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A TRANSPLANTATION THEOREM FOR
JACOBI COEFFICIENTS

RICHARD ASKEY

Let f(β) be integrable on (0, π) and define

S * / /9\α+(l/2)/ ft \β + (l/2)

o/WnβfP)(cos^)^Bin|-j ( c o s | - ) dθ

where P{

n

a'β)(x) is the Jacobi polynomial of degree n, order (a, 0)
and

ϊta,βi2 = ( ^ -f « + g + Win -f l)Γ(w + « + β + 1)

Then if α, β,γ,δ^ -1/2 we have

for l < p < o o , — 1 < σ < p — 1 whenever the right hand side
is finite.

From this result any norm inequality for Fourier coefficients
can be transplanted to give a corresponding norm inequality
for Fourier-Jacobi coefficients.

Let Pia'β)(x) be defined by (-1)»2 ^!(1 - x)a(l + x)βPla'β)(x) =
(d/dx)n{(l - x)n+a(l + x)*+β], α , / 3 > - l . The functions P
are orthogonal on (0, π) with respect to the measure

( β \2α+l / β V^ + l

s i n | ) ( c o s | )

π ί f ) \ 2 α + l / β \ 2/3+1

[P<^'(cos^)]2(sin|-) (COS-2-) dθ
o

= Γ(n + a + l)Γ(n + β + 1) = r,.^,.,
{2n + a + β + l)Γ(n + a + β + l)Γ(n + 1) l n J '

Observe that t(

n

a β) = A%1/2 + O(n~112) where A is a constant whose
numerical value is of no interest to us. For simplicity we set Bΰ'β{θ) =
K βPia β)(cos 0)[sin(^/2)]α+(I/2)[cos (θ/2)Y+ίm. The functions {RZβ(θ)}~=(1

form a complete orthonormal sequence of functions on (0, π). Also
Rζlβ -ιi\θ) = A cos nθ and i^ / 2 1/2(0) = A sin (n + l)θ.

If f(θ) e L^O, 7r) we define its Fourier-Jacobi coefficients by

( 2 ) \

JO

We define lVi° to be the space of sequences {an} such t h a t | | α n | | p f f f =

393
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y, I an \
p(n + 1Y is finite. Our main theorem follows.

n=0 J

THEOREM 1. Let a, β, 7, δ ^ - 1 / 2 and f(θ)eL1(09π). Let

and ar

n'
B be defined by (2). Then if 1 < p < 00, —1 < <7 < #> — 1

i / either \\al>β\\p,σ or \\ar

n**\\p,σ is finite so is the other and

( 3 ) A£\\a}?\\pJ\\al->\\9,.£A

where A is independent of f and thus of al>β and < > δ .

For a = β, 7 — δ this theorem was proved in [1]. The last sec-
tion of [1] gives two applications of this theorem. They can be carried
over word for word to Jacobi coefficients. If all of the formulas for
ultraspherical polynomials that were used in [1] were known for Jacobi
polynomials, the proof of Theorem 1 could be exactly the same as the
proof of the special case of it in [1]. While it is undoubtedly true
that the relevant facts stated in [1] do generalize they are at present
unknown. An example of such a fact is the following. Consider
Pla'β)(x)Pm>β)(x). This is a polynomial of degree n + m and so

Σ h i ( x ) .
k=0

If a ^ β the conjecture is that ak ^ 0. This is true for a = β and
was used in [l]. The limiting result α-^co is also true and is stated
in [4] as a result for Laguerre polynomials. For a = β + 1 it was
proven in [6].

2. In this section we give various results that we need to prove
Theorem 1.

For 0 < θ < ττ/2, a ^ —1/2, we have the following two inequalities

( 4 ) I P> 8 (cos θ) I - O(n"),

( 5 )
/ Ώ \ai-{l/2) / β \β + (l/2)

t*S (sin | - j (cos | - J P^ (cos θ) A .

See [7, (7.32.6)]. In (5) the power of cos 0/2 can be changed at will
since cos θ/2 is bounded away from zero for 0 ^ θ <^ π/2.

