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IDEALS OF THE PRINCIPAL CLASS, R-SEQUENCES AND
A CERTAIN MONOIDAL TRANSFORMATION

EpwARD D. DAvIs

We consider the algebra generated over the ring E by the
quotients {w:/x, ---, z,/x}. This “monoidal transform” R[z;/z,
«++, Z,/x] may be regarded as the homomorphic image of the
polynomial ring R[X;, ---, X,]. Examination of the kernel of
this homomorphism gives in one instance the theorem of
analytic independence of systems of parameters and in another
the analogous theorem about R-sequences in arbitrary com-
mutative rings. We combine these results with some older
work of ours (included in an appendix) to give several char-
acterizations of ideals in Noetherian rings generated by ER-
sequences,

1. Notation and preliminaries. We shall interpret “ring” to
mean commutative ring with unity. Given the ring R, consider the
ideal I=(z, %, --+, z,), where « is not a divisor of zero, and the ring
S = Rlxz/z, -+, x,/z], a subring of the total quotient ring of R.
Observe that the extension of I to S is principal, namely, IS = zS.
Regard S as the homomorphic image of the polynomial ring R[{X] =
RIX,, ---, X,] (substitute x;/z for X;) and let @ denote the kernel of
this homomorphism. Clearly Y, = X, — 2,¢Q; let Q" be the R[X]-
ideal (Y, ---, Y,). Some simple remarks: -

a. Given fe @ of degreet, since 2 X; = Y, +x;, #'f = g(Y,, ---, Y,),
where g e R[X] and has constant term 0. Thus z'fe@’. It follows
that @ = Q" if @ is a prime ideal, and that @ contains 2'Q for
sufficiently large + if @ is finitely generated. Suppose that IR[X]
contains Q. Then since «; = 2X, — Y,, f = «f, - ¢, where g, € Q' and
fie Q. It follows that for each », f = 2"f, + g,, where ¢, € @ and f,c Q.
Hence if @ is finitely generated and IR[X] contains @, then @ = @'.

b. Let f be a homogeneous polynomial in %1 variables with coeffi-
cients in B. Then f(x,%,, ---,2,)= 0 if, and only if, f(1,X,, -+, X,) € Q.
To see “only if” divide the equation f(x, @, ---, x,) = 0 by «!, where ¢ is
the degree of f; to see “if” multiply the equation f(1, =,/x, -« -, ®,/2) =0
by «'. Thus if f(x, 2, -+, a,) = 0, then the coefficients of f lie in
every ideal P of R such that PR[X] contains Q.

A subset {z,, ---,2,} of R is said to be analytically independent
provided that every homogeneousfec R[Z,, - -+, Z,|suchthat f(z,, + - -, 2,)=
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0 must have its coefficients in the radical of (z, ---, 2,); we shall say
(for lack of a better term) that the subset is strongly analytically
independent if the coefficients of f must lie in (2, ---,2,). We

rephrase Remark b as follows:

b’. {x, 2, ---,2,} is: analytically independent if, and only if,
for every prime ideal P of R containing I, PR[X] contains Q; strongly
analytically independent if, and only if, IR[X] contains Q.

Let N=(z,+--,2,). The direct sum of the (R/N)-modules
{N"/N™#* r=10,1,2, ...} is in the obvious way the homomorphic
image of the polynomial ring (R/N){Z,, ---, Z,]. This homomorphism
induces on the direct sum the structure of a graded (R/N)-algebra
called the associated graded ring of N; we shall say that the associated
graded ring is (R/N)[Z, ---, Z,] if this homomorphism is an isomor-
phism. Thus:

c. The following statements are equivalent: {z,, ---, 2,,} is strongly
analytically independent; the associated graded ring of N is (R/N)
(Z, -, Z,]; for each », N"/N"** is a free (R/N)-module of rank
equal to the number of monomials of degree » in m variables; any set
of m generators of N is strongly analytically independent.

Finally, from the well known relationship between the ideals of
S and those of R[X] containing @ we obtain:

d. If P is an ideal of R such that PR|X] contains @, then
PSNR =P, S/PS = (R/P)[X], and PS is prime if P is prime.

