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CANONICAL DOMAINS IN SEVERAL
COMPLEX VARIABLES

Sapao KATO

The main purpose of this paper is to give the function
which maps a bounded domain onte the m-representative
domain (m = 1) (hereafter called m-representative fumnction)
without utilizing the minimum problems in the case of several
complex variables. One of the results obtained is that a m-
representative domain becomes also a (m + 1)-representative
domain.

Let D be a bounded domain and k,(z, ) z, t € D be the Bergman
kernel function. Recently M. Maschler [7] made use of the minimum
problems to establish the m-representative function in one variable:

°(2, t,)
(I) w(z) = WﬁxedteD

where M} (z, t,), miy (2, t,) are both Maschler’s minimizing functions
and represented in a elosed from by using k,(z, t) and its derivatives,
respectively. Moreover this result has been generalized successfully
by T. Tsuboi [13] in the case of several complex variables. In this
case, however, for example the 2-representative function of a unit
circle is nonregular if we choose a fixed point ¢, in 1/2 < | ¢, | < 1.

In this paper we consider the following m-representative function
of other type which coincides with the ordinary Bergman representative
function when m =1 (§4):

(1 w@) = || N§wG )iz
to
_ am-—l _ —1
( Tv(to, to) s a——;Tp(to, to)
NE %z, t,) = (E,0 -+ 0) et : Fhmet ~
at*m Arem_1 D( 0y 0) WTD<tOy tO)
( D(Zy {0)
m—1 * _
#TD(Z) to)

where the matrix function T,(z, t)(for definition, see §1) is, as is
well known, relatively invariant under any pseudo-conformal mapping.
We define in §1 the relative invariant T,,(z, %), which plays an
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important role throughout this paper. In §2 we have a necessary and
sufficient condition that a minimal domain becomes simultaneously a
representative domain with the same center. Section 3 is devoted to
the canonical domains of other types.

1. Preliminaries. Various properties on the several complex
variables can be treated simply in many cases, considering functions
as reciprocal mappings of vector spaces. In this paper we assume
that each domain D we deal with is a bounded domain in #-dimensional
complex Euclidean z = (z,, 2,, - - -, 2,)-space and we shall consider w(z) =
(wy(2), wy(2), « -+, w,(2)) which is called a vector function after Bochner-
Martin, for each point z of D. We shall call this w(z) an analytic
function of z, if w;(2)(j =1,2, .-+, n) are analytic with respect to
2(0zaki and others [14]).

We start with the definitions of power of vector and differentia-
tion with respect to vector variable. Vectors and matrices marked
with the symbol ’ and * denote the transposed and transposed conjugate
vectors or matrices, respectively. We define the k-th power of z as

(1,1) 2k = (z;" cee, z{‘lz;‘z . szny cee z’;)’ ,

where (k,, k,, --+, k,) runs over all the nonnegative integers such that
ki +Fk + ++- +k, =k and ,H, monomials of degree k in 2,2, +--,
2, are arranged in a certain determined way (e.g., in the lexicographical
order) to form an ,H,-tuple column vector. Next we define the k-th
partial differentiation of function w(z, ¥) with respect to z and t* as

ok - 0* k! o* o*
——’W(Z,t>5<——,"', - Ak —y "y )
1.2) 0z ozt k! o oo k) 0210282 - o O2ln ozt /
X w(z, t)
and 0*w(z, t)/ot*" = (0%/0t*)* x w(z, t), where 0%/0zF, « -+, 8%/dzk are ar-
ranged in the order corresponding to z¥, ---, 2% in (1.1) and the sign

x denotes the Kronecker product. In particular, for & = 1 we have
n X n matrix derivative from (1.2) whose (¢, j)-element is dw(z, t)/0z;
1,7 =(1,2,---,m), where w(z,t)= (w2, T), wy(z, ), -, w,(z,1)).
For a function w = w(z) the k-th partial differentiation will be
merely denoted as follows: o*w(z)/0z" = d*w(z)/dz*. Moreover, we
define the k-th power (dw/dz)* of dw/dz as an ,H, x ,H, reduced
matrix of the n* x #* matrix (dw/dz) % (dw/dz) X +-+ X (dw/dz)(=A4)
in the following way:

(i) Construct an »* x ,H, matrix B by adding up the columns
in A of which the first elements are equal to each other, and by
arranging the above ,H, columns so that the first elements of them
make a following ,H,-tuple row vector
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(G) G G G2 (B))

where (0w,/0z)*, -, (0w /0z,)* are arranged in the order corresponding
to zF, .+, 2k in (1.1).

