ON OPERATORS WHOSE FREDHOLM SET IS THE COMPLEX PLANE

M. A. Kaashoek and D. C. Lay

Let T be a closed linear operator with domain and range in a complex Banach space X. The Fredholm set $\mathcal{O}(T)$ of T is the set of complex numbers λ such that $\lambda-T$ is a Fredholm operator. If the space X is of finite dimension then, obviously, the domain of T is closed and $\mathcal{O}(T)$ is the whole complex plane C. In this paper it is shown that the converse is also true. When T is defined on all of X this is a well-known result due to Gohberg and Krein.

Examples of nontrivial closed operators with $\varPhi(T)=C$ are the operators whose resolvent operator is compact. A characterization of the class of closed linear operators with a nonempty resolvent set and a Fredholm set equal to the complex plane will be given.

Throughout the present paper X and Y will denote complex Banach spaces. Let T be an arbitrary closed linear operator with domain $\mathscr{D}(T)$ in X and range $\mathscr{R}(T)$ in Y. The nullity n(T) of T is the dimension of the null space $\mathscr{N}(T)$ of T. The defect d(T) of T is the dimension of the quotient space $Y/\mathscr{R}(T)$. No distinction is made between infinite dimensions, so that n(T) and d(T) may be nonnegative integers or $+\infty$. We say that T is Fredholm if n(T) and d(T) are both finite. Note that $d(T) < \infty$ implies $\mathscr{R}(T)$ is closed (cf. [5], Lemma 332).

In 1957 Gohberg and Krein [3] showed that if A is a bounded linear operator on X with $\Phi(A) = C$, then the dimension of X (denoted by dim X) is finite. The following theorem extends this result.

THEOREM 1. Let T and S be bounded linear operators from X into Y. Suppose that S is a homeomorphism, and that $T + \lambda S$ is Fredholm for each $\lambda \in C$. Then

$$\dim X \leq \dim Y < \infty$$
.

Proof. Since S is a homeomorphism, $\mathscr{R}(S)$ is closed and n(S) = 0. By a well-known stability theorem (cf. [5], Theorem 1), this implies the existence of a positive constant ρ such that for $0 < |\mu| < \rho$

$$d(S) = d(S) - n(S) = d(S + \mu T) - n(S + \mu T)$$
.

The right-hand side is finite because $S + \mu T$ is Fredholm for $\mu \neq 0$. Hence $d(S) < \infty$, and so S has a bounded left inverse, say R. Then $n(R) \leq d(S) < \infty$ and d(R) = 0, so R is Fredholm. Define A = RT. Then A is a bounded linear operator on X and

$$\lambda - A = \lambda RS - RT = R(\lambda S - T)$$
.

For each complex value of $\lambda, \lambda - A$ is the product of two bounded Fredholm operators and hence is Fredholm. But $\mathcal{O}(A) = C$ implies that $\dim X < \infty$ by the result of Gohberg and Krein ([3], Theorem 3.2). Then $\dim Y = \dim X + d(S) < \infty$, concluding the proof.

COROLLARY. Let T be a closed linear operator with domain $\mathscr{D}(T)$ and range in X. Then $\dim X < \infty$ if and only if $\mathscr{D}(T)$ is closed and $\Phi(T) = C$.

In [1] Caradus has proved that if T is a closed linear operator with domain and range in X such that $\dim X/\mathscr{D}(T)<\infty$, $\mathscr{O}(T)=C$ and such that the resolvent set of T is neither empty nor the whole complex plane, then $\dim X<\infty$. The following lemma shows that Caradus' result is contained in the Corollary.

LEMMA. Let T be a closed linear operator with domain in X and range in Y. Suppose there exists a closed subspace M of X such that $X = \mathcal{D}(T) \oplus M$. Then $\mathcal{D}(T)$ is closed.

Proof. Let Y_1 be the Banach space $Y \times M$, with the norm

$$||(y, m)|| = ||y|| + ||m||$$
.

Define the linear operator J from X into Y, by setting

$$J(x+m)=(Tx,m)$$

for each $x \in \mathcal{D}(T)$ and $m \in M$. It is easily verified that J is a well-defined closed linear operator. Since the domain of J is the Banach space X, the closed graph theorem implies that J is bounded. Hence

$$(||Tx|| + ||m||) \le ||J|| \cdot ||x + m||$$

for each $x \in \mathcal{D}(T)$ and $m \in M$. In particular,

$$||Tx|| \leq ||J|| \cdot ||x||$$

for each $x \in \mathcal{D}(T)$. Thus T is both closed and bounded, implying that $\mathcal{D}(T)$ is closed.

We have learned recently that similar statements for the range of a closed linear operator are proved by S. Goldberg in [4]. That this can be done follows easily from the observation that the range of a closed linear operator is always the domain of some other closed linear operator, and conversely (cf. [6], Chapter IV).