2. Ideals of the principal class. In this section we restrict
our attention to Noetherian rings. Recall that an ideal generated by
m elements is of height at most m, and if equality holds, the ideal
is said to be of the principal class.® We shall assume that i#(l) =
n + 1; ie., I is an ideal of the principal class.

ProrosiTioNn 1. Radical Q' = radical Q.

Proof. Let P be a prime ideal of R[X] minimal over Q'; we
must show that P contains Q. Since @' is generated by = elements,
ht(P) = n. Observe that x¢ P, For if e P, thenz; = X, — Y, e P;
P would therefore contain I and so be of height at least n + 1.
Since Q' contains z"Q for sufficiently large » (Remark a), it follows
that P contains @.

1 We follow Zariski-Samuel in using the term ¢height” rather than the older
«rank”, Recall that for a prime ideal P, ht(P) is the dimension of Rp, and for an
arbitrary ideal N, ht(N) is the minimum of the heights of all the primes containing
N.
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REMARK. Observe that since @’ contains '@ and 2« lies in no
prime minimal over @', the minimal primary components of @ and @’
coincide. Hence if @' is unmixed, @ = @’. This will be the case if
R(and so R[X]) is a Macaulay ring, for it is not hard to see that
Q' is of height n(i.e., @ is an ideal of the principal class). If [ is
prime, then IR[X] is a prime ideal of R[X] containing @ and so
containg Q; hence @ = @ (Remark a). Moreover @ = @’ if @ is a
prime ideal (again Remark a). These three instances of “Q = @ are
special cases of: @ = @' if, and only if, I is of grade n 4+ 1 (see §3).

Zariski in his fundamental paper [6] was the first to consider the
relationship between the rings K and S. There, when his {z, z,, - -+, z,}
is a subset of a system of parameters in a local ring, he makes essential
use of the analytic independence of systems of parameters. We now
note that this property is an immediate corollary to Proposition 1; in
fact somewhat more generally we have:

COROLLARY 1. Ewery basis of minimal cardinality for an ideal
of the principal class is analytically independent.

Proof, Suppose that {z, --.,2,} generates an ideal of height =
in the ring A. Let z be an indeterminate over A. Then {2, 2z, ---, 2,}
generates an Alz]-ideal of height # + 1. Set R = A[z], z = 2 and
z; = x;. Given a prime ideal P of R containing I, then PR[X| D IR[X]D
@'. Therefore PR[X| > Q (Proposition 1). It follows that {z, z,, .-+, 2,}
is analytically independent (Remark b’). Suppose now that f is a
homogeneous polynomial with coefficients in A such that f(z,, -+, 2,) =
0. The coefficients of f must lie in the radical of the A|z]-ideal
(2,2, +++,2,). Since 2z is an indeterminate, it follows that the coeffi-
cients of f must lie in the radical of the A-ideal (z, ---, z,) (just set
z = 0).

For the remainder of this section we restrict our attention to
integral domains. Recall that given R, a subring of R,, the dimension
Jormula holds between R, and R, if for every prime ideal M of R.:
ht(M) + tr-dg-[R/M:R,/M N R] = ht(M N R)) + tr-dg-[R,: R]. The
dimension formula always holds between R and R[X] (see, e.g., [1],
Appendix 1).

COROLLARY 2. The dimension formula holds between R and S.

Proof.? Let M be a prime ideal of S, let P =M N R, and let N
be the pre-image of M in R[X]. Thus NN R =P, M= N/Q and
S/M = R[X]/N. We see from the dimension formula between R and
R[X] that ht(Q) =n. Since @ is the only prime minimal over @’

2) Essentially the same proof works even if R is not an integral domain.
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(Proposition 1), ht(Q') = n; i.e., @ is an ideal of the principal class.
Hence ht(N/Q) = ht(N) — ht(Q’). It also follows from the fact that
@ is the only prime minimal over @ that ht(N/Q) = ht(N/Q'); hence
ht(M) = ht(N) — »n. The dimension formula between R and R[X]
gives:

ht(N) + tr-dg-[S/M: R/P] = ht(P) + n .

Substituting ht(N) — n = ht(M) gives the desired result.