( 6 ) A P(x) = λ(n + a + β
dx 2

See [7, (4.21.7)].
The asymptotic formula we need is an easy consequence of two

known results which we now state.
If a > - 1 , β real and 0 < θ ^ π - ε, ε > 0 , then
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(sin— \ ίcos —

( 7 )

N ( / s i

Γ(n + 1)
where N=n + (a + l3Jr l)/2 and

(θll2θ(n~312) n-1 £ Θ £ π - ε

~ \θa+20(na) 0 < θ < n~ι.

Ja(x) is the Bessel function of the first kind of order a. See [7, (8.
21.17)]. We also need a known asymptotic formula for Ja{%)

xll2Ja(x) = A cos (α? - aπ/2 - τr/4)[l + O(x~2)]

+ A sin (α? - ατr/2 - ττ4)[Aa?"1 + O(αr3)], a? --> oo .

See [7, (1.71.8)]. Combining (7), (8) and the asymptotic formula for
t%β we get

B;'β(θ) - A cos (Nθ - aπ/2 - ττ/4) + A sin (iW - ατr/2 - π/4)/(NΘ)

+ OίiV"1) + O(N~2Θ~2), 0 < c/n ^ ί ^ τr/2 .

Finally we need a simple estimate for an integral.

(10) \y i)
JN y

This follows on integrating by parts.

3* We assume that f(θ) is smooth enough, say C2 and vanishing
near 0 and π, so that the series ΣαJ?*>/3(#) converges uniformly on
[0, π]. These conditions are sufficient for an — O(w~2)f integrate by
parts twice, and | R%'β{d) \ ̂  A. We remove this condition after the
following argument.

α£ * - [f(θ)Rl-\θ)dθ - ±alΛπR^(θ)Rrn\0)dθ = £aϊ?R(k, n).
Jθ fc=0 JO fc=0

Since P^ί-a ; ) = (-l)nP^(x)9 [7, (4.1. 3)] it is sufficient to estimate

S ff/2

R%>β(θ)Ri>h(θ)dθ. Also because we have made no assump-
o

tions about the relationships among a, β, 7, δ it is sufficient to consider
the case k ^ n. We do this in two stages, n <£ k g 2n and A: ̂  2w.
For n ^ k ^2n the method is the same as in [1]. We repeat it here
for convenience and because the other estimate is handled by a refine-
ment of this argument.
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S jr/2 fl/fc fjr/2

= + .
0 JO Jl/Λ

The first integral is Oik-1) since i2£^(0) - 0(1), see (5). In the second
integral we use (9),

Rϊ\θ) = A cos (iW - ^ - - | ) + A sin (NΘ - ψ

+ OίiV-1) + O(N~2Θ-2)

to get

. n) =
i/* V 2 4 / V 2 4

Γ
i/* V 2 4 / V 2

+ Γcosf^ )*m(NΘ )
N Ji/fc V 2 4 / V 2 4/ θ

The first integral is A/(K - N) + OiK-1), the second is

the third is (A/N) log N/(K — N) + OiK*1) by a simple computation.
The details are in [1], The one time this argument breaks down is
when K= N. In this case S(k, n) = 0(1) by (5).

Now we consider the case k > 2n. This time we need not be so
careful, i.e., all our estimates may be 0 estimates, but the details turn
out to be harder than in the above case. This probably isn't neces-
sary but we have not found a simple proof of the following estimates.
There is one case, y ~ a + 2, β = 3, in which it is possible to give
easy estimates as we will show later. But this is a very singular
case.

