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ON GENERALIZED CAYLEY-DICKSON ALGEBRAS

ROBERT B. BROWN

Among those algebras whose multiplication does not satisfy
the associative law is a particular family of noncommutative
Jordan algebras, the generalized Cayley-Dickson algebras.
These are certain central simple algebras whose dimensions
are all powers of two. Most of this paper is concerned with
giving the classification up to isomorphism of those of dimen-
sions 16, 32, and 64 and determining the automorphism groups.
In addition to this some generalized Cayley-Dickson division
algebras are constructed. Precise criteria for when the 16-
dimensional algebras are division algebras are formulated and
applied to algebras over some common fields. For higher
dimensions no such criteria are given. However, specific
examples of division algebras for each dimension 2t are con-
structed over power-series fields.

DEFINITIONS. Let us recall the definition of our algebras. Let
21 be any algebra (not necessarily associative) with an involution a—»α*,
that is, a nonsingular linear transformation on 31 such that (α&)* = δ*α*
and (a*)* = α. If 7 is a nonzero element of the ground field, we
define the algebra 2Ϊ{7} to be the set of pairs (α, b) with a and b in
21 and with addition and scalar multiplication defined in the obvious
way. To avoid confusion with bilinear forms which will be appearing
let us write u for (0, 1) and a + bu for (α, b). Multiplication in 2ί(γ)
is then defined by

(a + bu)(c + du) — (ac + yd*b) + (da + bc*)u .

The map a —> a + 0u imbeds 21 isomorphically in 2ί{7}, and a + bu —>
α* — bu extends the involution to 21{γ}. If 1 is a unity element of
21, then 1 + Ou is a unity of 21{γ}.

A generalized Cayley-Dickson algebra 21* of dimension 2* is con-
structed by choosing nonzero elements yu , yt in the ground field
g. Then we set 2I0 = g (with the trivial involution α* = a) and
31. = 2Iί_1M = Sί,_! 0 Sti^i for i = 1, 2, •, ί. The norm n(x) =
xx* = χ*χ of x in 2Iί is a multiple of the unity element and can be
linearized to give a nondegenerate bilinear form on %:

(x, y) = — [n(x + y) - n(x) - n(y)]
Δ

= _ (χ<y* + yx*) .
Δ

We note that if n(x) Φ 0, then x has the inverse ^(.τ)"1^* and
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nix-1) = n(x)~\ For 2I3 the norm can be seen easily to be equivalent
to

( 1 ) (x\- ΊiXV) - 72(^3 - ΎiXl) ~ 73[(&S - 7i&D ~ 72(α? - 7i&l)] ,

where the first term comes from the restriction of the norm to g l
and the other seven terms from the restriction to the subspace 51° of
all x such that (x, 1) = 0. Also for ί g 3 only, 2If is a composition
algebra: n(xy) = n(x)n(y). (See [2].) The algebras 2ί2 are generalized
quaternions and 2ί3 the usual Cayley-Dickson algebras.

Suppose that Sϊo, 2ίi, , 2t*_i is a sequence of subalgebras of 2ί*
and vlf —-,vt is a set of generators for 2ί* such that v\ = δ{ Φ 0,
g = Sto c c 2 1 ^ c Si,, dimension 21, = 2% and 3t< = 3 1 ^ + 5I,_^.
Suppose further that multiplication in 21, can be written as

( 2 ) (α + δtfiXc + dv<) = (ac + M*δ) + (dα + bc*)Vi .

Then we will call vl9 * ,v t a normal set of generators for 2Iί# In
general, 2Iέ has normal sets of generators other than the set ul9 , ut

used in the original construction of 2ίf. We recall that for 2I3 all
normal sets of generators can be found in the following way [2, pages
6-8], We choose vx to be any element of 2t3 such that (vu 1) = 0 and
v\ Φ 0. For v2 we then choose any element such that (v2, 1) = (vz, Vj) = 0
and vl Φ 0. Finally, v3 can be any element such that (v9,1) = (vz, vx) =
(v3i v2) = (v3, vxv2) = 0 and vl Φ 0. The known property [2] that 2ί3

has zero divisors if and only if it has an element a Φ 0 such that
n(a) = αα* = 0 will be used in §3. The multiplication table for 21*
in terms of a normal set of generators can be determined from equation
(2). In particular, for 2I3 we have the following products, which we
will use in §3: (^2X^3) = (vΐ)(v2v3), v3(VjV2) = —{v^v^ v^v.v^) =
(^Λ)^, 3̂̂ 2 = - ^ 3 , and v^ViVs) = —(v.v^v^