LEMMA. Let P be a prime ideal of R and let 4 denote the set
of all primes M of S such that MNR =P, (1) If xcP but IZP,
then 4 s empty. (2) If x¢ P, then 4 consists of a single M and
Sy =Rr. B) If ICP, then PSe 4, 4 is infinite, its elements being
in one-to-one correspondence with the prime ideals of (B/P)[X] lying
over 0 in R|P, and for each Mc4d, Sy + Rp.

Proof. (1) If Mecd, then IcaSNRcCcMNR=P. Hence 4
must be empty. (2) PR, N S is the unique M in 4. (3) PR[X] is a
prime ideal of R[X] containing Q’; hence PR[X] contains @ (Proposi~
tion 1). Now apply Remark d.

For the remainder of this section was assume that R is local and
P is its maximal ideal. Given M a prime ideal of S such that M N R =
P, let R* = S,. We shall call R* a local monoidal transform of R
with center I, These transforms, in the special case of R and R/I
regular, play an important role in the work of Zariski, Abhyankar
and Hironaka on the resolution of singularities of algebraic varieties..
Abhyankar has noted that in this case R* uniquely determines I,
except in the trivial case of a principal center. We next point out
that the reason for this uniqueness is that in this case I is a prime
ideal of the principal class—in geometric language, an irreducible:
local complete intersection.

COROLLARY 3. A nontrivial local monotdal transform with center:
a prime ideal of the principal class uniquely determines the center.

Proof. Assume that I is prime, and that R* is also the transform
of R with center the prime ideal I' = (y, v, + -, ¥.) of height m + 1:
R* = (S)y,, where S’ = Rly,/y, -+, ¥./y] and M’ is a prime of S’
lying over P, By the above lemma, IS is prime, (IS)N R = I and
S;s # R,. Since R* is a quotient ring of S and of S, S;s = (R*);z* =
(S")y, where N = (IR*) N S’. Consequently (S")y # Rynz = R;; whence:
by the lemma, 7= NN R>I'. Similarly I' > 1.
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REmMARK. Even if I and I’ are not prime, the above argument
shows that their radicals are identical. Question: are their minimal
primary components necessarily the same ? If so, then for I and I’
unmixed (a2 condition guaranteed for R a Macaulay ring) we may drop
the assumption that I and I’ be prime. This question reduces to: if
I and I’ are P-primary and R* = Sp5 = (8)pg, is [ =17

3. R-sequences. Given an R-module A4, the sequence {y, -+, ¥,}
in R is said to be an A-sequence provided that A =y A + .-+ +y,A
and for i=1,---,m,y, ¢ Z(Aly A+ ---y,_,A). (In general Z(B)
denotes the set of zero-divisors on the R-module B; i.e., Z(B) = {rc R:
multiplication by 7 is not a monomorphism on B}. The term “A-sequence”
is probably due to Auslander and Buchsbaum or perhaps to Serre.
They had been studied in several contexts by other writers, especially
Nagata (see “distinct systems of parameters” [2] and §25 of [3]).
The corollary to Proposition 2 below has a long history; it was proved
by: Macaulay [4] for polynomial rings, Nagata [2] for local “Macaulay
rings” and by Rees [7] for Noetherian rings. Rees’ proof is an adap-
tion of Macaulay’s and actually works for arbitrary commutative

. rings. The proof given below is new.

PropositTioN 2. If {z,x, ---, 2,} is an R-sequence, then Q = @'.
(Hence if R is an integral domain, then @ is a prime ideal.)

Proof. Consider first the case n = 1. For fe@Q, x'fc @ (Remark
a); i.e., a'f = (X, — x,)g9, with ge R[X,]. Since «, is clearly not in
Z(R/(x%)), every coefficient of g must be divisible by x!. Canceling
the «' shows that f is a multiple of #X; — «,. In the general case
we consider the homomorphism R[X]— S in two stages:
R[X]— SNX,, ---, X,]— S, where S’ = R[z,/x]. We have already
seen that Y, generates the kernel of the first stage. Since (@, x,)R[X|]
contains the kernel of R[X,]— S’, S’/2S’" = S'/(x, 2,)S’ = (R/(x, %.))[X/]
(Remark d). Since the residues of {x,, ---, z,} in R/(x, x,) constitute
an (R/(x, x,))-sequence, and hence an (R/(x, x,))[X,]-sequence, if follows
that {=, 2., ---, ,} is an S’-sequence. By induction on », {Y,, ---, Y,}
generates the kernel of the second stage. Hence Q = (Y, ---, Y,).