S l/fc ΓJΓ/2

+ I . The first integral is 0{K~ι) by (5).
0 Jl/fc

Next we show that in the second integral we may replace Rκ{θ) by
cos {Kθ — (aπ/2) — (ττ/4)}. Using (9) we see it is sufficient to show that

ΛJI/2 ΓJC/2 / a π π \ f Λ\r+( l/2)/ β \δ+d/2)
^— sinlKΘ - — - iL)p^>(cos#)(sin —) (cos—) θ^dθ
K hik V 2 4/ \ 2/ V 2/

Integrating by parts and estimating we have
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n11/2 fJr/2

K* iilk
5^P<^'(cos^)(sin|-)r+(1/2)(cos|)δ+ίl/2)^dcos(^ - ψ - | )

\ 1̂ /2 Γ ^3/2 ( JΓ/2 f fγπ 7Γ\
- Pir'δ)(cos θ)θr~{m ) + 0 —— I cos (Kθ — — - — )

/ li/* L if2 Ji/* V 2 4/

( /9\r + (3/2)/ Λ \δ+(3/2)

sin—j ίcos—J (9-
2

r~(i/2)

Λ \ δ+(3/2)

COS — θ~ιC

2/

+ similar terms.

The integrated term is 0{K~ι) by (5). The second integral is

+ \ . Using (4) in \
Ilk Jl/n ^ Jl/*

we have the bound (nm/K*) ['* nϊ+W+wdθ = O(K~ι). In Γ'' we use
Jl/fe Jl/n

(9) to get

cos (KΘ-SE.- *.
V 2 2K2 inn \ 2 2 . V 2 4/

+ ^ ^ J ϋ + OίiV-1) + O(N-2Θ-2)
Jyθ

An

θ~ιdθ

» + Oίif-1)

+ terms similar to the first.

Changing variables we get I (cos y/y)dy. Since k > 2n we have
J(Λ-n)/«

(fc — n)/n ^ 1. Using (10) we get an estimate for the first term of the
form (An/K2){n/(K — n)} — OiK"1). Thus it is sufficient to consider

S τr/2 / fYΊΓ 7Γ\ f / 9 V + ( / ) / β \+(/)

cos LK0 - £ E - iLjp(r,δ ) ( c o s ^ ) / s i n M ^ c o s v_^j dθ m

S
l/» fJΓ/2

+ 1 . We treat
Ilk JI/Λ

the first of these first. Integrating by parts and estimating we have
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ilk v ' K JiM V 2

•(sin— (cos — ) \dθ.
V 2/ V 2/ J

Using (6) and (4) we see that this integral is
In our one remaining integral we may use (9). However to get

an estimate of the form O(K~ι) we must first integrate by parts.
Then we get

+ 1 \ Γ'/ s i n ίKΘ_aπ__ * W > ( c o β θ)
2ϋΓ V 2 / JIM V 2 4

\δ+(3/2)
• I ί COR —sin — ) (cos —

2 / V 2 y

+ Ύ + δ + 1]+ 4 τ l w + Ύ + δ + 1] Γ s inf^ ^ 4
it Ji/n V 2 4

/ Λ\Γ+(8/2)/ /? \δ+(8/2)

•(sin^-) (cos-2.) ^ + O(iΓ-1) (by (5)).

For the first integral we have the estimate
θ\l- Γ sin (KΘ-™L- 4-YCOS (NO-™-- £

LKiiin V 2 4 / L V 2 4

UL-lλ + OίΛΓ-1) +

dθ + o

K Ji/» ^ J

by (9) and the fact that (1/sin θ) — (1/θ) is bounded. As above this
leads to the estimate O(n/K2) + 0{K~λ) = 0{K~λ).

A simple computation shows that ί£»δ = Aίϊ±ϊ>δ+1[l + O(/^~1)] so the
second integral may also be estimated by using (9). The estimate is

U Γ sin
Khι

+ : ^ J ίL + OiN-1) +
JS/u

^- Γ si
K il/n

sin ( Z - ΛΓ)̂  dθ) + Of «- Γ/2 C O S ^ - ^ dθ
I \K Nθ

+ similar terms + 0{K~ι)
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by the same type of arguments that have been used often above.
Combining all of the above estimates we see that

(11)

In *=o
A 2 l

+ — 1
n *=c»

j of

I

|αί "

'"log

L ]

*-TΪ/«] K - N

N
K-N

αί -log
K- N

As in [1] all of the terms on the right are bounded operators in I*'",
K j > < ° o , - l < σ < p - l . Thus || ar/ ||,,β S A || aaj ||p,β which is (3).

