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THE MEASURE ALGEBRA OF A LOCALLY
COMPACT SEMIGROUP

A. P. BAARTZ

Let G be a locally compact idempotent, commutative,
topological semigroup (semi-lattice). Let _ (@) denote its
measure algebra, i.e., _/ (G) consists of all countably additive
regular Borel-measures defined on G and has the usual Banach
algebra structure: peintwise linear operations, convolution, and
total variation norm. To understand the structure of such a
convolution algebra one studies its maximal ideals, the nature
of the Gelfand transferm, the structure of the closed ideal and
the related question of spectral synthesis, ete.

In this paper G is the cartesian product of topeclogical
semigroups G, of the following form: G, is a linearly ordered
set, locally compact in its order topology; multiplication in G«
is given by 2y = max (x, ). The product semigroup is assumed
locally compact in the product topology.

The main theorem of this paper gives a representation of
the space of maximal ideals 4_~(G), for a finite product, in
terms of the dual semigroup G. The multiplicative linear
functionals of _ /(&) are integrals of fixed semi-characters

() = ggx<x>dﬂ<m> . weM@).

It is shown that this integral representation dees not hold
for infinite products because the semi-characters are usually
not integrable,

This paper draws heavily upon the studies of Ross [14] and Hewitt
and Zuckerman [5] in which linearly ordered semigroups of the present
type were treated. Most of Ross’ results generalize to the case of
the finite product, in particular his description of the Gelfand transforms
of measures. In Theorem 3.4 [14] Ross showed that for linearly
ordered G spectral synthesis obtains in _.Z(G) even though G is not
compact (¢f. 37C and 38A [8] as well as [9]). An example in this
paper shows, on the other hand, that the compactness of the semigroup
G does not imply spectral synthesis in _Z(G) in case G is the product
of two linearly ordered semigroups.

For terminology not explained below in measure theory, topology,
and harmonic analysis, see [2], [7], and [4] and [8], respectively.

1. Preliminaries.

1.1 Let X be a partially ordered set, i.e., a set ordered by a
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transitive, antisymmetric, and reflexive order relation <. For ze X
define L, = {ze X|z < «} and M, = {ze X|x <z}, For Ec X define
IL(E) = U{L,|xcc E}, and M(E) = U{M,|x<c E}.

If X is linearly ordered, the following sets will be called intervals:
forx,ye X, (x,y) = e X|e<z<yllz,y] ={zcX|z = 2=y} The
half-open intervals are defined analogously, and the notations (— o, %]
for L,, (— o, ) for X\M,, etc., will often be employed. The order
topology for a linearly ordered set X has for a subbase the family
{('“ 2, x)}wEX U {(x, Oo)}xex-

For two sets A and B, A\B={r|vcA and x¢ B}, AdB =
(A\B) U (B\A); the void set is denoted by ¢. &, denotes the characteristic
fumction of the set A, A is the cardinal number of A. For the
cartesian product of a family {X,}.es of sets we write P,esX, (or X*
if the X, are all indentical). A point % = (2,).es € P.esX. has x, for
its a™ coordinate. w, is the a'™ projection function of the product
P.esX,.

1.2. In this section G will be any T, locally compact commutative
idempotent topological semi-group. In particular, the multiplication
(z,y)— oy in G is a continuous function of G x G onto G. <Z(G)
will denote the set of all Borel subsets of G (11.1 [4]). A partial
ordering on G is introduced by

DEFINITION 1.3 For x, ¥y € G define =< y to mean zy = .

LEMMA 1.4. With the ordering of 1.3, G is a topological semi-
lattice under =V y = ay.

DEFINITION 1.5. (see [6]) A subset P of G is an ideal if PG C P.
An ideal P is prime if A = G\P is a nonvoid subsemigroup of G(A*C A).