(ii) Construet ,H, x,H, matrix by leaving only one and remov-
ing others among the row vectors in B which are identically equal to
each other, and by arranging all remained rows so that the first
elements of them make a following ,H, column vector

ow,\"* 0w, \*1 /0w, \ "2 ow,, \*» ow, \*\
(G) e G G) e (552) o (5
where (0w,/0z)", -+, (0w,/0z,)" are arranged in the order corresponding
to zf, -+-, 2% in (1.1)(Ono [11], Tsuboi [13]).

We shall introduce some differential formulas for convenience after
calculations. Let the functions A, B of z be k x [,1 x m matrices,
respectively. The following formulas can be easily calculated: dAB/dz=
A(dB/dz) + (dA/dz)(E, x B),dA = (dA/dz)(dz x E;), dA/dz = (dA/dC) -
((dl/dz) x E), where E,, E, denote n x m,l x [ unit matrices, respec-
tively.

The following lemmas are trivial,

LemmA 1.1. If for a vector function w=w(z) we have dw(z)/dz=
A, where A denotes an n X n constant matrix, then w() = Az + C,
where C is a constant vector of integration.

LEMMA 1.2. For a matriz P = (JI‘{I %) with the block subdivi-

stons, where K, N are square matrices, it holds that

P_l_(K—1+XZ~1Y —Xz—l)
B 20 G/ N

where X = K'L, Y= MK, Z=N—- MK~L,

Let (D) be the class of all functions w(z) which are regular
and singlevalued in a domain D and for which the Lebesgue integral
| w(z) Pdv, < . Then (D) is a Hilbert space. Since (D) is
sgparable, there exists a closed orthonormal system @(z) = (p,(?),
@(z), +++)'. Using this ¢(2), the Bergman kernel function k,(z, ?)
may be represented as follows: k,(z, t) = p*(t)p(2) 2, t € D. This func-
tion is independent of the choice of a closed orthonormal system p(z),
and ky(2,%2) > 0. It is well known that if a function £ = {{z) is a
pseudo-conformal mapping of a domain D onto a domain 4, then we have
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ky(z, 1) = det dz/dt-k (L, T)-det d{/dz, where = = {(t). Also, that if
we define Tp(z, z) = 0*log k,(z, Z)/02*02, then the m x m Hermitian
matrix Tp,(z,%) is transformed under any pseudo-conformal mapping
€ = {(z) as arelative invariant; that is, T))(z, ) = (d/dz)* T (L, O)(dC/dz)
and is positive definite. Therefore the Bergman metric

ds* = dz*Tp(z, Z)dz

is absolutely invariant under any pseudo-conformal mapping (Bergman
[3D).

Now, we shall define %z, t), T.p(z, t)(zt = 1, 2) as follows, respec-
tively:

TMD(ZJ {) = 31::262 1Og k#D(zr z) y kSD(z: f) = det {IC%D(zr Z)T'lb(zi {)} zy t € D

(]CID(z: 7}—) = kD(\z! z)) ’

where we assume that k,,(z, t) = 0. Then the n x % matrix functions.

Toz, TN =Tpz,T)) and T,p(z, t) may be calculated as follows, respec-
tively:

(L3)  Tuoles T) = ke, D Kol 1) =2 Kiole, ©)
ot*oz
0

= T kle D s D)) (1 =1,2)

(1.4) Top(z, ) = 2n- Tp(z, E) + at‘;“az log det Tp(z, ) .

REMARK 1. As we assume k,,(2, ¢) # 0(¢t = 1,2), our method
does not apply to all bounded domains.

LEMMA 1.3, T.,(2, t)(¢r =1, 2) is relatively invariant under any
pseudo-conformal mapping { = {(z), and T,p(z, Z) is a positive definite
Hermitian matrixz. Thus we may define the 2-nd invariant metric
ds® = dz*T,,(z, Z)dz.