Let g(θ) e C2 and vanish near 0 and π and let f(θ) e L](0, π).
Define their Fourier-Jacobi coefficients, b%>β and al'β respectively, by
(2). Then

Σ& 'α = \'f(θ)g(θ)dθ = Σδ» %« '3
« = 0 JO w=0

and thus {with (1/p) + (1/q) = 1}

Γ «» Πi/p

I! oj 41!,,. = Σ I αί * \'(n + ! ) Ί = S U P Σ <•%•* = sup X α;-^:'"
Lw=o J

by (3). Here the sup is taken over the sequences br

n'
δ with

Σ
This completes the proof of Theorem 1.
There is a simple substitute in I1 which follows easily from

(11).

v

THEOREM 2. Let a, β, 7, δ be as in Theorem 1 and assume
aaj I log (n + 2) < 00. Then Σ 1 <' δ I < °° where

arnh = ['f(θ)Rl-*(θ) dθ

The inequalities that are needed to prove Theorem 2 from (11)
are in [3], where this result was proven for a = β = —1/2, 7 = δ = 1/2.
To be pedantic here we must be careful for unless a = —1/2, Rl"'β)(0) = 0
and so /(0) - Σ*<tβRZtβ(θ) m u s t vanish at 0 - 0. Thus if a = -1/2
we must assume /(0) = 0 and similarly for /9 = —1/2, θ = TΓ. Theorem
2 is the one place where the above proof is an improvement over the
proof in [1] (even in the case a — β, 7 — δ) for using the proof in [1] we
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must add higher powers to the logarithm if a and 7 are far apart. Even
this can be done away with if we use Theorem 4 which follows in the
next section. However this problem would again arise if one tried to
prove Theorem 2 for Jacobi (not ultraspherical) coefficients by the
method in [1] by say holding β fixed first and then varying it with
fixed a.

4. We conclude this paper with two simple theorems that hold
in I1. Since the details are easier we first give a theorem for Laguerre
coefficients and then finally we give the corresponding theorem for
Jacobi coefficients.

The Laguerre polynomial L%(x) is defined by

— γ

These functions satisfy

(12) ^L«n(x)LUx)xae-*dx = Γ < * + ^ + 1 } δΛtU , a > - 1

Let f(x)eL\09 00) and define its Fourier-Laguerre coefficient by

(13) aa

n = ti [° f(x)La

n(x)xal2e~xl2dx .
Jo

where

= Γ Γ(n + 1) T/2

n LΓ(n + a + l)A "

We need one more fact about these functions.

(14) L«n+\x) = ± L%x) .

From this we see that

(15) L:(X) - L:+\X) - LI±\(X) .

THEOREM 3. Let f(x) e L\0, 00) and define aa

ni a%+2 by (13). Then
ifa>0,

(16) A ^ [Σ \< l i^/ tΣ I < + 2 \pYlp £ ^

for 1 ^ p < 00. If -1 < a < 0 then (16) holds for 2/(2 + a) < p <
-2/α.

Using (12) and (13) we see that
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a«+2 = ta

n

+2 [° f(x)L«+2(x)x{al2)+1e-χl2dx
J

Σ %a% [ La

k(x)L«+2(x)xa+1e~xdx
=Q JO

= ί ί + a Σ tfal [° La

k(x)L«+2(x)xa+1e-χdx .
Λ=0 JO

Then using (14) and (15) we have

L?+\x)xa+1e-χdx
o

+1(*) - LίίK^fΣ £5+1(s)

Li=o

Jo

= ί:+ 1 ίf[ίf+ 1]-1α,β + « + 1 Σ ίίαgKίr1)-1 - (ί^ίϊ)-2]

Thus

I αj + a I ̂  A i αo

α I w-t^ϊ-1 + A Σ n-^-'k-^k* \ aa

k \ + A | < +

^ A I of I + A Σ I α* I (k/nyi'n-1 + A \ aa

n+11 .

