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CANONICAL DOMAINS IN SEVERAL
COMPLEX VARIABLES

SADAO KATO

The main purpose of this paper is to give the function
which maps a bounded domain onto the m-representative
domain (m ^ 1) (hereafter called m-representative function)
without utilizing the minimum problems in the case of several
complex variables. One of the results obtained is that a m-
representative domain becomes also a (m + ^-representative
domain.

Let D be a bounded domain and kD(z, t) z, te D be the Bergman
kernel function. Recently M. Maschler [7] made use of the minimum
problems to establish the m-representative function in one variable:

( I ) w(z) = -^ i^iίi- fixed

where Af£10""°(2,10), mι£'"%z, ί0) are both Maschler's minimizing functions
and represented in a closed from by using kD(z, t) and its derivatives,
respectively. Moreover this result has been generalized successfully
by T. Tsuboi [13] in the case of several complex variables. In this
case, however, for example the 2-representative function of a unit
circle is nonregular if we choose a fixed point tQ in 1/2 < | tQ | < 1.

In this paper we consider the following m-representative function
of other type which coincides with the ordinary Bergman representative
function when m = 1 (§ 4):
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where the matrix function TD(z, t )(for definition, see § 1) is, as is
well known, relatively invariant under any pseudo-conformal mapping.
We define in § 1 the relative invariant T1Ό{z, F), which plays an
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important role throughout this paper. In § 2 we have a necessary and
sufficient condition that a minimal domain becomes simultaneously a
representative domain with the same center. Section 3 is devoted to
the canonical domains of other types.

1* Preliminaries* Various properties on the several complex
variables can be treated simply in many cases, considering functions
as reciprocal mappings of vector spaces. In this paper we assume
that each domain D we deal with is a bounded domain in ^-dimensional
complex Euclidean z = (zu z2, , zw)'-space and we shall consider w(z) =
(w^z), w2(z), , wn(z)Y which is called a vector function after Bochner-
Martin, for each point z of D. We shall call this w(z) an analytic
function of z, if wά(z)(j = 1,2, -- ,n) are analytic with respect to
z(Ozaki and others [14]).

We start with the definitions of power of vector and differentia-
tion with respect to vector variable. Vectors and matrices marked
with the symbol ' and * denote the transposed and transposed conjugate
vectors or matrices, respectively. We define the ft-th power of z as

(1.1) ** = (*?, . - . ^ M ' - sS , •• , s * ) ' ,

where (ku kZf , kn) runs over all the nonnegative integers such that
kx + k2 + + kn = k and nHk monomials of degree k in zlf z2, ,
zn are arranged in a certain determined way (e.g., in the lexicographical
order) to form an ^ί^-tuple column vector. Next we define the k-th
partial differentiation of function w(z, t) with respect to z and t* as

k ϊ 3 *Jϋw(zt) = (— . . . ... —
(1.2) dzk \dzf ' " ' ' kx\k2\ kj dz'pdz^ -.. dzk

n- ' ' " ' dzk

n

x w(z, t)

a n d dkw(z, £)/d£*& = (dk/dtk)* x w(z, t ) , w h e r e dk/dzϊ, , dk\dz\ a r e a r -
ranged in the order corresponding to zk, - —, zk in (1.1) and the sign
x denotes the Kronecker product. In particular, for k = 1 we have
n x n matrix derivative from (1.2) whose (i, i)-element is dw{(z, t)/dzd

i, j = ( 1 , 2 , , n ) , w h e r e w ( z , t ) = ( w ^ z , t ) , w 2 ( z , t ) , - -, w n ( z , t ) ) ' .
For a function w == w(z) the &-th partial differentiation will be
merely denoted as follows: dkw(z)/dzh = dkw(z)/dzk. Moreover, we
define the fc-th power (dw/dz)k of dw/dz as an nHk x nHk reduced
m a t r i x of t h e n k x n k m a t r i x (dw/dz) x (dw/dz) x ••• x (dw/dz)( = A)
in the follov/ing way:

(i) Construct an nk x nHk matrix B by adding up the columns
in A of which the first elements are equal to each other, and by
arranging the above nHk columns so that the first elements of them
make a following %iϊ / Γtuple row vector