In 2ϊί let S be a subset of T = {4, , ί} and let a be in the
8-dimensional subalgebra generated by uu u2, and uz. If the integers
i, i, of S are written in increasing order, we define as to be
( •((auJUj)* •)• Then every element x in 21* can be written uniquely
in the form Σs^r as-

2. Automorphisms* The structure of the automorphism groups
of the algebras 2X3 can be found in [2]. To compute Aut(2i*) for
t Ξ> 4 we will need Schafer's result [4] that for t Ξ> 4 the derivations
©(21*) of 21* are all of the form a + bu —> aD + {bD)u, where D is a
derivation of 2Iί_1. If @* denotes the enveloping algebra (not necessarily
with unity element) of a set @ of linear transformations on a vector
space, then for t ^ 4 any element of ©(21*)* is of the form a + bu—>
aE + (&£?)%, where E is in



a + bu
a + bu

a + bu

->aθ + (I
—> a — bu

+

)θ)u,

3α*
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Let 2lί = ^t-iiy} a n d assume that the ground field contains
β = i/( —3τ) . Let Θ be an automorphism of § 1 ^ . Then we can readily
check that the following transformations are automorphisms of 2ίt.

ε:

6*)]

/97-χ(α - a*)]u .

The following products are also easily checked: ψθr = θ'ψ, εθ' — θ'ε,
ε2 = 1, α/r3 = 1, βα/r = α/r2ε (composition reads from left to right). There-
fore Aut (SCt) has a subgroup G isomorphic to Aut (2ϊί_1) x S2, where
S3 is the symmetric group of degree three. If the ground field does
not contain β, then ψ does not exist and Aut (Sίj) has a subgroup G
isomorphic to Aut (SI^O x S2, where S2 is the group of order two.
Here are the two main theorems.

THEOREM 1. For t = 4, 5, 6 and for ground fields of character-
istics not two or three, Aut (%t) = G.

THEOREM 2. For t = 4, 5, 6 and for ground fields of character-
istics not two or three %t = S Ϊ ^ J T } and Wt — 2I'_i{τ'} are isomorphic
if and only if 2 1 ^ and 2ILi are isomorphic and y = λ2γ' /or λ in
the ground field.

We will prove these theorems in detail here for t = 4 only and
will sketch the proof for t = 5, 6. We conjecture that both theorems
are true for all t ^ 4.

First we provide an elementary characterization of u — ut.

LEMMA 1. If v is an element of %t(t Ξ> 4) sush that (v, 1) = 0
and

( 3 ) x(xv) = x2v, (vx)x = vx2

for all x in 2ϊέ, then v is a multiple of u.

Proof. Let x = a + bu and v = c + du. After expanding (3),
among the conditions we obtain on c and d by equating appropriate
terms are α*(d*6) = (α*d*)δ and 6(c*α*) = (6c*)α*. Hence, c and d
are in the middle nucleus of 2ίί_1, which contains only scalar multiples
of 1 [4, Equation 14b]. Then since (v, 1) = 0, e = 0. This proves
Lemma 1.

Our knowledge of S)(SI«) can be used to advantage with the follow-
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ing lemma about ®(2I3).

LEMMA 2. ®(§I3) maps SI3 into 8tJ. Furthermore, 5)(§t3)* αcte as
£Λe full set of linear transformations on SΪJ.

Proof. Let wly , w7 be a basis of Sis such that W\Φ 0 and
(Wί, Wj) = 0 if i Φ j . Then if i Φ j there is some & such that the
ordered triple L = {v1 — wi9 v2 — w3 , vs = wk} is a normal set of gene-
rators for 2I3. Then a short check will show that the map DL such
t h a t 1DL = 0, vxDL = v2, v2DL = — n(v2vr1)vu (VjV2)DL = 0 is a derivation

of 2ί2. This can be extended to SI3 by setting v3DL = 0. Then

(V.V^DL = v2t;3, (v2v,)DL = -niv.vr^v, ,

and {v{v2)VzDL = 0. The triples ikf = {v2, v3, ^1 and iV = {v3, ι;2, v^a} are
also normal sets of generators. If Ei5 = DLDMDN in ®(2ί3)*, then
wnEin — δi3 w3: These Ei5 generate the full set of linear transformations
on 2I3. To finish the proof of Lemma 2 it is sufficient to show that
if D is in ®(5ί3), (α, 1) = 0. and α2 = βl Φ 0, then (aD, 1) = 0. Let
aD = α:l + 6, where (6, 1) = 0. Then

0 = a2D = (aD)a + α(αD) = 2aa + (6α + αδ) = 2aa - (α, 6)1 .