Proof. Ty(z,t) is relatively invariant (Tsuboi [8]), hence T.,(z, )
is also relatively invariant from (1.4). Thus, it holds that

(1.5) Lot ©) = (L) T D% (n=1,2),

where © = {(t) and 4 = {(D). Next it has been known that the
matrix

(1-6) (ln’ =+ 1)(g7¥5) - (R&g) (a; IB = 17 21 M) n)
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is positive definite, where g¢z;z and Rz, are covariant metric tensor
.and the Ricei curvature tensor for bounded complex manifold, respec-
tively (Kobayashi [5]). In our case, we can take T,(z,%) as (gzs) and
—0*log det T'y(z, z)/02%0z as (R;). Hence (1.6) becomes as follows:

(1.7)

o

u*[(n 4 DTz, 7) + -2
0%

log det T'p(z, E)]u >0,
*0z

where « is an arbitrary wm-tuple nonzero constant vector., We utilize
this relation (1.7). By (1.4) we have

82
02*0%

w*Typ(2, Z)u = u*[2n- Ty(2,%7) + log det T'p(7, 'z')]u

a‘.!
2*0%

= u*[(n + 1)Ty(2,2) + 3 log det T'y(z, E)]u >0,
‘the proof is completed.
If D and 4 are domains which are pseudo-conformally equivalent

to each other by { = {(z), then for the scalar function k,,(z, t) we
have

(18)  Funle, ) = (det %)”km(c, f)(det %%)m . m=1+2n

and it is evident that k,,(z,z) is positive from its definition,

2. p-th Representative domains and ft-th quasiminimal domains
(¢ =1,2). Generalization of the Riemann mapping theorem to the
case of domains in the spase of several complex variables leads to
various other types of canonical domains,

Firstly we shall introduce the generalized representative domain,
We define the vector function M5z, t,) and the scalar function
mLp(2,t) in D for a fixed point t,(e€ D), which is not a point on a
branch manifold, as

_ _ -1 _
Buolt B hiolt 8\ [l B
2.1) M3z, t) = (OF,) P _ > _ ) _
%;k.“«D(tO, to) S 0n kun(to, To) Wkﬂp(z’ to)

and miy(2, t) = k.p(?, To)/kuo(ts, o), respectively, where 0 denotes an n-
tuple column zero-vector. Hereafter we assume that det 7,,(z, t,) # 0
for all ze D.

REMARK 2. Let P! be the second matrix of right side in (2.1),
then by a simple calculation of determinants we have
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det P = krii(t, o) det Top(to, To) > 0.

Hence there exists the inverse of P. Further from the rules of
matrices we see that M2E»(¢,, t,) = 0.

LEmmA 2.1, The matrix derivative d(MGw/m),)/dz is given by
the matrix product

4 Mz, t) _

2.2
( ) dz mll»lD(z’ to)

TM_Z)I(tOy z0) T/U«D(zy zC) .

Proof. Using Lemma 1.2 and the relation (1.3), further noting
the definition of T,,(z, t) the left side of (2.2) is calculated as follows:

Fuolto, TNOBN = sy 1kt 7)) OTinl2, B -
From this we obtain the desired relation T5(t,, t,) T.p(2, To).

THEOREM 2.1. If a domain D is mapped onto a domain 4 by
a pseudo-conformal mapping {=~,(z) which satisfies {(t,) =1,, dl(t,)/dz=
E, at a fixed point t, (€ D), then we have

Mir(z, t) _ Mi7(C(), T)
mLD(zy to) mAlJ-A(C(z)y TO)

(2.3)

Thus by the function (MPF=/mp)+ v, D and 4 generate the same
domain B(3 v(not located on a branch manifold)) of certain kind.

Proof. Integrating from ¢, to z both sides of (2.2), and noting
M (2, to)/mhp(t,, t,) = 0 the vector function M,,/m,., is represented
by
(2.4) Mot _ pe, ) " Tos, Tz
mILD(za tO) to
Using the relations (2.4) and (1.5), the invariant (2.3) is easily obtained.