CANONICAL DOMAINS IN SEVERAL COMPLEX VARIABLES 281

//dwΛk kl /dwλ^ίdwΛ^ ίdWj\kn /gWl

\ \ d z j ' ' " ' k J . k Λ •.. k j λ d z j \ d z j " \ d z j ' " * ' U

where (dwjdz^, , (dvjjdzv)
k are arranged in the order corresponding

to z\, '-,zk

n in (1.1).
(ii) Construct nHk xnHk matrix by leaving only one and remov-

ing others among the row vectors in B which are identically equal to
each other, and by arranging all remained rows so that the first
elements of them make a following nHk column vector

'dwλk /dιvΛkl/dwΛk2 ί dιvn\
kκ β ίdwΎi

where (dwjdz^, , (dwjdz^ are arranged in the order corresponding
to zϊ, '",zk

n in (l.l)(Ono [11], Tsuboi [13]).
We shall introduce some differential formulas for convenience after

calculations. Let the functions A, B of z be k x I, I x m matrices,
respectively. The following formulas can be easily calculated: dAB/dz =
A(dB/dz) + (dA/dz)(En x B), dA - (dA/dz){dz x Et), dA/dz = (dA/dζ) -
((dζ/dz) x Et), where En, Et denote n x n, I x I unit matrices, respec-
tively.

The following lemmas are trivial.

LEMMA 1.1. If for a vector function w==w(z) we have dιv(z)/dz =
A, where A denotes an n x n constant matrix, then w(z) = Az + C,
where C is a constant vector of integration.

LEMMA 1.2. For a matrix P = ( Ά/Γ ΛΓ) with the block subdivi-

sions, where K, N are square matrices, it holds that

^ + XZ-Ύ -XZ1

p-1 =
_Z-iγ

where X = K~ιL, Y = MR-1, Z = N - MK~ιL.

Let 22(D) be the class of all functions w(z) which are regular
and singlevalued in a domain D and for which the Lebesgue integral

( \w(z)\2dvz< oo, Then £ 2 φ ) is a Hubert space. Since 82(D) is
separable, there exists a closed orthonormal system φ(z) = (φ^z),
φ?kz), '' ")'• Using this φ(z), the Bergman kernel function kD(z,t)
may be represented as follows: kD(z, t) = φ*(t)φ(z) z,te D. This func-
tion is independent of the choice of a closed orthonormal system φ(z),
and kD(z, z) > 0. It is well known that if a function ζ ΞΞ ζ(z) is a
pseudo-conformal mapping of a domain D onto a domain J, then we have
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kj)(z, t) = det dτ/dt kj(ζ, τ) det dζ/dz, where r = ζ(ί), Also, that if
we define TD(z9 z) = 32 log kD(z, z)/dz*dz, then the n x n Hermitian
matrix TD(z, z) is transformed under any pseudo-conformal mapping
ζ = ζ(z) as a relative invariant; that is, TD{z, z) = (dζ/dz)* Tj(ζ, ζ)(dζ/dz)
and is positive definite. Therefore the Bergman metric

ds° ΞΞ dz* TD(z, z)dz

is absolutely invariant under any pseudo-conformal mapping (Bergman
[3]).

Now, we shall define k^z, t), TμD(z, t)(μ = 1, 2) as follows, respec-
tively:

?TμD{z, t) = J?—\ogkμD(z,t) , M M ) = det{klD(z,t)T1D(z,t)}z,teD-

(k1D(z, t) = kD{z, t)) ,

where we assume that kμ,D(z, t) Φ 0. Then the n x n matrix functions
TD(z, t)(=T1D(z,t)) and T2D(z, t) may be calculated as follows, respec-
tively:

(1.3) TμD(z, t) = k~l(z, t){k,Ό(z, t)J^-k,Ό(z, t)

(1.4) TiD(z, t) = 2n TD(z, t) + -J— log det TD(z, t) .
dt*dz

REMARK 1. As we assume km(zy t) Φ 0(μ = 1,2), our method
does not apply to all bounded domains.

