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NONCONSTANT LOCALLY RECURRENT FUNCTIONS

DoNaLD C. BENSON

The purpose of this paper is to develop a new method of
using the Baire Category Theorem to obtain counterexamples
in analysis. The method is used to show that a certain class
of nonconstant locally recurrent functions is of second category
in a suitable metric space of continuous functions, In §1 an
explicit example is given of a nonconstant locally recurrent
function. This example is included because it clarifies the
category argument in §4.

1. A simple example of a nonconstant locally recurrent
function.

DEFINITION 1. A real-valued continuous function f of a real
variable is said to be locally recurrent if for any x in its domain of
definition and any neighborhood N of z, there exists y = 2 in N such
that f(x) = f().

K. A. Bush [2] has given an example of a nonconstant locally
recurrent function. The author believes that the example given below
is simpler.

A sequence {f,}r., of functions on [0,1] will be defined. These
functions are continuous and piecewise linear. Further, £, is linear
in any interval of the form [n/9™, (n + 1)/9"] where n and m are non-
negative integers such that 0 <n < 9”. Thus the function f, is
described completely if we give the values of f,.(n/9™), (0 < n < 9™).
These functions will be defined inductively. We start with f(x) = «.
Now suppose f; is defined for some k. We define f,., as follows:

(a) fenaBm/9*) = fi.(3m/[9*+),0 = 3m = 9+,

(b)) fin(Bm + 1)/9*) = fi((3m + 3)/9**),0 = 3m + 1,3m + 3 =
9k+t |

(¢) fin((Bm + 2)/95) = F£,(3m/9*), 0 < 3m, 3m + 2 < 9*+'.

The figure shows a portion of the graphs of f, and fi...

An important feature of these functions is the relation f,(n/9%) =
fi(n/9%) for l=Fk and 0 <n =< 9*. Also notice that on any interval
of the form [n/9, (n + 1)/9%], the values of f,,, m = k must lie between
fe(n/9%) and f.((n + 1)/9%). It is not hard to see that the f, converge
uniformly and thus the limit function f(x) = lim,_., f,(¢) is continuous.
It is obviously locally recurrent at points of the form n»/9*. That f
is locally recurrent at any point x in [0, 1] follows from an application
of the intermediate value theorem for continuous functions. In fact,
for any £ = 0,2 must lie in an interval of the form I = [3m/9*,
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FIGURE

(3m + 3)/9%], an interval of length 3/9*., We have f((3m + 1)/9%) =
SABm + 3)/9%) = m, and f((8m + 2)/9%) = f(Bm/9*) = m,. Also, either
SUD.e; f(¥) = m,and inf ¢, () = m,, or SUP,e; f(¥) = M, and inf,e; f(®) =
m,. The intermediate value theorem shows that every value of the
function in I, except m, and m,, must occur at least three times in
I. Of course, m, and m, occur at least twice.

2. A class of complete metric spaces. In this section certain
abstract tools will be developed for the purpose of showing the ex-
istence of various functions with pathological properties. Using these
tools one may show that the set of functions with a certain pathology,
for example, the pathology of the function of the previous section, is
of the second category in a suitable complete metric space. An early
result of this type was obtained by Banach [1] and Mazurkiewicz [3]
who showed that the nowhere differentiable functions are of second
category in the space of continuous funections with the uniform metric.
The space and the metric considered here will be different.

Let & be the set of all functions which map a set T into a set
S. We require that T is the union of nonempty, disjoint subsets T3,
©1=1,2,..-.., We provide # with a metric d as follows. If f and
g belong to &, we define

a(f, 9)=1/k

where k is the smallest integer such that f(x) = g(z) for some 2 in
T.. If f(x) =g(x) for all xc T, we put d(f,g) =0. It is easy to
see that d is a metric.

Let & be the set of functions which, for some positive integer
k, maps %, T; into S. Further, let us put & * =9 U Z.

DEFINITION 2. A subset 5% of & * is sald to be hereditary if
f belongs to 57 if and only if every restriction of f which is in & *
also belongs to 5. (A function g is a restriction of f if the domain
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of definition of g is a proper subset of the domain of definition of f
and if f(z)=g(x) for any z in the domain of definition of g.)

DEFINITION 3. A subset o7 of 52 (57 < & *) is said to be
absorbing with respect to 57 if the following two conditions hold.