We call this unique domain B{(in Theorem 2.1) a p-th representa-
tive domain of D with respect to t, with center at a point wv,.
Further we shall name w(z) = (M2n(z, t,)/mip(z, t,)) + v, & p-th repre-
sentative function of the domain D,

If a domain D is homogeneous, then we have det T,(z, t) =
c-kyz,t) in D. Hence T,pz, %) is equal to (2n + 1)Tpy(z, ). Thus
in this case 2-nd representative function coincides with the usual
representative function.

We shall consider the mapping of D onto B by means of the
function w = (M52, t,)/m.n(2, t))) + v,. Then the domain B becomes
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a p-th representative domain with center at v, and further it holds
that (Mi2(z, t0)/mip(z, 1)) + vo = (MIE"(w, vo)/mius(w, v,)) + v, by Theorem
2.1 because w(z) satisfies the normalized conditions w(t,) = v,, dw(t,)/dz =
E,. Therefore we have

COROLLARY 2.1. p-th Representative fumnction of a p-th repre-
sentative domain B is the identity function.

COROLLARY 2.2. A domain B is a p-th representative domain
with center at v, if and only if

(2.5) T.s(w, ) = T.s(v,, U) = const. for we B .

Proof. Suppose that B is a p¢-th representative domain with center
at v,. Then from the property of p-th representative domain, it
holds that w — v, = MX%Z«(w, v,)/mus(w, v,). By differentiating this
equation with respect to w, we obtain E, = T.}(v,, 7)) Ts(w, 7,) from
(2.2). Suppose conversely that the relation (2.5) holds. Let B, be the
p-th representative domain of B with respect to v,, that is, the image
domain by the p-th representative function w (w) of B. Then it
suffices to show that w,(w) is equal to w. Since

dw,(w)/dw = T3 v, Uy) Tus(w, T,)

by Lemma 2.1, we have dw,(w)/dw = E, from our assumption (2.5).
Therefore, w,(w) = w because w,(v,) = v, (See Lemma 1.1).

A domain B is minimal with center v, if and only if ky(w, 7,) is
constant for we B. In view of this fact we shall define the p-th
quasiminimal domain which is the generalization of minimal domain,
and secondly we shall state some resuilts.

A domain B is called a p-th quasiminimal domain with center
at a point v(e B) if and only if k.x(w, %)) = k,z(v,, T,) = const. for
we B, Therefore the 1-st quasiminimal domain coincides with the
ordinary minimal domain.

Let a domain B be minimal and representative with the same
center at v,, then ky(w, 7,) = const. and Tx(w, ¥,) = const, for we B,
respectively (Maschler [12], Tsuboi [8]). Hence we have k,;(w, 7,) =
const. Thus there exists the 2-nd quasiminimal domain.

THEOREM 2.2. A mecessary and suffictent condition that a p-th
representative domain B of a domain D with respect to t, with
center at v, becomes simultaneously a p-th quasiminimal domain
with the same center v, 1s
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(det Tyn(2, Eo))"/kun(2, to) = (det Tup(to, £0)™/kun(ts, t) = const .,

where we take m = 1,1 + 2n for p1 = 1,2, respectively.

Proof. According to the invariant relations (1.5) and (1.8), we
have (det TMD(Z’ Z()))m/”{;ll-D(zy 30) = (det TIJvB(wy 270)),”7//1{:}1«13(/M)7 7—)—0)7

(det TN«D(tOv Z0))m/l‘7;»a1)(to, Zo) = (det Tus(vs, 'D_o))m/kmz(%y Vy)

for a p-th representative function w = w(z) of D. From this formulas
our required result is directly obtained.

THEOREM 2.3. A mecessary and sufficient condition that a p-th
quastminimal domain B with center at v, becomes simultanecously a
p-th representative domain with the same center v, 1s

a2k/J-B(wa 170)/81)*67/0 = ky.B(vo, 770) T}LB(UOy ’Z)—o) = const .
Proof. Since B is a p-th quasiminimal domain, we have

(2'6) T#B(wy ,U-O) = ki:l;(/vO, 170) kilvB(wy 170)

82
ov*ow
from (1.8) and the equation ok,z(w, 7,)/0w = 0 which is equivalent to
k.gz(w, 7,) = const. From (2.6) and Corollary 2.2, our desired conclu-
sion is at once obtained.