LEMMA 1.3. TμΌ{z, t)(μ = 1, 2) is relatively invariant under any
pseudo-conformal mapping ζ = ζ(z), and T2D(z, z) is a positive definite
Hermitian matrix. Thus we may define the 2-nd invariant metric
ds* = dz*T2D(z,z)dz.

Proof. TD(z, t) is relatively invariant (Tsuboi [8]), hence TZD(z, t)
is also relatively invariant from (1.4). Thus, it holds that

(1.5) TU*, *) = ( ^ ) * Γ M ( ζ , τ ) i | (μ = 1, 2) ,

where z = ζ(t) and A = ζ(D). Next it has been known that the
matrix

(1.6) (n + l)(gΈβ) - (BSβ) (a, β = 1, 2, . . . , n)
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is positive definite, where g^ and i?«β are covariant metric tensor
and the Ricci curvature tensor for bounded complex manifold, respec-
tively (Kobayashi [5]). In our case, we can take TD(z, z) as (g«β) and
— 32log det TD(z, z)/dz*dz as (Rzβ). Hence (1.6) becomes as follows:

( 1 7 ) u*\(n + l)TΌ(z, z) + -f— log det TD(z, z)Λu > 0 ,
L dz*dz J

where u is an arbitrary w-tuple nonzero constant vector. We utilize
this relation (1.7). By (1.4) we have

u*T22)(z, z)u = u*\2n TD{z, z) + JL- log det TΌ\z,
L dz*dz

\(n + 1)2^(3, z) + - ξ _ log det TD(z, z)]u > 0 ,
L dz*dz JL

the proof is completed.
If D and Δ are domains which are pseudo-conformally equivalent

to each other by ζ = ζ(z), then for the scalar function kiD(z, t) v̂ e
have

(1.8) M^, t) - (det ̂ Y^AZ, τ)(det -g-)" , m = 1 + 2n

and it is evident that k2J)(z, z) is positive from its definition.

2* /^-th Representative domains and μ-th quasiminimal domains
(μ = 1, 2). Generalization of the Riemann mapping theorem to the
case of domains in the spase of several complex variables leads to
various other types of canonical domains.

Firstly we shall introduce the generalized representative domain.
We define the vector function M°%n(z, tQ) and the scalar function
•w&μi>(3, *o) i n D for a fixed point to(eD), which is not a point on a
branch manifold, as

ίS-ίz, ί0) = (0En)
dz

—kμD(z, t0)

and mjL^, ί0) = fc^ί^j to)/kμD(tOy t0), respectively, where 0 denotes an w-
tuple column zero-vector. Hereafter we assume that det TμD(z, t0) Φ 0
for all zeD.

REMARK 2. Let P " 1 be the second matrix of right side in (2.1),
then by a simple calculation of determinants we have
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det P = k$\to, to) det TμD(tQ, t0) > 0 .

Hence there exists the inverse of P. Further from the rules of
matrices we see that M°f>n(t0, t0) = 0.

LEMMA 2.1. The matrix derivative d(Mμ^/mμD)/dz is given by
the matrix product

± ^f f i(M) τ-*(t0, to)TμD(z, t0) .(2.2) τ
dz mμΌ(z, to)

Proof. Using Lemma 1.2 and the relation (1.3), further noting
the definition of TμD(z, t) the left side of (2.2) is calculated as follows:

τ-1(t τ)/k (t τ))(OT'μJ}(z,to))'.

From this we obtain the desired relation T~£(t0, to)TμD{z, tQ).

THEOREM 2.1. If a domain D is mapped onto a domain A by
a psendo-conformal mapping ζ = ζ(z) which satisfies ζ(ίo) = ro, dζ(to)/dz =
En at a fixed point tQ (e D), then we have

lHz, to) = ilfμ°f»(ζ(g), To)

\Ώ(z, to)

Thus by the function (M^Enlm1

μ) + vQ D and A generate the same
domain B( 3 vQ(not located on a branch manifold)) of certain kind.