Similarly one can show that

\ai\£A\ altl I + A Σ I α;+> |
k

Theorem 3 then follows from problem 346 in [5], Actually there is
one application of Theorem 3 and surprisingly it is for a negative.
In a paper which will appear, Wainger and I prove the following
theorem.

THEOREM A. Let a ^ 0, feLl(0, °o) and define

aa

n = ί~ f(x)ta

nL
a

n(x)xa'2e~xl2dx .
Jo

Let t(x) be a bounded function which is of bounded variation on

(0, oo), with Γ | dt(x) I ^ C. Define
Jo

Tal = [° t(x)f(x)ta

nL
a

n(x)xal2e~xl2dx .
Jo

Then this operator is bounded in lp, 4/3 < p < 4, i.e.
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< \pYlp ^
where A is independent of f(x) and of t(x).

We used asymptotic estimates of Erdelyi which have only been
proven for a Ξ> 0. See [2] where the dual result is proven. We can
now extend this result to a ^ — 1/2 by using Theorem 3. Similar
applications are given in [1] and we will not repeat the details here.

It would be interesting to extend Theorem 3 to get a theorem
which corresponds to Theorem 1. The estimates of Erdelyi are pro-
bably not sufficient to allow one to prove this but they can probably
be extended to give two terms plus an error and this might suffice.

The proof of the following theorem for Jacobi coefficients is ex-
actly the same as the proof of Theorem 3 but the coefficients are not
as simple so it looks more complicated.

THEOREM 4. Let f(θ) e L2(0, π) and define aaj, aa

n

+2>? by (2). Then
if a> -1/2, β > - 1 , and if either Σ I <'β I or Σ I <+2>/31 converges
so does the other and

with A independent of /.

dθ = Σαϊ [
k=0 JO

Σ aί'Πϊ P Γ P ^ ^cos θ)PίO!'^(cos θ)
A=0 JO

2α+3/ β \ 2/3 + 1

) ( ) "

s f a f
2ί;+2 ί X aϊ Hΐ'ί* [ Pi"^'β\x)P{a'β)(x)(l - x)a+1(l + x)βdx

* J - l

alΉΐ'βR(k, n).

To estimate R(k, n) we use the following.

k=0

Λ » + « + /8 + 2)
^ (2j + a + /3 +
SS

a + β
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(18) follows from (17) and (17) is (4. 5. 3) in [7]. Using (17) and (18)
we see that

R ( k n ) = y Γ(n + β + 1 )( 2 ^ + a + β + 2 ) A i + a + β + 2)
β + 3)Γ(i + β + l)(2fc + α + β

a

- (A; + /3)P^+1 '3)(a;)](l - xf+\l + xfdx.

For 1 g ί; g » we have

, Λ) - Πw + /S + 1) [(2k + a + β + 2)Γ(fc + a + /3 + 2)
Γ(n + a + β + 3) L Γ(k + β + l)(2k + a + β + 1)

. (fe + a + β + 1) (2fe + a + ft)Γ(fc + a + ff + l)(fe + β)
[tΐ+1'βΐ Γ(k + β)(2k + a + β

+ β + 1)

Γ
L

+ a + β + 3)(2fc + a + β + 1)

a + l)(fe + β)
Γ(fc + 1) Γ{k)

Γ(n + β + l)Γ(k + g + 1)

Γ(n + a + β + 2)(2k + a + β + 1)Γ(A + 1)

• [(A; + a + 1)(A; + a + β + 1) - k(k + β)]

For k = 0, R(k, n) = O(»-a-2) follows easily from (17), (18) and (1).
For k = n + 1, R(k, n) = O(n~x) also follows easily from these same
formulas. Thus we have

β ) a + mAn-1 Σ I aa

k'
β | (k/n)a

k

and

V I dn+2fβ I < A V I
n-0 ίi=O

follows easily by interchanging the order of summation. The other
inequality follows by the same argument.
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