For ¢ =1 we have the following corollary.

COROLLARY 2.3. A mnecessary and sufficient condition that a
minimal domain B with center at v, becomes simultaneously a
representative domain with the same center v, is

82

———kg(w, ¥) = kg(vo, o) Tp(v,, ¥;) = const .
ov*ow

(2.7)

If we denote A = ky(v,, 7o) Tx(v,, ) in Corollary 2.3, then A is a
positive definite constant Hermitian matrix. Using this A the
condition (2.7) may be described as o*kz(w, 7,)/0v*ow = A, This is
equivalent to okg(w, 9,)/0v* = A(w — v,) because oky(v,, 7,)/0v* =
(See Maschler [12]).

ExAMPLE 1. Let D be a bounded domain in z-plane, Then there
exists a unique function w = w(z) which maps D onto the 2-nd
quasiminimal domain B with center at v,(=w(t,)) and it is
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(2.8) w(z) = ki, t—o)S;kyg(z, Todz + v, .
In fact, using the invariant (1.8)(n = 1) we have
(2.9) k¥ (t, EO)S; K3z, Toydz + v, = k(v 170)5’” Kip(w, 5)dw + v, .
Yo
From this relation, (2.8) is easily obtained.

REMARK 3. We see from (2.9) that the function (2.8) is also a
kind of representative function of the domain D. In general, the

function w(z) EY {mi% (=, t)}*dz(v = 1,3 for ¢ =1,2) in the case of
11
one variable may "become a p-th m-representative function (See §4).

3. p-th Normal domains (¢ =1,2). We denote Niz(z,t) =
T3 (to, &) Tun(2, To), Mi3n(z, t,) = S NIz, t,)dz (See §4), and we shall
t
consider the function ’

(3.1 w(z) = Ti(ts, T)MEz, ) + v, .
Then- from (1.5) we have
dw*dw = dz* N3z, t)* Tup(to, L) Nag(z, to)dz
= dC*NT(C(@), 70 * ThslTo, TN (E(R), T0)dL
for any pseudo-conformal mapping { = {(z). Hence we obtain
(3.2) (dw=)Ti3(t, L)NF(, t)dz = U- Ti(c, TN E(), 7)dC

where U is a constant unitary matrix depending upon the points %,
and z,, Thus we have

THEOREM 3.1. The fumnction (3.1) and the domain B = w(D) are
both imvariant under any pseudo-conformal mapping { = {(2), up to
the constant unitary matrices.

The above uniquely determined domain B up to the constant
unitary matrix is called a p-th normal domain of D with center at
a point v,.

COROLLARY 3.1. A domain B is a p-th mormal domain with
center at v, vf and only if

(3.3) N w, v) = Tip*(vo, B,)- U* = const. for we B.

Proof. Let the domain B be a g¢-th normal domain of a domain
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D. Then the function w(z) = TY(t,, to)MZn(z, t,) + v, maps D onto B.
For this w(z) it holds from (3.2) that

T35, EO)M;EE”(@ t) + v, = U- Tig(voy ﬁo)Mﬁgn(w, V) + Vg .
Therefore we have w = U- TiX(v,, T) M (w, v,) + v,. Differentiating
this equation concerning w, we obtain E, = U. T v, 7,) N (w, v,).
Conversely if (3.3) holds, then

U~ T2(v,, 7, FI0En(w, v5) = SwEndw =w— .
Yo
COROLLARY 3.2, If a domain B is a p-th normal domain with
center at v, then we have T,.z(w, v,) = I,.

The proof is obvious.

4. p-th m-Representative domains (¢ = 1,2). We shall inves-
tigate the generalized m-representative domains using the invariant
of certain kind which is constructed by T,.,(z, t) and its derivatives.

We define the matrix function N2 (2, t,) of z for a fixed point

to(e D) as follows:

N3z, to)

am»«l —1

T/JLD(to, z0) v _-m—_lT}LD(tOy fo)
. 0z .