Proof. Integrating from t0 to z both sides of (2.2), and noting
Mj!Zn(to, to)lml^D{tQ<) to) ~ 0 the vector function MμD/mμD is represented

by

(2.4) ^ T i { t

mι

μD{z,t0)

Using the relations (2.4) and (1.5), the invariant (2.3) is easily obtained.

We call this unique domain J5(in Theorem 2.1) a μ-th representa-
tive domain of D with respect to t0 with center at a point v0.
Further we shall name w(z) = (Mϊ%n(z, to)/mμn{z, t0)) + v0 a μ-th repre-
sentative function of the domain D.

If a domain D is homogeneous, then we have det TD(z, t) =
c-kD(z, t) i n D. H e n c e T2D(z, t) is e q u a l t o (2n + l)TD{z, t ) . T h u s
in this case 2-nd representative function coincides with the usual
representative function.

We shall consider the mapping of D onto B by means of the
function w = (Mμ^

n(z, to)/mμD(z, t0)) + v0. Then the domain B becomes
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a μ-th representative domain with center at v0, and further it holds
that (M$»(z, U)/mlD(z, tQ)) + v0 = (M£$»(w, vo)/vιlB(w, v0)) + vobγ Theorem
2.1 because w(z) satisfies the normalized conditions w(t0) = vQ, dw(to)/dz =
En. Therefore we have

COROLLARY 2.1. μ-th Representative function of a μ-th repre-
sentative domain B is the identity function.

COROLLARY 2.2. A domain B is a μ-th representative domain
with center at v0 if and only if

(2.5) TμB(w, vQ) = TμB(v0, vQ) = const, for w e B .

Proof. Suppose that B is a /J-th representative domain with center
at v0. Then from the property of μ-th representative domain, it
holds that iv — v0 = Mjί%n(w, vo)/ΊnlB(w, v0). By differentiating this
equation with respect to w, we obtain En = T~ΰ

ι(v0, vQ)TμB(w, vQ) from
(2.2). Suppose conversely that the relation (2.5) holds. Let Bx be the
μ-th representative domain of B with respect to vQ, that is, the image
domain by the μ-th representative function wx{w) of B. Then it
suffices to show that wx(w) is equal to w. Since

dwλ(w)ldw = T-^Vo, vQ)T^B(w, vQ)

by Lemma 2.1, we have dw1(w)/dw = En from our assumption (2.5).
Therefore, w^w) = w because W^VQ) = v0 (See Lemma 1.1).

A domain B is minimal with center v0 if and only if kB(w, v0) is
constant for w e B. In view of this fact we shall define the μ-th
quasiminimal domain which is the generalization of minimal domain,
and secondly we shall state some results.

A domain B is called a μ-th quasiminimal domain with center
at a point vo(eB) if and only if kμB(w, v0) = kμ,B(vQ, v0) = const, for
w e B. Therefore the 1-st quasiminimal domain coincides with the
ordinary minimal domain.

Let a domain B be minimal and representative with the same
center at v0, then kβ(w, v0) = const, and TB(w, v0) = const, for weBf

respectively (Maschler [12], Tsuboi [8]). Hence we have k2B(w, vQ) =
const. Thus there exists the 2-nd quasiminimal domain.

THEOREM 2.2. A necessary and sufficient condition that a μ-th
representative domain B of a domain D with respect to t0 with
center at v0 becomes simultaneously a μ-th quasiminimal domain
with the same center v0 is
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(det TμD(z, t,))mlk»Ό{z, t0) = (det T!λD(t0, tQ))m/kμD(t0, ί0) - const .,

where we take m — 1, 1 + 2n for μ — 1, 2, respectively.

Proof. According to the invariant relations (1.5) and (1.8), we
have (det T^iz, tQ))mlkμD{z, t0) = (det TμB(w, vQ))m/kμB(w, v0),

(det Tμΰ(tQ, ί o))m/W*o, «o) - (det TμB(v0, vQ)ΠkμB{vQ, v0)

for a μ-th representative function w = w(z) of D. From this formulas
our required result is directly obtained.

THEOREM 2.3. A necessary and sufficient condition that a μ-th
quasiminimal domain B with center at v0 becomes simultaneously a
μ-th representative domain with the same center v0 is

d2kμB(w, vo)/dv*dw = kμB(v0i vo)TμB(vo, v0) = const .