The complement A of a prime ideal will be called a prime subsemi-
group (pssg). Note that a nonvoid subsemi-group A of G is a pssg
if and only if L(4) = A. A

A semi-character of G is a bounded complex-valued function ¥ on
G, not identically zero, which satisfies the functional equation y(xy) =
1@ () for all 2, y ¢ G. The set of all semi-characters of G is denoted
by G.

THEOREM 1.6, ye€ G if and only if X is the characteristic function
of a pssg of G.

Proof. Letye@G. Since y(x) = x(x?) = x(x) for all x € G, y assumes
the values 0 and 1 only. The set A = {x e G|y(x) = 1} is the desired
pssg. Given any pssg A, &.(xy) = £4x)&,(y) for all &, ye G and &, +
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‘0; hence & ¢ G.
This theorem points to £, , € G, as an example of a Borel-measurable
semi-character, because L, is a closed pssg by Lemma 2 on page 361

([16]).

1.7. Let .7 (G) denote the Banach space of all complex-valued
countably additive regular Borel measures on G with the usual variation
norm || || = | ¢ |(G). Let Z(G) be the Banach space of all continuous
complex-valued functions on G which are arbitrarily small outside of
compact sets, normed by the uniform norm. Then by the Riesz
Representation theorem (19.12 [4]) . (G) is isometrically isomorphic

to &,*(G) under the mapping p— M, where M(f) = Safdy,fe EH(@).

DEFINITION 1.8, For p,ve . 27 (G) define the convolution pxy in
(@) by

(1.8.1) () = | | sendu@ids), Be (@) .

With * as multiplication . (G) is then a commutative Banach algebra
which has an identity if G has an identity element (p. 351 [15]). The
case in which G has no identity is discussed in 3.12, below.

1.9. It follows directly from the definition that for a Borel pssg
A and for measures ¢ and v in _Z(G)
(1.9.1) pxv(A) = p(4)-v(4) .

1.10. For each x€G let §, denote the point mass at « (1.7 [14]).
For EC G and e G let ,E denote the set K ={yeGlayc E}, For

Ae 7 (G) let p, be the member of ./ (G) defined by p,(E) = p(ENA).
The following formulae prove useful in the subsequent sections:

LemmaA 1,11, For p,ve Z(G) and =, ycG we have

(1.11.1) s () = Say(xE)dv(x), Ee #(G)
(1.11.2) 0 (E) = p(E), Eec z(G)
(1.11.3) 0, %0y = Ogy

(1.11.4) px0, = peof and only of S(p) C M, where S(pt) is the support
of the measure pt (11.25 [4]).

Proof. If Fe #(G) then ,Fe <#(G) for all xe G and so
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|, @0 drw) = | ) dp) = 1)

By the Fubini theorem (14.25 [4]) this function defined on G is Borel--
measurable because pxve . 7 (G), and (1.11.1) follows from (1.8.1)..
Setting v = 4§, in (1.11.1) we obtain (1.11.2) and similarly (1.11.3).

Next suppose S(¢t)c M,. Then pxd,(E) = p(,ENM,) = ((ENM,) =
ME) for all Fe #(G), as ,ENM,=EnN M, thus pxo, = p. If,
conversely, pxd, = and if EcCG\M, then ,E=¢ and pE)=
P (B = p(,E) =0, It follows that |z |(G\M,) = 0 and S(p) c M,,
as required.

2. The representation of 4.7 (G).

2.1. Let 4_(G) denote the class of all algebra homomorphisms:
of _#Z(G) onto the complex numbers, the structure space of the algebra
A2 (G) (23A, [8]). It is the purpose of this section to show the

impossibility of representing each member z of 4_(G) as an integral
of a fixed semi-character.

LEMMA 2.2, Let e d_Z(G), then the function x — ©(d,) is either
a semi-character of G or is identically 0.

Proof. (1.11.3) implies that the function © — z(d,) is multiplicative:
and assumes the values 0 and 1 only.

DeriNiTION 2.3, Let e 4. 7(G). If A={xeG|z(, = 1} then T
is said to determine the set A. By 2.2 A is either a pssg of G or
A = 4.

