
PACIFIC JOURNAL OF MATHEMATICS
Vol. 22, No. 1, 1967

THE EXTENSION OF BILINEAR FUNCTIONALS

T. L. HAYDEN

Using the relationship between biϋnear functional and
linear operators we obtain some theorems on the extension of
bilinear f unctionals. To extend bilinear f isnctionals in Hubert
Spaces a special constructional process is given which is a
generalization of the usual inner product. This allows the
construction of bilinear functionals with special properties.
In particular it allows a generalization of the Lax-Milgram
Theorem. We also extend the Lax-Milgram Theorem to re-
flexive Banach Spaces.

In order to fix the terminology, let U and V be Banach Spaces
(real or complex), then by a bilinear functional we mean a function
F from U x V to the complex (or real) numbers such that F(u, v) is
linear on U for each fixed v e V and vice versa. The norm of a
bounded bilinear functional F, denoted by Hi7"!!, is defined as:

| | . F | | = inf {K> 0: \F(u,v)\ £ K\\u\\\\v\\ for all u e U, v e V) .

Hence a bounded bilinear functional is jointly continuous on U x V
in the product topology and we note that:

| | F | | = auv\F(x,y)\ = sup | F(α, y)\ ^ sup | F(x, y) | ^ || F\\ .
l l l l S l | | | | I l | | | | ! | l

If S and T are subspaces of U and V respectively and BQ is a
bounded bilinear functional on S x T, then we call B an extension of
BQ to U x V if B is a bounded bilinear functional on U x V such
that B0(s, t) = B(s, t) on S x T and || BQ \\ = \\ B | |. If such an extension
exists we shall say that Bo can be extended to U x V. Furthermore,
if each bounded bilinear functional on S x T can be extended to U x V
we will say that S and T have the bilinear extension property.

2* Some extension theorems*

THEOREM 1. Suppose U, V, W are normed linear spaces and S
and T are subsets of U and V respectively. A necessary and suf-
ficient condition to extend a bounded bilinear operator BQ from
S x T into W to a bounded bilinear operator B from (Span S) x
(Span T) into W is that there exists a constant c such that
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For each finite subset xl9 , xn e S and yu ,yme T and every
choice of scalars ak and β3.

The proof is similar to the proof of the linear case which is found
for example in [3, p. 127]. That one can extend bounded bilinear
functionals to the closure or completion of a space has a proof similar
to the linear case. For one such version for bilinear functionals see
[1, p. 105]. Unless it is specifically mentioned we will not assumed that
the subspaces in question in each theorem are necessarily closed. Hence
in each such theorem one should first extend to the closure and then
proceed with the proof.

Our next two theorems show the relation of extending bilinear
functionals and the extension of linear operators. One of the best
references to the problem of extending linear operators is Nachbin
[6]. (See also [5]). References and additional information to the
following facts may be found in [6].

We shall say that a Banach Space U has property E (the exten-
sion property of type oo in the terminology of [6]) if for any Banach
Space V, any closed subspace S of V, and any continuous linear
operator Fo from S into U, there exists a continuous linear extension
F of Fo to V with values in U and the same norm. The classical
Hahn-Banach theorem says U has property E if its dimension is one.
A Banach Space U has property E if and only if for any Banach
Space W containing U as a Banach subspace there is a projection of
norm one of W onto U.

Also the topological dual U* of a Banach Space U has property
E if and only if U is metrically isomorphic to a space L\μ) of all
real integrable functions with respect to a suitable positive measure
μ on a locally compact space [6, p. 345],

THEOREM 2. If U and V are Banach Spaces and S and T are
subspaces of U and V respectively such that T* (the topological dual
of T) and Z7* have property E, then each bounded bilinear func-
tional on S x T can be extended to U x V.

Proof. Let BQ be a bounded bilinear functional on S x T with
norm ||J?0|| If we f ixseS, then B(s, t) = Fs(t) is a bounded linear
functional on T, i.e. Fs(t)e Γ*. Let us denote the value of a linear
functional F at x by ζx, F*}. If Go is the map from S into T* such
that G0(s) = F8, then Go is a bounded linear operator from S into T*
and 11 Go 11 = 11 Bo \ \. The linearity of Go follows from the relation
<£, G0(s)y = B0(s, t) and the bilinearity of B, and

|| Go || = sup||G0(s)|| = sup |<ί, G0(s)> \ = sup | B0(s, t) \ = \\B0\\ .
l l l l ^ l l lίll^l l lίl l^l
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Since T* has property E we extend Go to a linear operator G on U
into T* with the same norm. Now let B(u, t) = <£, (?(%)>• for
(u, t) e U x T and it is easy to see that 5 is an extension of Bo to
U x T. Using a similar procedure for the spaces U* and T we obtain
the desired extension to U x V.