Proof. Since B is a μ-th quasiminimal domain, we have

(2.6) TμB{w, v0) = k£(v0, v0) kμB(w, v0)

dv*σw
from (1.3) and the equation dkμB(w, vQ)/dw = 0 which is equivalent to
k^w, vQ) — const. From (2.6) and Corollary 2.2, our desired conclu-
sion is at once obtained.

For μ — 1 we have the following corollary.

COROLLARY 2.3. A necessary and sufficient condition that a
minimal domain B with center at v0 becomes simultaneously a
representative domain with the same center v0 is

(2.7) kB(w, v0) = kB(v0, vo)TB(vo, v0) = const .
dv*dw

If we denote A = kB(v0, vQ)TB(v0, v0) in Corollary 2.3, then A is a
positive definite constant Hermitian matrix. Using this A the
condition (2.7) may be described as d*kB(w, vo)/dv*dw = A. This is
equivalent to dkB{w, vQ)ldv* — A(w — vQ) because dkB(vQ, vQ)/dv* = 0
(See Maschler [12]).

EXAMPLE 1. Let D be a bounded domain in z-plane. Then there
exists a unique function w Ξ W(Z) which maps D onto the 2-nd
quasiminimal domain B with center at vo( = w(tQ)) and it is
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<2.8) w(z) = kΐi!\tQ, to)[ klfiiz, to)dz + v0 .
J to

In fact, using the invariant (1.8)(n = 1) we have

S z __ _ f10

kl!n(z, to)dz + v0 = k2β'\v0j v0) k\'i(w, vo)dw + v0 .
to J vo

From this relation, (2.8) is easily obtained.

REMARK 3. We see from (2.9) that the function (2.8) is also a

kind of representative function of the domain D. In general, the

function w(z) = Γ {m}Sro(s, to)}llvdz(v = 1, 3 for μ = 1, 2) in the case of
J to

one variable may become a μ-th m-representative function (See § 4).

3* μ-th N o r m a l domains (μ = 1, 2). We denote N^£(z, t0) =

T£(tQ, QTμI)(z, to), M™*(z, tQ) = \'N?2(Z, to)dz (See §4), and we shall

consider the function

/Q i\ w(z) — Tll2(f T)M0En(z f ) -4- v

Then from (1.5) we have

dw*dw = dz*N^(z, tQ)*TμD(t0, to)Nfy(z, tQ)dz

for any pseudo-conformal mapping ζ = ζ(s). Hence we obtain

/Q 9) (dw = )Tll2(f T )NEn(? i\d7 — TT Tll2(τ r \NEn(Γ(7\ r\ήΓ

where U is a constant unitary matrix depending upon the points ί0

and r0. Thus we have

THEOREM 3.1. The function (3βl) and the domain B = w(D) are
both invariant under any pseudo-conformal mapping ζ = ζ(z), up to
the constant unitary matrices.

The above uniquely determined domain B up to the constant
unitary matrix is called a μ-th normal domain of D with center at
a point v0.

COROLLARY 3.1. A domain B is a μ-th normal domain with
venter at vQ if and only if

<3.3) N&(w, v0) = T-v2(v0, Vo)' U* = const, for weB .

Proof. Let the domain B be a μ-ih normal domain of a domain
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D. Then the function w(z) = T$(t0, U)M™»{z, Q + v0 maps D onto S.
For this w(z) it holds from (3.2) that

, t0) - U , v0) + v0 .

Therefore we have w = U> T^(v0, vo)M^(w, v0) + v0. Differentiating:
this equation concerning w, we obtain En = U T^(v0, vQ)Nμg(w, v0).,
Conversely if (3.3) holds, then

- μβ\ ™»(w, v0) =
Jv.

= \ Endw = w — v .

COROLLARY 3.2. // a domain B is a μ-th normal domain with
center at vQy then we have T^B{w, vQ) = En.

The proof is obvious.

4* /*-th m-Representative domains {μ = 1, 2). We shall inves-
tigate the generalized m-representative domains using the invariant
of certain kind which is constructed by TμD(z, t) and its derivatives.