Therefore α: = 0. This proves Lemma 2.
We turn first to the proof of Theorem 2. Let φ be an isomorphism

of 2Iί onto Wt. Lemma 1 assures us that utφ = λ%{. Hence (u2

t)φ =
(7tl)<p = Til' = λ 2(^) 2 = λ2τίl' and yt = λ27ί. For a Φ 0 in 2I3 such that
(α, 1) - 0, let

= Σ
where the ^ are linear transformations of 2ί3 into §ί3. Evidently

*^ = S)(Sίί)*. Therefore Sί̂  is spanned by 1 and

The preceding equation and Lemma 2 imply that ( α ^ , 1') = 0 and if
aηs — 0 for some α, then rj8 = 0.

We fix some R ξΞ= T such that ^ Λ ^ 0 and denote 7]R by η. Now
we will show that for all U g= T,ησ = aπ*η, for aπ in the ground field.
If for some α, aηπ is not a multiple of aη, we find Ef in ®(SI3)* such
that arjjjE' — 0 and α ĵE" Φ 0. Since there exists an E in ®(2I3)* such
that Σ (a^Vs)s = Σ (aVsE')s, WQE' Φ 0 implies that αί/ ^ 0, and
aErjjj — 0 implies that ηπ — 0. Hence α^ = 0 will do for aπ. Now
we can write aφ — Σ (Wswfis. To show that <x# does not depend on
α, let δcp = Σ (βsfo})s. Choose JE? in ®(Sί3)* such that αΐ; = 6. Then
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Σ (βsbη)s = bφ = aφiφ-'Eφ) = Σ (asaηE')s

for some E' in ®(2Q*. Since aR = βB = 1, 697 = aηW. Therefore
as = /Ŝ  for all S. We know that {wη, 1) = 0. Also, (aη9 brj) = 0 if
and only if (α, δ) — 0. To see this choose a such that n(a) Φ 0. Then
n(a) — n(aφ) — an(aη) Φ 0, for some nonzero constant a which does
not depend on a. Linearizing, we obtain (α, 6) = a(aη, bη). Finally for
i ^ 4, Uiψ = Σ 4 f or a' in 2Iί. Since ^©(91,)* = 0, α'®(SΪ0* = 0 and
every a' is a scalar multiple of 1'. Altogether,

( 4 ) aφ = X o

( 5 ) ^

Substitution of (4) and (5) into (xy)φ — (xφ)(y<p) for all x, y in Stj
yields a set of quadratic equations that can be used to verify Theorems
1 and 2. Their solution for t — 4, which we now give in detail, is
the easiest, Let u4 — u, and for a in 2I3 let aφ = a(aη) + β(aη)u',
where a — 0 or 1. If α = 0, 3I3<£> is spanned by 2I3U' and Γ. Since
this set is not closed under multiplication, a — 1. Let (α, 1) = (δ, 1) =
(a, b) = 0. Then (α^)* = - α ^ , (657)* = -by], and {aη){bη) + (bη){aη) =

+ (fo?)(α3?)*] = -(αjy, fo^) = 0. Therefore

+ β{ab)ηuf

β{ar])uf){bη + β(bη)u')

Yβt(bη)*(aη) + β[(bη){aη) +

- 2β({aη)(bη))u'

Hence

( 6 ) (αδty =

( 7 ) (αδ)ί7=

Since these two equations are linear in a and δ and true if (α, δ) = 0,
they must be true for all α, δ in 2ίJ. Equation (7) implies that —257
is an isomorphism of SI3 onto W3. This proves Theorem 2 for t = 4.

To prove Theorem 1 for ί = 4, we assume that 2ί4 = SCJ. The
foregoing arguments show first that uφ — ±u. Hence, by replacing
φ by φe if necessary, we may assume that uφ — u. As before, if
(a, 1) = 0 and a Φ 0, then aη Φ 0. We may also assume that β Φ 0,
for otherwise η is already an automorphism of 2ί3 and φ — rf. The
remaining computations again lead to equations (6) and (7). Equation
(7) shows that —2η is an automorphism of SI3, and equation (6) shows
that β = Vi-Sy-1). Thus φ = ( - 2 ^ » ε . This proves Theorem 1 for
t = 4.
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3* Division algebras* Over the real field, the rational field,
p-adic fields, or finite fields, 2Iέ is never a division algebra. However,
we can exhibit division algebras over some other fields. Since 2ίf is
finite-dimensional, it will be enough to find algebras without zero
divisors. The next theorem is about algebras 2I4.

THEOREM 3. 2I4 = 2ϊ3{τ} is a division algebra if and only if §I3

is a division algebra, 7 is not the norm of an element a in 2I3 and
— 7 is not the norm of an element x in 21°.