2.4, If G is compact then G is a compact ordered space in the
sense of Nachbin [13], which can be embedded into a cube [i.e., a
product of closed unit intervals] by means of a homeomorphism which
also is a lattice isomorphism (see [12] and also [16]). Motivated by
this theorem we shall, from now on, restrict our attention to the
following type of semigroups:

Tor each a in an index set S let G, be linearly ordered and
topologized by the order topology. Let G = P,esG. be locally compact
in the product topology. For x,y c G define zy = (max {%,, ¥.})wes. G
will then satisfy 1.2. In particular, the Tykhonov cube G = |0, 1}5,
ordered coordinatewise, is a semigroup of this type.

2.5. In an uncountable Tykhonov cube there exist examples of
semi-characters which are nonmeasurable with respect to certain product
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measures. In the countable Tykhonov cube one can show by means
of a cardinality argument that nonBorel measurable semi-characters
abound. The method of constructing such semi-characters is employed
in the following example., We consider here the ‘minimal’ infinite
product space G = {0, 1}5, where S = W.. G is a semigroup of the
type under discussion as well as a compact Abelian group, the so-called
Cantor group, under coordinatewise addition modulo 2. Utilizing a
theorem of Hewitt (Theorem 47 [3]) which asserts that there exist 2°
distinet ultrafilters on the countably infinite set S, we will show that
G possesses 2° nonBorel pssg’s which are in fact nonmeasurable with
respect to some member of _Z(G).

2.6, Let G =1{0,1}5. For Uc S define an element z, of G by
{2.6.1) (25)e = 1 if e U and (z,), = 0 if aeS\U.
Given any ultrafilter .o~ on S, set

(2.6.2) A={ey|UCS, Ug v},

THEOREM 2.7. For distinct ultrafilters on S, (2.6.2) defines

distinet pssg’s of G. If S = W, then the set of all pssg’s of G has
cardinality 2°, and hence a pssg of G 1is usually not a Borel set.

Proof. Let .o and A be as in 2.6. If xp, x,< A then zyx, =
Xy €A, since Ug. o7, Ve o -UUVe¢.o”. Thus A is a sub-semi-
group. Now A is a pssg because L(A4) = A.

Let .o/, &# be distinct ultrafilters on S and A4, B the corresponding
pssg’s. Let Ue . &v'\«Z By (2.6.2) 2y € B and since .7 is closed under
supersets, ¥y ¢ A. Therefore A = B. The last statement of the theorem
follows from Hewitt’s theorem (Th. 47 [3]) and the fact that G has
only ¢ Borel sets (p. 26 [2]).

ExAMPLE 2.8. Let g be the Haar measure of the group G of
2.5. Let & be a free ultrafilter on the index set S and let A be
the pssg given by (2.6.2). Consider the prime ideal P = G\A. It will
be shown that

(i) P is dense in G;

(ii) either p(A) = 0 or A is not p-measurable;

(ili) ¢(4) = 0.

It follows then that A is not p-measurable and hence A¢ <Z(G).
It was shown in 2.7 that there exist 2° distinct pssgs of this type in G.

To prove (i) let N = Naermz'(N,) be any nonvoid basic open set
in G, i.e.,, F is a finite subset of S and ¢ = N, {0, 1}, for a e F.
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Since &7 is a free ultrafilter, F'¢ .o7; hence U = S\Fe.& and z,¢ P,
Let xe N and let ¥y = vz, then y is in the ideal P and y, = v, for
all ac F, so that ye NN P. Thus P meets every nonvoid open subset
of G.

To establish (ii), assume that A is p-measurable and p(A4) > 0.
Then by Steinhaus’ theorem (20.17 [4]) there exists a nonvoid open
set 0CA— A={x—vy;x yec A}

Note, however, that z;, 2, € A implies

Xp — Ty = By + Ty = Tpay = Tpyr = Tplr €A,

therefore 0 C A — A A, a contradiction since by (i) 0 N P + ¢.

