
PACIFIC JOURNAL OF MATHEMATICS

Vol. 21, No 3, 1967

ITERATES OF BERNSTEIN POLYNOMIALS

R. P. KELISKY AND T. J. RIVLIN

Bn(f) transforms each function defined on [0,1] into its
Bernstein polynomial of degree n. In this paper we study
the convergence of the iterates B^k)(f) as k -» oo both in the
case that k is independent of n and (for polynomial /) when
k is a function of n.

To each f(x) defined on /: 0 ^ x :g 1 there is associated its Bernstein
polynomial of degree n defined by

/I 1\ T? ( f. Ψ\ — V fί )fn)srk(1 — τ\n~k

It is well known that if / is continuous on /, then

(1.2) \im Bn(f;x) = f(x)

uniformly on I. (Cf., Lorentz [2] for this and other properties of the
Bernstein polynomials used here.) Let Bn(f) denote the (polynomial)
function defined by (1.1), then for k > 1, Bik)(f; x) = Bn(Bik~1](f); x)
defines, by mathematical induction, a sequence of iterates of the
Bernstein polynomials. Our purpose is to study the convergence
behavior of this sequence as k—^oo^ both in the case that k is inde-
pendent of n and when it is a nonconstant function of n.

We show in §2 that Bik)(f;x) converges (uniformly) for fixed n,
to the line segment joining (0,/(0)) to (1,/(1)), and in § 3 that the
sequence Bi9{n))(xs; x) with appropriate assumptions on g(n), also con-
verges, for each s = 0,1, 2, to a polynomial of degree s whose
coefficients we determine explicitly. Finally, in § 4 arbitrary iterates
are defined as a natural generalization of the positive integral iterates.

When (1.1) is rewritten in conventional polynomial form, it becomes

(1.3) Bn(f; x) = j

which reveals that if / is a polynomial of degree m, then Bn(f) is a
polynomial whose degree is at most min (m, n). Let s be a fixed
positive integer satisfying s ^ n. (There is no loss of generality in
this restriction on s for k > 1, since for s > n, Bik){x8) = Bik~ι){Bn{x8))
and Bn(xs) is of degree at most n.) We consider f(x) — x\ j — 1, , s.
(1.3) implies that

511



512 R. P. KELISKY AND T. J. RIVLIN

(1.4) Bn(xj) = aux + a2jx
2 + + ajάx

j =

3 l , , s ,

where σ) are the Stirling numbers of the second kind (Cf., Jordan
[1, pp. 168-173]) defined by

(i.5) o% = (~^q y, ,

and

2 \ Λ a - 1
(1.6) j ^ wΛ nJ \ n

U = 1 .
2. Limit of the iterates* The study of the iterates of Bn(f; x)

for f(x) = xs is considerably simplified if we use the language of linear
algebra. There is no loss of generality in this choice of f(x) since
Bn replaces / by a polynomial.

Let A denote the s x s upper triangular matrix whose entries aiS

are defined in (1.4), i.e.,

<"> H o i>j.
Let es be the column vector of s components, the first s — 1 components
being zero and the last one. Then

LEMMA 1. If Akes = {a[h\ . . . , a™)*, then

(2.2) B™(χ ) = a[k)x + aϊk)x* + + a™χ , k = 1, 2, .

Proof. If p(x) = cxa? + <?2£
2 + + csα;s (for example, p(x) =

Bi^ίa )) and

•B«(ί>) = ^ + ^ 2 + + d8x
s = 2 ^(αi. x + + asjx

s)
3=1

1=1 j=l

then (du , cίs)
Γ = A(cu , cs)

Γ. The lemma now follows by math-
matical induction on k.

LEMMA 2. The eigenvalues of A are πu π2, , πβ.

Proof. au = π, , i = 1, , s, and α^ = 0 if i > i .
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Let A denote the s x s matrix with the eigenvalues of A,π19 , πs

on the main diagonal and zeros everywhere else. Let V denote
the matrix of eigenvectors of A, normalized so that the entries
on its main diagonal are all 1. V is upper triangular and its
entries are, in general, functions of n. Since AV — VΛ we conclude
that

(2.3) Ak = VAkV~1 .

Essentially, the following arguments rest on the observation that Ak

is known to us and V and its inverse are independent of k.

LEMMA 3. If V"1 = (viά) then vu = 1, j = 1, , s.

Proof. Let U be the eigenmatrix of AT, i.e.,

ATU = UA .