= (EﬂO oo 0) . : .
om— _ H2im—1) _
(4.1) o Fm—1 Tup(ts, o) ==+ Wﬂw(to, to)

TI-'-D(za Z0)

om—t . _
ST Tyn(z, tO)/

where several zeros denote n x ,H,, ---,n X ,H, zero-matrices, re-
spectively. And we denote the vector function

M,i’f,""“"’(z, t) = Sz N,ﬁ,”o'"o(z, to)dz .
to

Here we assume that there exists the inverse of the second matrix
of right side in (4.1), and that det N2 '(z, t,) # 0. Then we have

THEOREM 4.1. The fumction w(z) = ME" "z, t,) satisfies the
normalized conditions

dw(t,) dw(t,) _ _ drw(b) _
4.2 to :0, —-——:E,n, P e __O.
(4.2)  w(t,) T T —
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And if a domain D is mapped onto a domain 4 by a pseudo-conformal
mapping { = {(z) which satisfies

Lty =7, dlt)/de = E,, &Ut)de = -+« = d"{(t)/dz" =0
at a fived point t,, then we have
(4.3) M5z, t,) = ME(L(2), )
Thus by the function M,EE”°"‘° + v, D and 4 generate the same domain
B.
Proof. The relation (4.2) is easily obtained from (4.1) by (N,
dN/dz, d*N/dz*, - -+ d™'N/dz"") = (K, 0, ---, 0), where
N = N;LEI;LOWO(tOy to) .

Next, noting 07/oz = ¢°log k/ot*0z*, - -+, ete., we have the following
relations for a pseudo-conformal mapping I = {(z) satisfying

&ty = 7, d’l(t)/dz" = -+ = d"L(t,)/dz" = 0
at t,:
07T, (2, to)/0t*P0z¢ = (dz(ty)/dt)y e 077 T (Z, To)/oT*?027-(dl(2)/dz)H ,

where p, ¢(0 = p,q < m — 1) are both integers. Hence we obtain
(4.4) N‘fpno...o(z’ to) — <M>_ Nﬁno‘..o(c(z)’ TO)@Q(_Z_)_ ,
dz dz

which is led by a simple calculation (This relation (4.4) is important
for study of p-th m-normal domains). Integrating (4.4) from ¢, to z
and noting our added assumption d{(t)/dz = E,, we have the required
result (4.3).

We call, similarly in §2, the unique domain B (in Theorem 4.1)
a p-th m-representative domain (m = 1) of D with respect to t, with
center at a point v, Further we shall name w(z) = Mz, t,) + v,
a p-th m-representative function of the domain D.

ExamMPLE 2. For a unit circle in the case of one variable, the
1-st 2-representative function with respect to (v, = @) is

wE) =1 — 6,1 — taww ,

where u = (2 — t,)/(1 — T,2). The other side Maschler’s (1-st) 2-repre-
sentative function of a unit circle is calculated as follows:

w®@) = (1 — &, — 350'“)”'/(1 — 2%,u) .
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In this case if we choose a fixed point ¢, in 1/2 < |¢t,]| < 1, then w(?)
is nonregular.

COROLLARY 4.1. p-th m-Representative function of a p-th m-
representative domain B 1s the indentity function.

This corollary is proved similarly as the proof of Corollary 2.1.
Furthermore, as well as Corollary 2.2, we have

COROLLARY 4.2. A domain B is a p-th m-representative domain
with center at v, if and only if NG "(w,v,) = E,(=NG""(v,, v,))
Sfor we B.

Let B be a p-th m-representative domain with center at v,
then, in the relation

N&(w, v) = Nag*"(w, vo) + (@™ Ng" (v, vo)/0w™)(*)

which is obtained by a simple calculation using Lemma 1.2, we have
NE*w, v,) = E, from Corollary 4.2 so that

NG (w, v,) [ow™

vanishes at v, Thus we conclude N5 “(w,v,) = E,. Summing up
the above argument we have arrived at

THEOREM 4.2. If a domain B is a p-th m-representative domain
with center at v,, then B is also a p-th (m + 1)-representative domain
with the same center v,.

The author wishes to express here his hearty gratitude to Prof.
S. Ozaki for his kind guidance during his research.
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