Since we have already noted that {z, x, ---,2,} 1is strongly
analytically independent if, and only if, IR[X] contains @, we have
as an immediate corollary the following theorem of Rees |7]:

COROLLARY. R-sequences are strongly analytically independent.
Equivalently: if an ideal N is generated by an R-sequence of length
m, then the associated graded ring of N is (R/N)|Z, ---, Z,].
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Now if A is a faithful R-module and {v, ,, - - -, «,} is an A-sequence,
replacing R[X] by the R[X]-module of all “polynomials” with coeffi-
cients in A (i.e., R|[X]® A4) and S by S® A in the above argument
gives:

PRrOPOSITION 2. The kernel of the homomorphism R[X]|R A—
S® A is QR[X]R A).

And since the residues of an A-sequence in the ring R/annihilator (4)
form an A-sequence, we have as a corollary the “strong analytical
independence of A-sequences”; namely:

COROLLARY. Let{z, +++,z,} bean A-sequence. If fe AlZ,, -+, Z,]
(=R|Z,, +++, Z,]QA) 1is homogeneous and f(z, +-+,%2,) =0, then
fe @y, -+, 2,)AlZ, -+, Z,]. (That is, ©f >, fi(z, ++-, 2,)a; = 0, where
the f; are distinct monomials of the same degree and a,c A, then each
;€ (Ry, +=+, 2n)A.)

REMARK. In the notation of this corollary let N be the ideal
generated by {z, ---,2,}. It is now an easy exercise to show that
Z(A/NA) = Z(A/N"A)(see [7]); somewhat more generally (but just as
easy) is: Z(A/NA) = Z(A/MA), where M is any ideal generated by
monomials in {2, ---, 2,} having the same radical as N. These facts
are generalizations of Macaulay’s Unmixedness Theorem: In the ring
of polynomials over a field every power of an ideal of the principal
class is unmixed. For these and other generalizations from the point
of view of homological dimension consult Kaplansky’s paper: R-
sequences and homological dimension, Nagoya Journal, Vol. 20 (1962),
195-199.

Henceforth assume that R is a Noetherian ring. Given a finitely
generated R-module A and an ideal N of R such that A4 = NA, then
any two A-sequences in N which are maximal (with respect to being
A-sequences in N) have the same length. (For the details see [7],
or for a simplified account [5]) Following Rees we shall call this
common integer the grade of N on A, denoted G(IN, A). For A= R,
we let grade of N = G(N) = G(N, R). In the following theorem we
collect several characterizations of ideals generated by R-sequences.
Such an ideal is clearly an ideal of the principal class; rings for
which the converse is true are called Macaulay rings.

THEOREM. Let N be an ideal generated by m elements. Then
the following statements are equivalent. (1) G(N) = m. (2) N is
generated by an R-sequence of length m. (3) The associated graded
ring of N is (R/N)Z, -, Z,]. (4) For every monnegative integer
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¥, N7IN™ is a free (R/N)-module of rank equal to the mumber of
monomials of degree r in m wvariables, (5) Ewvery basis of N con-
sisting of m elements is strongly analytically independent. (6) some
basis for N consisting of m elements ts strongly analytically inde-
pendent.

If furthermore R is an integral domain, then each of these six
conditions is equivalent to: (1) If N = (2, +-+,2,), with z, %= 0,
then the polynomials {2,7Z; — z;; 1 =i < m} generate a prime ideal
wm R[Z, -+, Z,_,].