Let U (which is lower triangular) be normalized so that the entries
on its main diagonal are all 1. Since Bn(xj; 1) = 1 the column sums
of A are all 1 and hence the row sums of Aτ are all 1. The first
column of U is the eigenvector associated with the eigenvalue 7̂  = 1,
and hence consists of all entries 1. Due to the way we have normalized
V and U we know that Uτ = V"1 and the lemma is proved.

LEMMA 4. If n is fixed

\imAke8 = (1,0,0, •• ,0)2\

Proof. The entries on the main diagonal of Ak are πϊ, , πk and

lim πk> = 0 , j = 2, , a

lim πf = 1 .

Thus, as k ~> oo, VAkV~1 approaches a matrix whose first row consists of
all Γs, by Lemma 3, and the rest of whose elements are all 0. Clearly,

(1, 0, 0, , 0)Γ - (lim Ak)ea - lim (A%) .

THEOREM 1. If n is fixed then

(2.4) Km B^(f; x) = /(0) + (/(I) - f(0))x , 0 ̂  x ^ 1 .
i-oo

Proof. Let Bn(f; x) = α0 + α̂ a; + + αnx
n, then

}(/; «) = ̂ o + αiBi^ίa?; ») + (XtB"-1^; x) + + ^ ^ - " ( O J ; a?)
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hence, in view of Lemma 1 and Lemma 4, with s = 1, 2, , n,

lim B«\f\ α?) = α0 + («! + + <*Λ)x

- /(0) + (/(I) - /KO))a? .

REMARK. The convergence in (2.4) is uniform since we have a
sequence of polynomials of fixed degree approaching a fixed polynomial
of the same degree for all a; on a bounded interval. Also we have
used the obvious fact that Bn(l) = 1, all n.

It is a curious fact that the matrix V has the property that viS

is independent of n, for j = 1, 2, 3. We have, when s = 3,

Let p2(x) = — Λ

that,
+ x

BΦ{1

V

:2 a n d %

o2) = (]

\o
φ) =

L_Γ
n

- 1
1

0

(1/2)3!

) V2 f

l/2\
-3/2 .

1 /

- (3/2)a;2 + x3, tl

i = 0, i, 2,

These results should be contrasted to the well-known remark (Cf.,
Schoenberg [3]) that the Bernstein operators are "poor reproducers",
in that they never reproduce polynomials of degree greater than 1.

3* Limit of the coupled iterates. Suppose f(x) = x8. Theorem
1 tells us that for fixed n, Bij)(xs) —> x as j~+ oo, while according to
(1.2), Bn(xs)-^xs as n—> oo. Thus, it is of interest to "play-oίf" the
upper and lower subscripts in Bij)(xs), by considering j = g(n). To
this end we must examine the behavior of the eigenmatrix, V, as n—* oo.

Let the elements of V be vij( = vij(n)). For j — 1, , s we have

(3.1) A(vlj9 , v8j)
τ - πfas, , vsjf .

We examine these linear equations more closely. Since V is upper
triangular,

(3.2) vti = 0, i =j + 1, . . . , s ,

and because of the way we have normalized V

(3.3) ^ - - 1 .

It remains, then, to determine the behavior of viά{n), i < j , as w—> oo.
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We consider the relevant linear equations from (3.1) (and write v{ in
place of vi3 for simplicity)

(3.4)

α l f i =

Define πiό = π< — π i f let P denote the determinant | p^ | such that

i=3 ,

then

P = Π

Let P ( ί ) denote the determinant identical to P except that the i-th
column of P is replaced by ( — aljf —a2j, •••, —a^^). Then, if we
solve (3.4) for Vi( = vitj) by Cramer's rule, we obtain

(3.5)
pa)

If we denote by P$ the minor of —aP3 in P(ί\ then P$ is upper
triangular and

Now,

0 P < i
p = i

(3.6) (-]

and for q < j ,

πqj =

(3.7)

Π . ίΓ*y

i - l)]

>
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as n—+ oo. Since 7̂  —>1 as n —> oo, we obtain, in view of (3.6), (3.7),
and (2.1),

jlim apjΓpj = 0 , p < i - 1 ,

while

lim ^ - ' - ^ - M = iff (

Thus, we obtain, finally, that

- 1)} *ί+1 .

ffίί

, i = 1, - , j - 1

where we have used the fact that (Cf., Jordan [l])

(3.2), (3.3), and (3.8) give the limit of F a s ^ - ^ ω , In an entirely
analogous fashion, with Aτ in place of A, we may obtain the limit
of V"1 as w--> oo. We suppress the details, but the result is

(3.9) lim vtj = vti = •

1 ,
j-Λ It +

a 2

\ 3 - i

= 3

i <3 .