The Corollary states that the closed linear operators T with closed domain and $\mathcal{O}(T) = C$ are trivial. Examples of nontrivial closed operators whose Fredholm set is the complex plane are the operators with compact resolvent (cf. [7], § 2). The following theorem shows that each closed operator T with a nonempty resolvent set $\rho(T)$ and with $\mathcal{O}(T) = C$ is characterized by the fact that for each $\mu \in \rho(T)$ the resolvent $(\mu - T)^{-1}$ is a Riesz operator. For the definition of Riesz operators and one of their characterizations we refer to Dieudonné ([2], XI. 4, problem 5).

THEOREM 2. Let T be a closed linear operator with domain and range in X. If $\Phi(T) = \mathbf{C}$, then $(\mu - T)^{-1}$ is a Riesz operator for all $\mu \in \rho(T)$. Conversely, if $(\mu - T)^{-1}$ is a Riesz operator for some $\mu \in \rho(T)$, then $\Phi(T) = \mathbf{C}$.

Proof. We may assume that dim $X = \infty$ and that $\rho(T)$ is not empty. Take μ in $\rho(T)$ and let $A = (\mu - T)^{-1}$. Then for $\lambda \neq \mu$,

$$(\lambda - T)(\mu - T)^{-1} = (\mu - \lambda)(\zeta - A)$$
,

where $\zeta = (\mu - \lambda)^{-1}$. This implies that $\emptyset(T) = C$ if and only if $\emptyset(A) = C \setminus \{0\}$. Hence it is enough to show that A is a Riesz operator if and only if $\emptyset(A) = C \setminus \{0\}$. In order to do this, let \mathscr{K} be the ideal of all compact linear operators in the Banach algebra $\mathscr{L}(X)$ of all bounded linear operators on X, and let π denote the canonical homomorphism from $\mathscr{L}(X)$ onto the quotient algebra $\mathscr{L}(X)/\mathscr{K}$. Then it follows from Atkinson's characterization of the class of all Fredholm operators in $\mathscr{L}(X)$ that $\zeta - A$ is Fredholm if and only if $\zeta - \pi(A)$ has an inverse in $\mathscr{L}(X)/\mathscr{K}$. So $\emptyset(A) = C \setminus \{0\}$ if and only if the spectrum of $\pi(A)$ in $\mathscr{L}(X)/\mathscr{K}$ is $\{0\}$, i.e., the spectral radius $r(\pi(A))$ of $\pi(A)$ is zero. But

$$egin{aligned} r(\pi(A)) &= \lim_{n o \infty} || \, [\pi(A)]^n \, ||^{1/n} \ &= \lim_{n o \infty} || \, \pi(A^n) \, ||^{1/n} \, = \lim_{n o \infty} \, [d(A^n, \, \mathscr{K})]^{1/n} \; , \end{aligned}$$

where $d(A^n, \mathcal{K})$ is the infimum of $||A^n - K||$ for $K \in \mathcal{K}$. Thus $\Phi(A) = \mathbb{C}\setminus\{0\}$ if and only if

$$\lim_{n\to\infty} [d(A^n, \mathcal{K})]^{1/n} = 0,$$

which is equivalent to the statement that A is a Riesz operator (cf. [2], XI. 4, problem 5).

When T is a self-adjoint closed linear operator in a Hilbert space Theorem 2 can be strengthened. This is because $(\mu - T)^{-1}$ is normal for $\mu \in \rho(T)$, and a normal operator is Riesz if and only if it is compact.

Hence, in this special case, $\Phi(T) = C$ if and only if $(\mu - T)^{-1}$ is compact for each μ in $\rho(T)$.

REFERENCES

- 1. S. R. Caradus, On a theorem of Gohberg and Krein, (to be published)
- 2. J. Dieudonné, Foundations of Modern Analysis, Academic Press, New York, 1960.
- 3. I. C. Gohberg and M. G. Krein, The basic propositions on defect numbers, root numbers and indices of linear operators, Uspekhi Math. Nauk. 12, (2) **74** (1957), 43-118 (Russian). Amer. Math. Soc. Transl. (2) **13** (1960), 185-265.
- 4. S. Goldberg, Unbounded Linear Operators: Theory and Applications, McGraw-Hill, New York, 1966.
- 5. T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261-322.
- 6. D. C. Lay, Studies in spectral theory using ascent, descent, nullity and defect, Doctoral dissertation, University of California, Los Angeles, January 1966.
- 7. J. T. Schwartz, Perturbations of spectral operators, and applications I. Bounded perturbations, Pacific J. Math. 4 (1954), 415-458.

Received March 28, 1966. This paper was written while the first author was supported by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.) under a Postdoctoral Fellowship.

University of California, Los Angeles