For (iii) we note that P — PcC A, and again apply Steinhaus”
theorem to show that #(K) =0 for each compact subset K of P.
Hence p(4) +# 0.

2.9. Suppose t€ 4.4 (G) and 7 determines A as in 2.3; suppose
also that for some measure pte .7 (G), A is not p-measurable, as in
the above example, Then there exists no semi-character EBG@ such
that the formula

(2.9.1) W) = SGSB(w)dv(x)
holds for all ve _#(G). For if B+ A then
<G.) # |edo(t) = 0.(B)

for all v e A4B; and if B = A, then B is not gt-measurable and (2.9.1)
does not make sense for v = p,

On the other hand, we will show that each pssg A of G is
determined by some 7 e 4_#(G); such a homomorphism ze 4 7 (G) is
then not representable by formula (2.9.1).

DEFINITION 2,10. Let g, denote the imnmer measure induced by
pe 7 (G); ie., for any set ECG and p£ = 0

(2.10.1) Ho(E) = sup {(K) | Kc E, K is compact}

and if pte 7 (G) has the Jordan decomposition « = p¢' — £ + (£ — )
(p. 123 [2]), set

(2.10.2) 1B) = (8(B) — 2(B) + i(2(B) — pA(B)) .
THEOREM 2.11. Let G be as wn 1.2 and A a pssg of G. Then
(2.11.1) () = () for pe 7 (G)
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defines a member T, of 4.7 (G) which determines A in the sense
of 2.3.

Proof. First let £ = 0. For a compact set KC G set S(K) =
U{LE"|n=1,2,---}, the smallest pssg of G which contains K.
The order relation on G is continuous (p. 359 [16]) because the multi-
plication is continuous. Thus L(K") is closed (p. 361 [16]), so that
S(K) is F, and hence a Borel pssg. Now form the family

(2.11.2) & ={S(K)|Kc A and K is compact} .

Then & is a directed set (p. 65 [7]) under set inclusion and
(2.11.3) {(S)| S e &}

is a monotone net in the compact interval [0, p(G)]. Set

(2.11.4) () = ;lerf; n(S) .

For arbitrary pte _#(G) we use the Jordan decomposition of p and
define

(2.11.5) Tu(t8) = Tolft) — To(p) 4 2(Tulrr) — (1)

Obviously (2.11.4) holds for arbitrary p. By (1.9.1) 7, is multiplicative.
T, 7 0 since for ae A, L,e.&” and therefore 7,(d,) = 9, (L,) = 1. Thus
Ty € A (G).

Each compact subset of A is contained in a member of &. A
straightforward calculation shows that 7,(y) = p.(4). For those
pre (G) for which A happens to be p-measurable 7,(p) = ¢(4); in
particular 7.(8,) = 0,(4) for all xe G, so that the homomorphism 7,
determines the pssg A.

3. The structure space of .7 (G) for finite products.

3.1. From now on G will be a finite product, G = P}_, G,, satis-
fying the hypothesis of 2.4; i.e., G is a product lattice. The symbol
< will donote the order relation on G as well as that on the coordinate
spaces G,; likewise the meaning of L, and M, will vary according as
xeG or xe¢G,. In context these usages will cause no confusion.

LEMMA 3.2, Let A be a pssg of G, then A has the form A=
Pr_ A, where, for k=1,--,m, A, 1s a pssg of the semigroup G,.
Thus A s a Borel set.

Proof. Set A, = m,(4), k=1, ..., m; then 4, is a sub-semigroup
of G, and L(A4,) = A,, so that A4, is a pssg of G,.
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Clearly, Ac P;p_,A,. Given any x = (x,)i-, € Py_,A, we choose
y*e A, for k=1, ..., n, such that 7,y* = x,. Then y =y'y* ..+ y* is
a member of A and 2 < y; hence x ¢ A. Therefore A = P;_,A,; each
A, is either open or closed, so that A is a Borel set.

