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ON OPERATORS WHOSE FREDHOLM SET
IS THE COMPLEX PLANE

M. A. KaasHOEK AND D. C. LAY

Let T be a closed linear operator with domain and range
in a complex Banach space X. The Fredholm set &(T) of T
is the set of complex numbers A such that 2 — 7T is a Fredholm
operator. If the space X is of finite dimension then, obviously,
the domain of T is closed and &#(T') is the whole complex plane
C. In this paper it is shown that the converse is also true.
When 7T is defined on all of X this is a well-known result due
to Gohberg and Krein.

Examples of nontrivial closed operators with @(7T) = C are
the operators whose resolvent operator is compact. A charac-
terization of the class of closed linear operators with a nonempty
resolvent set and a Fredholm set equal to the complex plane
will be given,

Throughout the present paper X and Y will denote complex Banach
spaces. Let T be an arbitrary closed linear operator with domain & (T')
in X and range . (T) in Y. The nullity w(T) of T is the dimension
of the null space 4+ (T) of T. The defect d(T) of T is the dimension
of the quotient space Y/<Z(T). No distinction is made between infinite
dimensions, so that »(7T) and d(7T') may be nonnegative integers or + <o,
We say that T is Fredholm if n(T) and d(T) are both finite. Note
that d(T) < o implies .ZZ(T) is closed (cf. [5], Lemma 332).

In 1957 Gohberg and Krein [3] showed that if A is a bounded
linear operator on X with @(A) = C, then the dimension of X (denoted
by dim X) is finite. The following theorem extends this result.

THEOREM 1. Let T and S be bounded linear operators from X
into Y. Suppose that S 1is a homeomorphism, and that T + AS s
Fredholm for each ne C. Then

dm X =dimY < co .

Proof. Since S is a homeomorphism, 2 (S) is closed and »n(S) = 0.
By a well-known stability theorem (cf. [5], Theorem 1), this implies
the existence of a positive constant p such that for 0 < |zt < p

d(S) = d(S) — n(S) = d(S + nT) — (S + pT) .

The right-hand side is finite because S + ¢7T is Fredholm for g = 0.
Hence d(S) < <, and so S has a bounded left inverse, say K. Then
n(R) = d(S) < « and d(R) =0, so R is Fredholm. Define A = RT.
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Then A is a bounded linear operator on X and
N—A=XARS—RT=ROS—-T).

For each complex value of A, A — A is the product of two bounded
Fredholm operators and hence is Fredholm. But @(A) = C implies
that dim X < o= by the result of Gohberg and Krein ([3], Theorem
3.2). Then dimY = dim X + d(S) < <o, concluding the proof.

COROLLARY. Let T be a closed linear operator with domain
(T) and range in X. Then dim X < « if and only 1f 2(T) is
closed and O(T) = C.

In [1] Caradus has proved that if T is a closed linear operator
with domain and range in X such that dim X/ 2/(T) < o, ®(T) = C
and such that the resolvent set of T is neither empty nor the whole
complex plane, then dim X < «, The following lemma shows that
Caradus’ result is contained in the Corollary.

LEMMA. Let T be a closed linear operator with domain in X
and range in Y. Suppose there exists a closed subspace M of X
such that X = 2(T)P M. Then 2(T) is closed.

Proof. Let Y, be the Banach space Y x M, with the norm
Ny, m) [ =yl + [[m].
Define the linear operator J from X into Y, by setting
J(@x + m) = (Tx, m)

for each v ¢ =(T) and me M. It is easily verified that J is a well-
defined closed linear operator. Since the domain of J is the Banach
space X, the closed graph theorem implies that J is bounded. Hence

([Tl + |lml) = [|J]]-|le + m]]
for each vxe¢ 2(T) and me M. In particular,
[Tzl = |-l 2]]

for each x ¢ (7). Thus T is both closed and bounded, implying that
2(T) is closed.

We have learned recently that similar statements for the range
of a closed linear operator are proved by 8. Goldberg in [4]. That
this can be done follows easily from the observation that the range
of a closed linear operator is always the domain of some other closed
linear operator, and conversely (cf. [6], Chapter IV).
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The Corollary states that the closed linear operators T with closed
domain and @(T) = C are trivial. Examples of nontrivial closed oper-
ators whose Fredholm set is the complex plane are the operators with
compact resolvent (cf. [7], §2). The following theorem shows that each
closed operator T with a nonempty resolvent set o(T) and with &(T) = C
is characterized by the fact that for each yt € po(T') the resolvent (¢ — T')~*
is a Riesz operator. For the definition of Riesz operators and one of
their characterizations we refer to Dieudonné ([2], XI. 4, problem 5).

THEOREM 2. Let T be a closed linear operator with domain and
range in X. If @(T) = C, then (¢t — T)™ is a Riesz operator for
all pep(T). Conversely, if (¢t — T)™' is a Riesz operator for some
reo(T), then &(T) = C.

Proof. We may assume that dim X = o and that o(7T) is not
empty. Take p in o(T) and let A = (# — T)'. Then for x = p,

A=T)pe=T)" = (e —NC— 4),

where £ = (¢# — \)~'. This implies that @(T) = C if and only if @(A4) =
C\{0}. Hence it is enough to show that A is a Riesz operator if and
only if @(A) = C\{0}. In order to do this, let .o be the ideal of all
compact linear operators in the Banach algebra .&(X) of all bounded
linear operators on X, and let = denote the canonical homomorphism
from <~ (X) onto the quotient algebra < (X)/.2#". Then it follows
from Atkinson’s characterization of the class of all Fredholm operators
in &(X) that £ — A is Fredholm if and only if { — z(A4) has an
inverse in . (X)/.%2". So @(A) = C\{0} if and only if the spectrum
of n(A) in & (X)/ 97 is {0}, i.e., the spectral radius r(mw(4)) of w(A)
is zero. But

r(@(4)) = lim || [z(A)]" [
= lim || 7(4%) [#* = lim [d(4", 5)]" ,
where d(A®, 9¢7) is the infimum of [|A" — K|| for K¢ 9 . Thus
?(A) = C\{0} if and only if
lim [d(4", 227)]"" =0,

which is equivalent to the statement that A is a Riesz operator (cf.
[2], XI. 4, problem 5),

When T is a self-adjoint closed linear operator in a Hilbert space

Theorem 2 can be strengthened. This is because (¢ — 7')~" is normal
for p e p(T), and a normal operator is Riesz if and only if it is compact.
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Hence, in this special case, @(T) = C if and only if (2 — T)~' is compact
for each p in o(T).
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