dense for every r > 0,
and let N be the subset of Cg(^T) consisting of those / for which
(I/I*)* = 0. Then Cq(^)jN is a ^-algebra which is isomorphic with
the lattice of normal upper semicontinuous functions on Jgf.
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