1. If ge .o and ¢ is a restriction of fe 5% then fe .

2. For any ge & N 5% there exists fin & N .~ such that g¢
is a restriction of f.

THEOREM 1. Let 57 be a hereditary subset of & *. Then
SN F 1s complete with respect to the metric d.

Proof. Let {f,}7, be a Cauchy sequence in 52 N .#. Then f,(x)
is constant for all sufficiently large values of n. This constant value
will be denoted f(x). Thus we have lim,_. f.(x) = f(x) for all « in
T. It remains to show fe 5% In fact, any restriction g of f(ge & *)
is also the restriction of some f,; and since each f, belongs to 2
and since 57 is hereditary, we have that g belongs to 5#°. Again,
since 57 is hereditary, and since an arbitrary restriction in & * of
fis in 2% it follows that f belongs to =~

THEOREM 2. Let .7 be absorbing with respect to a hereditary
set 57 Then (7 — 7)) N F 1is nowhere dense in S .F with
respect to the metric d.

Proof. Let f be an arbitrary element of 52 N .&#. We shall
show that, given any positive integer k, there exists g in % N &
and a positive integer I such that

(1) {thesZnNF :dh, f) <1k} D{hesZ NF :d(h, g) <1/}
and
(2) {hesZ N 1dh,g) <lllc v nF.

This will show that (5 — &) N &% is nowhere dense in 22 N Z.

In fact, let f, be the restriction of f to the set Y%z} 7;. Because
7 is absorbing, there exists 4, in & N .o such that f, is a restric-
tion of h;. Let the domain of definition of h, be U}-, T;. Because
.7 is absorbing, %, can be extended to 4., on N5 Ti(h,+; € .7), and
we proceed inductively to define the successive extensions h, ¢ .
k=101,1+1,..--. The totality of these extensions defines a function
g defined on all of T. Since h,c . C 5% and 57 is hereditary, g
belongs to 5#°, and therefore also to . since .o~ is absorbing. The
function ¢ and the integer ! have the properties required in (1) and (2).
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3. A lemma uniformly continuous functions. The following
well-known result is needed later. The proof is routine and will be
omitted.

LEMMA 1. Suppose that the real function f is defined on a set
S of real numbers and is uniformly continuous there. Then f can
be extended in exactly ome way to a umiformly continuous function
on the closure of S.

4. Application of methods of §2 to nonconstant locally
recurrent functions. Let 7T, consist of all rational numbers of the
form »/9"~* where » and ¢ are nonnegative integers such that 0 <
n <97 4>0, and n is not divisible by 9. Let T = Uz, Ti. Let
S be the set of all real numbers, and .&# the set of real valued
functions on 7. As in §2, & consists of all real functions defined
on sets UL, T, and & * = 5 U Z.

Let 27 consist of elements f of & * which satisfy the following
conditions:

Condition 1. Suppose the domain of definition of f contains 7/3*
and (r + 1)/3*. Let

(3) m = min (f(r/3"), f((r + 1)/3%))
and
(4) M = max (f(r/3%), f((r + 1)/3%) .

Then M # m and for all z in the domain of definition of f such that
r8F < x < (r 4+ 1)/3* we have m < f(x) < M.

Condition 2. If the domain of definition of f contains »/3* and
(r + 1)/3%, then
Lf(r[3") — fl(r + 1)/39) | < 3**.

Let .oz, (n = 0,1, -.-) be the subset of &7 consisting of functions
f which satisfy, in addition to the foregoing two conditions, the
following:

Condition 3. There exists 7 = n such that T, belongs to the
domain of definition of f, and for any » such that 0 < 3r < 9" we
have

(6) a. f3r/97) = f(@3r + 2)/97)
(7) b. ABr + 1)/97) = f(Br + 3)/9).
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THEOREM 3. 57 is hereditary, and for each m (m=0,1,..+)
57, 18 absorbing.

Proof. It is easy to verify that 57 is hereditary. The essential
thing is that Conditions 1 and 2 involve only universal quantifiers,
and no existential quantifiers. If there Conditions hold for all points
in the domain of f, and if g is a restriction of f, then they also hold,
a fortiori, for all points in the domain of g, because the latter set
is a subset of the former.

Now we shall show that .97 is absorbing. It is clear that part
1 of Definition 3 is satisfied. To show part 2, suppose g€ & N &
Let the domain of definition of g be U, T: = Ry. Let us define f
on U T; so that if ze Ry, then flx) = g(x).