Note that in an infinite product lattice a pssg need not be of
this form.

LEMMA 3.3, Let A be a pssg of G. Let e ~(G) and ¢ >0 be
given., Then there exists an element ac A such that || (A\L,) < e.

Proof. TUse the regularity of p¢¢ to choose a compact set KC A
such that |p¢|(A\K) <e. If ap=supn,K,k=1,.--,n, and if a =
(ap)?-, then Kc L, and a,en,KCm,A, hence by 3.2 ac A, and the
result follows.

LEMMA 3.4, Let e Z(G) be such that =0 and suppose that
T e 4. 7Z(G) determines A. If there exists a number ¢ > 0 and an
element y e G\A such that p(G\M,) < ¢ then |z(p¢)| < e.

Proof. Write gt = p, + ptar, (see 1.10). Then |/l = t(G) =
HG\M,) <e.

By (1.11.4) we have ptu, = ptu,%0,, and so t(pta,) = t(tta,)7(d,) = 0,
since y € G\A. Therefore |z(¢)| = [z(p) | = [[zll- ||l <e.

We now state the main theorem of this section.

THEOREM 3.5. The mapping T — &, defined by
(3.5.1) 7(0,) = E4(x) for all xe@

18 a ome-to-one mapping of 4.7 (G) onto G. The formula

(3.5 2 = [eu@dp(z) = p(4)
holds for all pe 7 (G) and all te d_7(G).

Proof. By 2.2 546@ provided A ++ ¢. Assuming, however, that
A =g, i.e., 7(6,) =0 for all ae G, we shall conclude that z(x) = 0 for
all e _#Z(G), contradicting the hypothesis that ze 4..7(G). For,
given pre _#(G) and ¢ > 0, there exists a compact set KC G such
that | @] (G\K) <e; hence || ptexll <e. Since K is compact there
exists ye G such that Kc M, and (1.11.4) implies that c(ug) =
(ptx*8,) = 0. Thus |2(0) | = | o(ttews) | = || ftans | < ¢, and since ¢ was
arbitrary, z(¢) = 0.

To prove (3.5.2) let ¢ = 0 and consider the sets
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(3.5.3) P=GAand, for k=1,---,m, P, = G\4, .

We show that c(y¢,) =0 by expressing P as in the union of the
pairwise disjoint Borel sets T, = #n;'P,\U%i7;'P;, and applying 3.4
to the measures . It follows that (z) = v(zy).

Next, let ¢ > 0 be given and let € A be such that p(A\L,) <e
(by 3.3). By (1.11.2) there exists a measure ve .~ (G) such that
Max0,(E) = py(L,)0,(E) + v(E) and such that |[v|| <e. It follows,
since x € A, that o(y¢) = t(p,) = t(pa*0,) = pu(L,) + (v), and so

[7(p) — p(A) | = | pa(Le) — (A |+ [z) | = [ (AL, [ + (Y]] < 2e,

and (3.5.2) holds for = 0. For arbitrary g e .~ (G) it holds because
of the linearity of <.

THEOREM 3.6. The Banach-algebra 7 (G) is semi-simple.

In view of (3.5.2) we need only show that if p(4) =0 for all
pssgs A then g =0, This is most efficiently accomplished if one uses
the machinery developed in §4 and adapts the proof of 2.4 [14].

3.7. Having identified 4_7(G) with G in 8.5, we will from now
on use the notation

(3.7.1) G = {t4| A is a pssg of G},

where 7,(¢) = (A) for all pe_ 2 (G). A partial order =on G is
given by

(3.7.2) 7, =7 if and only if ACB.
Setting 7(¢) = 1(¢) = 0 for all pre Z(G) we write
(3.7.3) G,=GU{z), and 7, < , for all z,eG .