Proof. The necessity of 2I3 being a division algebra is clear. If
7 = aa*, then (α + u)(a* — u) = 0. If —7 = %%*, we extend x to a
normal set of generators vλ = x, v2, vs of 2I3. Then (v±v2 — v2u)(v1v3 +
v3u) = 0. Conversely, suppose that 2t3 is a division algebra and 2I4

has zero divisors: (a + bu)(c + du) — 0. Then ac + Ύd*b = 0 and
da + &c* = 0, and none of α, 6, c, d can be zero. Then c— —
and dα = ^ ^ ( ^ ^ ( δ * ^ ) ^ , so that

8 ) 6*(dα) = yn(ba-1)(b":d)a .

The subalgebra generated by δ, d, and α is either associative, in which
case 7 is a norm, or is the whole of SI3. In the second case we can
obtain a normal set of generators x,y,z by setting

6* = ξ 1 + x, d = ηl + ax + y, a = λ l + βx + δy + ea?2/ + 2 ,

where

(x, 1) = (?/, 1) = (z, 1) = (2/, x) = (z, x) = (2, 7/) - (2, α?2/) = 0 .

Multiplying out (8), we find that in actuality 6* = x, d = y, a = z.
But x(yz) = —(xy)z, so that —7 = n(ab~ι). Unfortunately these calcula-
tions do not generalize to all 2Iέ because the alternative law (in 2ΐ3)
is used in obtaining (8).

Over a finite field a quaternion algebra 2I2 connot be a division
algebra, for it would then have to be commutative. Since every 2ίf

(t ^ 2) contains an 2I2, there are no division algebras %t for t ^ 2 over
a finite field. Over p-adic fields every quadratic form in at least five
variables has a nontrivial zero [3, §63], Therefore, there are no
division algebras 2I3 or %t (t Ξ> 4) over a p-adic field.

Over the real field or a real algebraic number field let 5I3 be the
algebra defined by 7i = 72 = 73 = — 1. By (1) its norm form is equivalent
to

( 9 ) n(x) = x\ + x\ + x\ + x\ + x\ + x\ + x? + x\ ,

and it is a division algebra because (9) never gives a nontrivial repre-
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sentation of zero over a subfield of the reals. (For the real or rational
field this is the only division algebra 2I3 [1, § 10]. Next, 7 = n(a) or
— 7 = n{%) for some x such that (x, 1) = 0 if and only if the quadratic
form (10) or (11) below, respectively, has a nontrivial zero.

(10) n(x) - 7̂ 9 = xl + x\ + %l + x\ + x\ + x\ + x* + x\ — 7̂ 9 .

(11) x\ + x\ + x\ + x\ + x\ + x2τ + x\ + Ί%1 .

Over the real field (10) is indefinite and has a zero if 7 > 0, (11) if
7 < 0. A result of Hasse in algebraic number theory tells us that
over an algebraic number field a quadratic form in at least five
variables has a nontrivial zero if and only if all of its real conjugate
forms are indefinite [3, § 66]. Over the rationals the only real conjugate
forms for (10) and (11) are (10) and (11) themselves, one of which is
indefinite. Hence, over the real and rational fields there are no division
algebras for 3I4, thus none for %t (t Ξ> 4). However, suppose we choose
a positive real number λ whose square roots are not rational, let
7 = Vx or — i/λ~, and let the ground field be the real quadratic
extension £ι[y] of the rational field £}. Then (10) has the real con-
jugate forms n(x) ± jxl, one of which is definite. Hence (10) has no
nontrivial zeros; similarly, neither does (11). Therefore 2I4 is a division
algebra.

We can use a different method to construct for every t a division
algebra %t over a suitable field. Let % be any field of characteristic
not two, and let Xu , Xt be t algebraically independent indeterminates
over g. For i = 1, , t we construct the algebra %{ over the power-
series field §{Xi, , Xi} by setting j k = Xk for k = 1, , i. Let

By induction on i we now show that 31̂  is a division algebra for
i = 1, , t. Assume that 2 1 ^ is a division algebra and suppose that
x = a + b^ and y = c + du{ are nonzero elements of 31; such that
xy =z 0. Then

(12) ac + X{d*b = 0 and da + 6c* = 0 .

As before, α, 6, c, d must be nonzero, and we can write

a — am2Li + am+1Λi -t- ,

b = bnXΐ +bnilXr1 +

c = cpXf + cp+1Xf+1 + ,

d = dqX? + dq+1X?+1 + ,

where all the ak, bk, ck, dk are in 2 1 ^ and am, bn, cp, dq are nonzero.
By (12), mJrp = l + qJ

Γn and m + q = n + p. Adding these two
equations, we obtain 2m + p + q = 2n + p + q + 1. But 1 is not an
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even integer, so that §!< must be a division algebra.
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