We define the matrix function N%£'"*(z, t0) of z for a fixed point
to( e D) as follows:

v - l

(4.1)

dzm-l

where several zeros denote n x nH2, , n x nHm zero-matrices, re-
spectively. And we denote the vector function

Here we assume that there exists the inverse of the second matrix
of right side in (4.1), and that det N*f'"\z, Q Φ 0. Then we have

THEOREM 4.1. The function w(z) = M^°'"°(z, tQ) satisfies the
normalized conditions

(4.2)
dz dz2 dzm
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And if a domain D is mapped onto a domain A by a pseudo-con formal
mapping ζ = ζ(z) which satisfies

ζ(ί0) = r0 , dζ(to)/dz = En, d*ζ(to)/dz* = . . . = d%(to)/dz» = 0

at a fixed point tQ, then we have

(4.3) M*f,»Q'~°(z, t0) = M°J»° °(ζ(s), r0) .

77ms 6?/ the function M°En°'"° + v0 D and A generate the same domain
B.

Proof. The relation (4.2) is easily obtained from (4.1) by (N,
dN/dz, d*Nldz\ , d^N/dz"-1) = (En, 0, - - , 0), where

Next, noting dT/oz = 53 log k/dt*oz2, , etc., we have the following
relations for a pseudo-conformal mapping ζ = C(̂ ) satisfying

C(ί0) = r0, d*ζ(to)/dz- = . . . = dmζ(t0)/dzm = 0

at ί0:

3^2%(z, to)/dt*pdz« = (dr(ίo)/dί)*p+1 3p+ffΓμJ(ζ, τo)/dτ**δζ*.(dζ(z)/dz)*+1 ,

where p, g(0 ̂  p, ̂  g m — 1) are both integers. Hence we obtain

NEn°'"°( τ
v μ Δ

dz s dz

which is led by a simple calculation (This relation (4.4) is important
for study of μ-th m-normal domains). Integrating (4.4) from t0 to z
and noting our added assumption dζ(to)/dz — En, we have the required
result (4.3).

We call, similarly in § 2, the unique domain B (in Theorem 4.1)
a μ-th vi-representative domain (m ^ 1) of D with respect to t0 with
center at a point v0. Further we shall name w(z) = M^n°"'°(z, t0) + v0

a μ-th m-representative function of the domain D.

EXAMPLE 2. For a unit circle in the case of one variable, the
1-st 2-representative function with respect to tQ(v0 = o) is

w(z) = (1 - I ί0 Γ)(l - tou)u ,

where u = (z — to)/(l — tQz). The other side Maschler's (1-st) 2-repre-
sentative function of a unit circle is calculated as follows:

w(z) = (1 - 110 Γ)(l - 3t0u)u/(l - 2tou) .
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In this case if we choose a fixed point t0 in 1/2 < | ί01 < 1, then w(z)
is nonregular.

COROLLARY 4.1. μ-th m-Representative function of a μ-th m-
representative domain B is the indentity function.

This corollary is proved similarly as the proof of Corollary 2.1.
Furthermore, as well as Corollary 2.2, we have

COROLLARY 4C2. A domain B is a μ-th m-representative domain
with center at v0 if and only if N^/'"0(w,v0) = En( = Nl?B

n°'"\v0, v0))
for w e B.

Let B be a μ-th m-representative domain with center at v0,
then, in the relation

Nfc°'"\w, v0) = N£°~°(w, v0) + (d"NΪS0'"°(v0, vo)/dw»)(*)

which is obtained by a simple calculation using Lemma 1.2, we have
N*f"\w, v0) = En from Corollary 4.2 so that

dmN*/-~\w, vo)/dwm

vanishes at v0. Thus we conclude N®/'"%w, v0) = En. Summing up
the above argument we have arrived at

THEOREM 4.2. If a domain B is a μ-th m-representative domain
with center at v0, then B is also a μ-th (m + l)-representative domain
with the same center v0.

The author wishes to express here his hearty gratitude to Prof.
S. Ozaki for his kind guidance during his research.
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