7, is the zero homomorphism on _.7(G) and is taken to correspond to
the zero semi-character on G. G is further identified with Pp_,G, via
the map

(3.7.4) Ta— (Ta)i=s

where 4, = 7, A is a pssg of G, and 7, is regarded as a member of
the structure space 4.7 (G,). Following Ross’ notation (2.5 [14]) we
write

'(3.7.5) T'zk) fOI‘ T(—w:ak) and Tak] fOI‘ T("'w""k] .

Then (@, =) andA(Go, <) are lattices since the mapping in (3.7.4) is
bi-isotone; and G is, in fact, .a product lattice. We now topologize
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these lattices and obtain a characterization of 4_Z(G).

DErFINITION 3.8. For each measure pe 7 (G) define the Gelfand
transform fI of p by

(3.8.1)  fir,) = ta(t) = p(A) for all 7,eG (respectively G,) .

The Gelfand topology on G (resp. G) is the weakest topology making
each of the complex-valued functions 7 continuous on G (GO)

THEOREM 3.9. The Gelfand topology on G, equals the interval
topology. With this topology G, is a totally disconmnected compact
Hausdorff space; it is the one-point compactification of G with its
Gelfand topology.

Proof. Given a noneoid set .o~ — G,, let B =N {Alr,e 7} and
C=Pr{U 4:; | (t4,)i= €.}, Then ¢, = inf . and 7, = sup .2 It
follows that G, is a complete lattice and by Theorem 9 [1] is compact
in its interval topology.

We now follow closely the proof of 2.7 [14] and thus show that
the interval topology and the Gelfand topology are identical in both
G and G,. The proof is completed by noting that a subbase for the
closed sets in the interval topology for G, is the collection

(3.9.1) {teGo|t = tle eb, and TGl T = Taleyety -

From this it follows that the interval topology of G is the rela-
tivized interval topology of G,. By Theorems 3 and 4 [1] the former
is equal to the product topology of G = P;Ll@,c, and is therefore
a locally compact T,-topology (2.7 |[14]), having G, as its one-point
compactification. The proof that G, is totally disconnected uses again
the nature of G as a product space and Ross’ result 2.8 [14].

DEFINITION 3.10. We define a multiplication in G, by the rule
(3.10.1) 7,05 = inf {7, 75}

using the lattice operation given in 3.9. This multiplication is natural
in that 7,7, corresponds to the semi-character &,-&; = &4q5.

THEOREM 3.11. G with the Gelfand topology and the multipli-
cation defined in (3.10.1) is a locally compact idempotent commutative
Hausdorff semigroup; in fact, G is homeomorphic and semigroup =
isomorphic with Ppr.G, (viewed as a lower semtlattice with the
product topology).

Proof. In view of 3.9 we need only show here that multiplication
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in G is continuous. This follows from Theorems 2 and 3 [1], which
assert that the lattice Pp.G,, being distributive, is a topological lattice.

3.12. Under the present hypothesis it can now be shown that
the algebra _~ (G) has an identity element if and only if G has a
least element. For if _#/(G) has an identity then 4.7(G) is compact
(19B [8]), and hence G = P le is compact in its product topology.
If z,, is the least element of G, k=1,--,m, then A, must consist
of a single element «, of G, and the point a = ()=, is the least
element of G. The converse has already been discussed in 1.8.

That we cannot make the same claim under the more general
hypothesis of 1.2 is seen from the following simple example.

3.13. Let G = {a,b,c}, where ab =ac =bc =¢, and let G be
otherwise as in 1.2, Then _#(G)= {ad, + Bo, + vd.|«a, B, v are
arbitrary complex numbers}, and the measure v = 4§, + d, — d, is an
identity for .27 (G). However, G itself has no identity element.

4. The Herglotz-Bochner theorem for _Z(G).

4,1, This section generalizes §4 [14]. Under the hypothesis of
3.1 we first introduce the concept of a function of finite variation
of the » variables t, ---, 7,, defined on G. <, will denote the zero
functional on 7 (G,) as well as on _Z(G).