Let us put

(3.10) E3 =

THEOREM 2. Suppose g(n) is a nonnegative integer for each n,

and

(3.11) lim

then we have
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(3.12) lim Bl9W)(xs) = Σ hrf

where

3 - % j \ s - J

i — 1, , s (where, when a = co in (3.11), we have 22? = 1 and
Ef = O,j>l in (3.13)).

Proof. A*(w) = 7 F Ύ - 1 . Now

lim Λ'(w) = .4*

where J* is a diagonal matrix with entries E°, j — 1, •• , s on its
main diagonal.
Let

lim V = F*

and

limF-1 = (F-1)* = (F*)-1 .

The entries in F* and (F*)- 1 are given by (3.2), (3.3), (3.8), and
(3.9). Thus, we may conclude that

V*A*(V*)~ίe9 = (lim Ag{n))es = lim
\7l—>oo / n-*oo

and the existence of the limit in (3.12) is established. In order to
verify (3.13), we need only note that

(3.14) (6,, ...,&.)* - F * J * ( F * ) - ^ ,

so that

REMARK. If a = 0, then Λ* = I and we conclude from (3.14)
that (&i, , &8)

Γ = ββ, or 6y = 0, j — 1, , s — 1, bs — 1. In particular,
then, if g(n) = 0, we have proved (1.2) for the case f(x) = #\ As a
curiosity we also note that we have established the seemingly nontrivial
identities
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(3 i6) a
3 - ^ /\ s -

With some simplification (3.16) may be written in the equivalent form
(3.17) which holds for odd t and n positive

s -'
Additionally, since

and
g

we obtain, after summing on i on both sides of (3.18) and interchang-
ing the order of summation on the left

S 8

sr~ι . . _ ~̂»

3=1 ° i = I

from which we conclude that, if δik is a Kronecker delta.

, Vijfe = δ l f c

and hence also

We thus have the seemingly nontrivial identities:

/=! /ί + 1\

(3.19) 1 + % ( - 1 ) ^ 2 ^ ί = l l _ | _ L _ = 0, i = 2, . . . , » ,

[(i-i)πf' -2)
\3 -i J

or, equivalently, if n ^ 1,
/n + AΛ/ΉΛ 1

<3-20) a*-"! * )U*ττ=»
4* Iterates of all orders* If t is any real number, — oo < ί < oo,

we are now in a position to define B^if), in a manner consistent
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with our definition when t is a nonnegative integer. We define

(4.1) B?\xk) - b^x + b2(t)x2 + + bk(t)xk , k = 1, 2, . . ,

where

(4.2) (6,(0, -- tbk(t)y ^VΛtV-'e,.

In (4.2), At is defined to be the diagonal k x k matrix whose entries
on the main diagonal are πj, π|, , π | . It now follows that, since
elf , es is a basis in £7s(s <£ w), if

(4.3) p = ccjx + α2x
2 + + asx

s ,

then

(4.4) B™(p) = ±aiB«)(*i).

Moreover, if we define

(4.5) Bi*\c) = c

and

(4.6) B»)(c + v) - c + B^ίp)

where <? is a constant and p is given by (4.3), then we obtain

(4.7) J5it)(p) = Σ « < « f ) ( ^ )
i = 0

when

p r= α0 + aλx + + asx
s .

We observe further that if — co < % < oo, then

Au + t = ΛuΛt

and so it is easy to see that

B?+*\xk) - B™(B™(xk)) - B?\B™(xk)) ,

and hence

for any polynomial p of degree at most n.

If / is bounded on [0,1], we can now define

(4.8) B«\f) = Bί~\Bn{f)) .

This definition focuses attention on the case t = 0. The polynomial
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of degree at most n

B*(f) = B^{f) = B~\BJ)

is a kind of surrogate / . How is this polynomial related to /? It is
clear that if / = p, a polynomial of degree at most n, then

In particular, let p = Ln(f) be the unique polynomial of degree at
most n which agrees with f(x) at x = i/w, i = 0, , n. Then Bn{f) =
Bn(Ln(f)) and so

£*(/) - B*(Ln(f)) - Ln(/) .

Of course, this result could have been obtained without the apparatus
of this paper, but it comes out of our discussion quite naturally.

We wish to thank Benjamin Weiss for some helpful advice on
this work.
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