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A THEOREM ON RANDOM FOURIER SERIES ON
NONCOMMUTATIVE GROUPS

ALESSANDRO FIGA-TALAMANCA AND DANIEL RIDER

Let G be a compact group. For xeG we shall consider
a formal Fourier series (*) Σ diTriϋiAiDlx)) where the A
are distinct (non equivalent) irreducible representations of G
of degree dίf Ui are arbitrary unitary operators and Aι fixed
linear transformations on the Hubert space of dimension di
and Tr denotes the ordinary trace. We shall prove that
ΣdiTr(AiAi*) < oo, provided that (*) represents a function in
L\G) for all 17= {Ϊ7J belonging to a set M which has positive
Haar measure in the group © = Π^(di )» where ^(di) is
the group of all unitary operators on the ^^-dimensional space.
If we think of © as a probability space, with respect to its
Haar measure, then (*) is a Fourier series with "random
coefficients" and the result can be stated in the following
way: if (*) represents, with positive probability, a function
in LKG) then ΣdiTiiAiAi*) < oo. An earlier result of the
authors implies then that, under the same hypothesis, (*) is,
with probability one, the Fourier series of a function belonging
to LP(G) for every p < oo.

This result is a generalization of a classical result for the unit
circle (cf. e.g. [6, 8.14 p. 215]). With the stronger hypothesis that (*)
represents an integrable function for every choice of U = {£/Je@, the
theorem was proved by Helgason [5], His proof, as the proof of [2,
Th. 4], exploited the "lacunary" properties of a subset of the irre-
ducible representations of @. Or, from another point of view, it was
based on the fact that certain functions defined on © share some of
the properties of Rademacher series (the reader should compare [6, 8.4,
p. 213] with [5, (4.12), p. 279] and [2, Lemma 3]). In effect, to obtain
the main result of this paper we prove first that yet another property
of Rademacher series [6, 8.3, p. 213] is shared by their noncommuta-
tive analogue (cf. Lemma 1, below). To conclude the proof it is then
necessary to apply some recent results of Edwards and Hewitt [1] on
methods of pointwise summability for arbitrary compact groups.

1* Preliminaries. Let © = Πie j^^ ί )- The projection
of F G © into ^(di) is clearly an irreducible unitary representation.
Di will denote the representation conjugate to Di9 We shall consider
functions of L2((S) of the form

iβl
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where A{ is a ^ x d{ matrix. The element of Haar measure on ®
will be denoted by dV. The Schur-Peter-Weyl formula yields

(1.1) J ! F(V) !2 dV = Σ d, TriA.Af) .

LEMMA 1. Given a set M e © of positive Haar measure m(M)
and ε > 0, there exists a finite set IQdI (depending on M and e)
such that if

iφIQ

then

m(M)\ \F(V)\2dV^ (1 + e) f | F(V) \*dV .

Proof. We first make the following observations.
(a) If di ^ 2 then Dt 0 A decomposes into two irreducible

components. One is the identity; the other will be denoted by DiΛ.
(b) If i Φ j then Di (g) Ώά — Difj is irreducible.
(c) Di,3 and Dmtn are equivalent if and only if i = m and j = n.
(a) and (b) follow directly from the remarks of Helgason [4,

p. 788]. He notes that, for ^ ^ 2 , A Θ A decomposes into two
irreducible components and that, for i Φ i, A 0 A i s irreducible.
But the number of components of A 0 D3 is

which is also the number of components of Di 0 Dj. Since D{ is
irreducible the identity appears once as a component of Di® Di.

Now Tr(Ditj(V)) = Tr(Di(V))Tr(D3(V)) - δid where δ^ is the
Kronecker delta. It follows that if Difj and Dm,n are equivalent then

1 = \τrφaV))Tr{DmιΛ(V))dV

This is possible only if the second integral is not zero. But, by the
in variance of dV, this implies i — j and m — n or i — m and j = n.
Now if i = i, m = n, but i Φ m then (by (b)) A ® -Dm = D̂  0 5,, is
irreducible, and the second integral is one. But since di:jδmn = 1 this
is not possible. Thus i — m and i = ^ so that (c) is proved.

Since Tr(AiDi(V)) and Tr(A3D3(V)) lie in the invariant subspaces
generated by 2V(A(F)) and Tr(D3(V)) it follows from (a), (b) and
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(1.1) that

(1.2) ^

where diiά is the degree of Difj and Aitj is a d ^ x d ^ matrix.
If M is a subset of ® of positive measure then its characteristic

function, φM, has an expansion in L2(@)

(1.3) φM(V) = Σ d ί . i Γr(£ ί i i A,i(F)) + Σ d(α)Γr(BβZ>β(TO)

the second sum is over the representations of © which are not
equivalent to any Ditj.

From the Schur-Peter-Weyl formula we obtain

Given ε > 0 it follows from the above and (c) that there is a finite
set / , c ί such that

(1.4) | Σ β d«.yΓr(5 i . ί 5ά)<6 1 .

Suppose F( V) = Σ<*/„ dt Tr(A,D{( V)) e L\<&). From

(1.2) and (1.3) it follows that

ί \F(V)\tdV = Σ,di

(1.5) te/°

Σ
0

From (1.2) and Holder's inequality it follows that the integrals in the
second sum of (1.5) are bounded by

I Tr{BjtiDUV)) |

But by [2, Lemma 1] there is a finite constant I? such that

Hence the second summand of (1.5) is majorized by

B{ Σ [di,jTr(B},iBr,i)diTr(AiAf)djTr(AjAmm

^B\Σ4

which by (1.4) is bounded by
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Be^\F(V)\2dV .