DEFINITION 4.2. .o~ will denote the set of all subsets R of G,
called rectangles, which are of the form

R = Pp_,I,, where for each k, I, = (t4, Ts,], Ta, < Ts,

(4.2.1)
or I, = (t, TBk] .

The points 7, = (t4)i=1, Ts = (Tp,)i= Of G appearing in (4.2.1) are
called the endpoints of R.

We formally adopt the notation used by Munroe in his discussion
of Stieltjes’” measures (pp. 120-125 [10]) and adapt it for our purposes.

DEFINITION 4.3, Let g be any complex-valued function defined on
G = P,:;l@k, let Re.o” have its endpoints 7, and 7, in @, and let
1=k =n.

Considering g as a function of the k™ coordinate z, of ce @, the
operator 0,, depending on R, is defined by

(4.3.1) 3k(g):g(...ka...)_g(...TAk...).
If B = Pp.,I, and if for some k, I, = (7, 73], we set
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(4.3.2) 0u(9) = g(+++ g, =+

9:(9) is thus a function defined on fj#@j.

DEFINITION 4.4, Let he <(G,), the space of all complex-valued
continuous functions on G,. Define the function 6% on . as follows

(4.4.1) Oh(R) = 6,(6y(+++ 6,(h) +++)), for Re &,
the §, having been defined for each R by 4.3,

DEFINITION 4.5. For a subset C of G set
451 C= {re@lt = 7;, for some a e C}. For subset S of G set
(4.5.2) S={aecG|r,eS}.

Let <Z denote the set of all Re.o” whose endpoints belong to G.
ie., all R = P, such that for all k, I, = (v, 7y,] or I, = (7, Tl

DEFINITION 4.6. A finite pairwise disjoint subcollection 4 of &7
is called a partition of G. <7 denotes the set of all partitions. For
4,, 4, &7 we say that

(4.6.1) 4, = 4, (4, is finer than 4,) in case

(i) U4.oU4, and
(ii) Re 4, Se 4, impliess RNS =¢ or RcCS.
We also set

(4.6.2) ¥ ={dezg|dcz},

% having been defined in 4.5, With the ordering given in 4.6, &
and & are easily seen to be directed sets.

DEFINITION 4.7. Let he Z(G). If Ae.ov, or if G\Ae v, or if
A = G we define

(A7.1) Vi A) = sup {Siees |0W(R) || 4 &7 and U 4 A},

and set V(h) = V(k;3). The function & is said to be of finite variation
if V(h) < <o.

DEFINITION 4.8. Let he &(G,) and let A be as in 4.7. Define
4.8.1) V (h; A) = sup{Sires V(; R) | de &, U4 C AL and R has compact
closure in G for all Re 4}, and set V,(h) = V., (h; G).

DEFINITION 4.9. Let he &(G,) be such that 6k(R) =0 for all
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Re 7, and of finite variation. Let f be any complex-valued function
defined on G. For each 4e¢ & define

(4.9.1) S(f, 4) = >, Fb)OM(E) ,

where 7z, is the upper endpoint of R, i.e., b = sup R.

THEOREM 4.10. Let fe ©(G). Let he z(G,) be of finite vari-
ation and such that 6h(R) = 0 for all Re ., and h(z,) = 0. Then
{S(f, D}iew s a Cauchy net of complex numbers. We will write

(4.10.1) L(f) = Elen; S(f, 4) .

The function L defined in (4.10.1) is a bounded, nonnegative linear
functional on & (G).

We apply the Riesz Representation theorem (19.12 [4]) to the
above functional and obtain, as an extension of 4.6 [14], a theorem
which characterizes those continuous functions on G, which are Gelfand
transforms of measures in _Z(G).

THEOREM 4,11. Let he (g(@o) have finite variation and suppose
h(z) = 0. Then there ewists a measure pe 7 (G) such that h = it
aof and only if V(h) = V. (h).

COROLLARY 4.12, Suppose G is compact and h e ?,/(C:O). Then h
18 the Gelfand transform of some measure pc 7 (G) if and only if
V(h) < = and h(t,) = 0.