Proof. The equivalence of (1) and (2) is proved in the appendix;
that of (3), (4), (5) and (6) in Remark c¢. That (2) implies (6) is the
corollary of Proposition 2. It remains to consider “(5) implies (1)”.
This could be accomplished by localizing judiciously and invoking the
local version of the theorem given by Rees [7], but we prefer to
avoid this technicality and to present a self-contained proof here,

If G(N) == 0, then we may assume that N = (¢, ---, %z,), where
2, is not a divisor of zero (see the appendix). It is easy to see that
the residues of {z, ---,2,} are strongly analytically independent in
R/(z;). Induction on m then finishes the proof. Hence it suffices to
show that G(IN) = 0, or equivalently that if 2V =0, then z =0,
Since 2z, = 0, by strong analytic independence, zec I. Suppose z =
fz, -+, 2,), where feR|Z, --,Z,] is homogeneous of degree r.
Let g = Z,f. Since g(2,, +++, 2,) = 0, the coefficients of ¢ lie in N;
hence the coefficients of f lie in N, It follows that z = A(z, ---, 2,.),
where 4 is homogeneous of degree » + 1. Thus zeM = N{N":r =
1,2, ---}. By the intersection theorem of Krull, 1 = » + v, where
#e N and ve annihilator (M), Hence z = zu + zv = 0.

Suppose now that R is an integral domain. We change notation
so that 7= N and m = n + 1. The proof of the final statement of
the theorem then becomes a question of showing that @’ is prime if,
and only if, {z, %, ---, x,} is strongly analytically independent. And
since the strong analytical independence of {x, x,, ---, ,} is equivalent
to “IR[X] contains @7 (Remark b’), we are reduced to showing that
@' is prime if, and only if, IR[X] contains @. This is an immediate
consequence of Remark a.

ReEMARK. In Corollary 3 of Proposition 1 we were concerned with
prime ideals of the principal class. Such an ideal P is generated by
an R-sequence of length ht(P) (by Corollary 1 to Proposition 1 and
the above theorem). Hence if M is an ideal properly containing P,
G(M) > ht(P). Thus in a given ring we must expect bounds on the
heights of prime ideals of the principal class. For example, if R is
a nonregular local ring with maximal ideal M, then every prime ideal



204 EDWARD D. DAVIS

of the principal class is of height at most G(M)-1. Question: is this
upper bound always achieved ? If we restrict our attention to local
domains, this question reduces, by induction, to: if G(M) > 1, does
R have a principal prime ideal ? The correct answer to this question
seems to be unknown, Let us note that the familiar technique of
increasing the residue field by the adjunction of indeterminates produces
prime ideals of the principal class of maximal height. Suppose that
GM)=GI)=n+ 1. Let R* = R[X|yrx and let M* be the maximal
ideal of R*. Observe that dimension(R*) = dimension(R), G(M*) =
G(M) and that @' R* is a prime ideal of the principal class of height
.

ApPPENDIX. The material in this section is part of some work
done by the author while he was a student of Professor Kaplansky at
the University of Chicago; we take the opportunity to record it here.
We shall need two elementary facts from commutative algebra available
in any standard textbook on the subject, (e.g., [1]). TFirstly: an ideal
not contained in any one of a finite set of prime ideals is not contained
in the set-theoretic union. Secondly the following part of the primary
decomposition of 0 in a finitely-generated R-module A, for Noetherian
R: Z(A) is the union of a finite set of prime ideals having no con-
tainment relation among them.

LEMMmA. If the ideal N s contained in the union of a finite
set of prime ideals having no containment relation among them, and
(N, y) is not, then (N, y) = (N, z), where z lies in none of the primes.

Proof. Let u + ry¢ U{P,}, where ue N. Clearly if yc P,, then
wé P,, We may assume that y¢ P;,(1 =1 = J) and that ye P,(j < 7).
Select se U{P;:1 = j} — N{P;:j <14}. Then z = su + y is as desired.

THEOREM. If G((yu Ty yn)y A) = m, then (yly Yy yn) = (zly ttty zn)s
where {z,, ---,%2,} 1S an A-sequence.

Proof. Let Z(A) = U{P;} as in the primary decomposition men-
tioned above, Let k be maximal such that Z(A) contains (y,, -, ¥s).
Then by the lemma, (y,, +--, ¥p1) = (R, Yy, =+, Y1), Where z, & Z(A).
Replace R by R/(z), A by A/zA, (y, ---,y,) by the ideal generated
by the residues of {y,:% % k + 1}, and proceed by induction on m.

COROLLARY (Grade Unmixedness Theorem). If an ideal N is
generated by n elements and 1s of grade n, then all the associated
primes of N are of grade n.
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Proof, By the theorem, N is generated by an R-sequence of
length n. That R-sequence is then a maximal R-sequence in any
associated prime of N.
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