We define f at points of the form (97 + 3)/9% and (9» + 6)/9" by
linear interpolation, i.e.,

AOr + 3)/9%) = & f(r[9%) + ; A(r + 1)/9")
S(Or + 6)/9%) = § f(r/97) + & f((r + 1)/9"7).

On the remaining points of Ty,;, f is now uniquely determined by
imposing requirements a and b above for .o, with n replaced by N + 1:

S@Br/9%) = f((3r + 2)/97)
A(Br + 1)/9%) = f((3r + 3)/9).

The author hopes that the geometry of this construction is made clear
by the figure. The example of §1 is based on this construction.
(However, the functions illustrated in the figure are defined for all «
in [0, 1] whereas the function f above is defined only at finitely many
points.)

It is rather clear from the construction that f satisfies the con-
dition on maxima and minima in Condition 1 above. We now show
that Condition 2 holds. We have given g 57 and hence the condi-
tion holds for pairs of points =, (r + 1)/3* in case k is less than
2N—1. We must show that the condition holds for pairs of points of
the type 37/9%,3r 4+ 3/9”, and then for pairs of points of the type
s/9%, (s + 1)/9%. For a pair of the former type we have

| f(37/9%) — ABr + 3)/9) |
= | A[3r/91/9"") — f([37/9]/9") |
§ 3—19—(n—k)/2 < (3/9N)1/2 .

For a pair of the latter type we have
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| f(s/9%) — f((s + 1)/9) |
= [ f(3[s1/3]/9") — f(3([s/3] + 1)/9%) |
= ¥ [ Als/91/97) — fs/9] + 1)/9"7) |

< 8-19-W-ni2 — /9N

Now, from Theorem 2, (5 — .%,)N & 1is nowhere dense in
& N ., for each m, with respect to the metric d. It follows that
(& — Uee %) N is of the first category, and thus by the Cate-
gory Theorem we have the following.

THEOREM 4. The set of functions f on T such that for any n
there exist 1 = m such that Condition 3 is satisfied is of the second
category with respect to the metric d in the space of functions of
T which satisfy Conditions 1 and 2.

Now we wish to extend our functions, using Lemma 1, to func-
tions defined on the whole interval [0, 1].

THEOREM 5. The functions in 57 N Z are uniformly continuous.
In fact, they satisfy a Holder condition with the exponent 1/2.

Proof. Let x and y (x < y) be arbitrary points in T. The interval
[#,y] can be expressed uniquely as a countable union of intervals.
I'=[a,, b,] disjoint except possibly for end points, such that the
following conditions are satisfied.

1. Each I, is of the form [»/3F, (» + 1)/3].

2. No I, is a subset of an interval J of the above form such
that J is a subset of [z, ¥].

It is clear that for any k, there can be among the I, at most
four intervals of length 1/3*, Let L, denote the length of I,. We
have for any f in 57 N &,

| fw) — f@)| < S| Aba) — flan) |
<L < 4§;(§/1”;)’
0T
V3 1

Now by Lemma 1 the functions in 52 N.&# can be extended to all
of [0,1] in a unique way. Further, it is clear that these functions
satisfy a Holder condition with the exponent 1/2.

< W — )",

THEOREM 6. The continuous extensions of the funmctions in
(N 7)) N F  are nonconstant and everywhere locally recurrent.
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Proof. Let f be in (N .%) N .%# and let  be any point in
[0,1]. For any € > 0, « belongs to an interval of the form I = [3r/9%,
(37 + 1)/9%] of length less than ¢, such that

S@Br[9) = f(8r + 2)/9*)
and
A@Br + 1)/9%) = f((3r + 3)/9%) .

By the intermediate value theorem for continuous functions, there
exists y e I, x # y, such that f(z) = f(y). This proves local recurrence.
The functions are nonconstant because of Condition 1.

5. Other applications. It is hoped that the methods of §2
will be useful as a tool for the construction of various counterexamples.
The methods of §2 can be used in a routine way to give the

following results.

ProrosiTION 1. The set of real functions which are not convex
in any interval is of second category with respect to the metric d in
the space of monotone functions.

ProPosITION 2. The set of real functions f such that for any
interval I [0, 1] one has

lim sup £ = F@) _
z YyEI y — X

and

lim inf {& =A@ _ 4
z,yE€I ’y —
is of second category with respect to the metric d in the space of
functions which satisfy the Lipschitz condition | f(y) — f(x)| < [z — v
for all # and % in [0, 1].
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