ExamMPLE 4.13. Let G = E" with coordinatewise ordering and the
usual topology. Let he& (éo). Then % is the Gelfand transform of
some measure pe 7 (G) if and only if V(h) < « and Ai(z,) = 0.

Ross gives an example (4.7 [14]) of a function he (G, such
that V(h) < = but V(h) > V, (), and which is not a transform.

It is possible to show that the variation functions used by Ross
(2.9 and 4.4 [14]) for linearly ordered G are consistent, in all cases
concerning this paper, with those defined in 4.7 and 4.8, and that
Theorem 4.6 [14] is actually a corollary to our Theorem 4.11.

5. Consequences of the Herglotz-Bochner theorem.
5.1. Let I be a closed ideal in 7 (G). Let h(I) = {reG,|fi(z) = 0

for all pe I} be the hull of I and kh(I) = {pre Z(G)|f{(z) = 0 for all
te h(l)} the kernel of h(I). Spectral synthesis obtains in _Z (G) if
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I = kh(I) for each closed ideal I in _Z(G). We show here by example
that if G is not linearly ordered (see 3.4 [14]) spectral synthesis may
not obtain, even though G is compact. In this section G satisfies the
hypotheses of 3.1.

ExAMPLE 5.2. Let G =[0,1] x [0, 1] be the unit square with the
usual topology and coordinatewise order. Let L = {(¢,s)eG|s=1—t};
let K={(t,s)|s=1—1t}, and let H=G\K. Let Q@ = {r;}=, be the
set of points in H which have two rational coordinates. Let )\ be
Lebesgue measure along the line segment L and define

(5.2.1) r= i (1/2%)0,,
(5.2.2) I={pxvive Z(G)}.

It is easy to see that v e i(I) if and only if f(z) = 0. This leads
to a very simple description of A(I).

(5.2.3) WI)={r,eG|ANL =1},

as ANLZ=1if and only if AN@ = ¢ if and only if fi(z,) = p(4) = 0.
Since N(7,) = MA) = 0 for all 7 e (), nekh(I). However, ne I
and hence I == kh(I), for by (1.11.2) we have

preu(K) = 3 (1296, +0)(K) = 5 129, K) = 0,

since ,K = ¢ for all reQ. But MH)=0 and so » and pg=xvy are
mutually singular for all ve _7(G). It follows that the distance from
N to Iis at least as large as 1/2||\|| = 1/2/2 and that therefore \ is
not in 1.

THEOREM 5.3. Let G = PG, and let pe Z(G). Then p is
idempotent, i.e., pxp = p, of and only if p is a discrete measure
of the form

(6.3.1) ¢ = ]leakatk )

where the coefficients «, are nmonzero integers between —2" ' and 27!
and have the property that for each vxe G

(5.3.2) Sa,=00r 1,

tkga:

It is interesting to note that the support 7' = {t,}7, of the idem-
potent measure ¢ need not be a sub-semigroup of G.
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THEOREM 5.4. _Z(G) is a symmetric algebra; t.e., if pre ,///((2)
then there exists a measure Y € 2 (G) such that 9(t) = fi(7) for all e G.
Here z denotes the complex conjugate of z.

ExAMPLE 5.5. In contrast to the linearly ordered case (5.5 [14])
there exist positive measures in . (G) which have no square root in
A (@). Let G be the unit square as in 5.2, For n=1,2 ... let
x, = (1/n, (n — 1)/n) e G and define

(5.5.1) =3 0.,k

k=1

Assume there exists a measure vc _Z (G) such that (9(c))* = f(z)
for all e, then for each integer N we can find pairwise disjocint
rectangles R, --., R,€ . such that

0O(R)) = =V plzs,) = £(1/5) .

Hence V() = >\, |6D(R;) | = >3, (1/7), for all N, contradiction 4.11.
We conclude that g = vxy for all ve #Z(G).
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