Hence we have

K \F(V)\2dV - \ \F(V)\*dV m(M) ^ Bε[ \F(V)\2dV

which proves the lemma.
We now introduce some terminology which will be used in the

rest of the paper and state the result of Hewitt and Edwards which
will be used in the proof of the main theorem. Let G be an arbitrary-
compact group and Γ the set of equivalence classes of irreducible
unitary representations of G. If jeΓ we let Dy be a representative
of the class 7 and dy be the degree of 7. For feL\G) we let

f(Dy) = \
JO
\ f ( ) y ( )
JO

so that the Fourier series of / is written as ΣiyerdyTr(f(Dy)Dy(x)).

LEMMA 2. (Edwards and Hewitt). Let G be a compact group
and Y — {7j }£=i be a countable subset of Γ. Let Dό be a representative
of the class 7j. Then there exist complex numbers ocm,n,ό such that

( i ) for fixed m and n, am,n>j = 0 except for finitely many fs.
(ii) if fe L\G) and f(Dy) = 0 for 7 S Γ

lim lim Σ a^jTrifiD^Djix)) = f(x)
m n j

almost everywhere with respect to the Haar measure on G.

Proof. [1, 5.11, p. 216 and 3.5, p. 199], It should be noted that
the lemma implies that limm lim% am,n>j = 1 for each j .

2* The main theorem* We consider now the formal Fourier
series

(2.1) ZdyTr(UyAyDy(x))

and we prove:

THEOREM 3. Suppose that there exists a set M of positive Haar
measure in ® = JJyer ^/(dy) such that (2.1) is the Fourier series of
an integrable function for {Uy} = UeM, then ^dyTr{AyA^) < 00.

Proof. Since for some choice of {Uy} (2.1) represents a function
of L\G), Ay = 0 except for 7 belonging to a countable set Y = {7,-}.
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Therefore we can rewrite (2.1) as ΣΛ djTriUjA^Djix)). We define
for UeM and x e (?, f(x, U) = X djTriUjAjD^x)). Then for every

UeM, \ \f(x,U)\dx< oo. Therefore there exists a set of positive

measure M1aM and a number 2? such that 1 | /(#, Z7) | dx < B for

Ue Mr. Thus ί ί I f(x, U) j c£xdί7 < c>o and /($, J7) is an integrable

function on G x I 1 #

Let am,ntS be as in Lemma 2. Define

and

n

Lemma 2 implies that fm(x, U) exists almost everywhere in G x M
and limw/Λ(a?, U) = /(x, ί/) almost everywhere in G x MΊ. Now there
exists a set of positive measure PaG x Mι such that

jsup I f(x, U) I < oo, lim sup | fm,n(x, U) - fjx, U) \ •=

and

lim sup \fm(x,U)- f(x,U)\ = 0.

Indeed as /(x, U) is integrable, it is bounded on a subset of positive
measure of G x Mlt Furthermore, given δ > 0, Egoroff ?s theorem
[2, p. 88] implies that limΛ fm,n(x, U) — fm(x,U) uniformly for (x,U)
outside a set of measure less that δ/2n and limn fn(x, U) = /(x, U)
uniformly outside a set of measure δ. As δ can be arbitrarily small
we can find a set P of positive measure satisfying our requirements.

Now let C be such that | fm(x, U) \ ̂  C and |/(α?, U)\^C for
(a?, Z7) e P. We let <xmi = lim% αm > n > i and we define a set of positive
integers nm such that for i = 1, » ,m, |^w,% m > i — ocmj\ < (1/m) and
I Λ(a, ί7) - Λ,»m(a?, f/) l < 1 for (α?, J7) e P. We let βmj = α^^.y and
&»(&, Ê ) - /*.•.(«, U). Then lim/9mi - 1 for each j and | gm(x, U) \ ^

'C + 1 = C". We notice that ^m(α;, U) = ^dβ^TriU^D^x)) where
the sum only extends over a finite number of i 's . Since the measure
of P is positive, Fubini's theorem implies that for some x e G the set
Px = {?7e © : (x, U) e P} has positive measure. We fix such an x and
consider the functions gm(x, U) as functions defined on ©.

With reference to the subset Px of © and ε = 1 we can find a
finite subset FaΓ which satisfies the conclusion of Lemma 1. If
we let gXx,U) = ̂ ^dβ^TriU^D^x)) then |Λ(α, J7)| S C" for
Ue Px and an application of Lemma 1 yields
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ds I βmi I2 Tr(AsAf) = βmj |

Taking limits as m

+ Σ dj I /STOί

yΣ.

22 Σ

one finds that

Σ

yA?) + 2(C"f

?) + 2{C"Y <

COROLLARY 4. // £λβ formal Fourier series (2.1) satisfies the
hypothesis of Theorem 3, £feβ% for almost every U e® it is the
Fourier series of a function in ΓϊP<oo LP(G).

Proof. Since Y.d^riA^) < oo, [2, Th. 4] implies that

and N = Uexcept for U e Np with raCN,) - 0. Letting p = 1,2,
one has m{N) — 0 and the conclusion follows.

REMARK. TO obtain the conclusion of Theorem 3 it is enough to
assume that (2.1) represents a Fourier-Stieltjes series for U e M,
m(M) > 0. Indeed by Theorem 3, one has under this hypothesis a
bounded regular measure μ, with μ(Dy) = UyAyj satisfying f*μeU(G)
for every f£&{G). The theorem of Helgason [5, Th. A] implies then
that dμ = fdx with fe L2(G).
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