One natural way to try to extend bilinear functionals is to factor
through the bilinear functional on S x T into a linear functional on
the tensor product S 0 T. Now the bounded bilinear functionals on
S x T are isometric to the bounded linear functionals on S 0 T under
the greatest cross norm topology on S 0 T. (See Grothendieck,
Produits Tensoriels Topologiques Et Espaces Nucleaires, Memoirs of
A.M.S. No. 16, for related statements in topological vector spaces.)
Hence if we extend the linear functional on S 0 T to U 0 V we have
an extension of the bilinear functional on S x T to U x V. However,
Schatten [7, p. 57] has shown that the greatest cross norm topology
on Z7® V is not an extension of the greatest cross norm topology on
S 0 T in general. The next few theorems are closely related to those
obtained by Schatten in proving this result.

THEOREM 3. Suppose U and V are Banach Spaces with the
bilinear extension property on the subspaces S and T, then every
bounded linear operator from S into T* (T into S*) can be extended
to a linear operator from U into T* (V into T*) with the same
norm.

Proof. Suppose Fo is a bounded linear operator from S into T*.
Then there exists, as in the proof of Theorem 2, a bounded bilinear
functional J 5 0 o n S x T such that BQ(s, t) = <£, F0(s)> and || Bo || = || Fo ||.
Since S and T have the extension property we may extend Bo to a
bounded bilinear functional B on U x V, such that \\B\\ = \\ BQ\\. We
may restrict B to U x T and find an F such that B(u, t) — ζt, F(ujy
on U x T with H^H = | | F 0 | | and F restricted to S is Fo. Hence F
is the desired extension of Fo.

We also note that we could consider the set U x V and by a
similar process we have an extension of Fo to U but with final values
in V*.

THEOREM 4. Suppose in addition to the hypothesis of Theorem
3 that T* = S, then there is a projection of norm one of U onto S.

Proof. Let Fo be the identity operator from S into T*. As in
the proof of Theorem 3 associate Bo with FQ and | | i? 0 | | = 1. The ex-
tension then of FQ to F gives us a linear operator of norm one of U



102 T. L. HAYDEN

into T* or S which is the identity on S, i.e., F is a projection of
norm one.

THEOREM 5. Let S be a subspace of the Banach Space U, then
the existence of a projection of U on S of norm one implies that if
V is a Banach Space then every bounded bilinear form on S x V
can be extended to U x V.

Proof. Let Bo be a bounded linear operator on S x F, and let
P be a projection of U onto S with norm one. It is clear that
B(u, v) = B0(Pu, v) is the desired extension.

THEOREM 6. Suppose S is a subspace of the Banach Space U,
and that S is the topological dual of a Banach Space T, i.e. S — Γ*,
and that every bounded bilinear functional on S x T can be extended
to U x T, then if V is a Banach Space every bilinear functional on
S x V can be extended to U x V.

Proof. By Theorem 4 there is a projection of norm one of U
onto S and hence by Theorem 5 the result follows.

COROLLARY 1. If S is a subspace of Hilbert Space U then for
every Banach Space V and every bounded bilinear functional B on
S x V there is an extension to U x V.

COROLLARY 2. If U and V are Banach Spaces and S and T
are subspaces of U and V respectively and there exists a projection
of norm one of U on S and a projection of norm one of V on T
then every bounded bilinear functional on S x T can be extended to
U x V.

COROLLARY 3. A Banach Space U is a Hilbert Space if and
only if every bounded bilinear functional on S x S* can be extended
to U x S* for any two dimensional subspace S of U.

Proof. By Theorem 4 we have a projection of norm one on each
two dimensional subspace, which implies that U is a Hilbert Space.

Although Corollary 2 shows that bilinear functionals on subspaces
of Hilbert Spaces may always be extended, we repeat another
proof given in [2] whose explicit construction yields other results
immediately.

THEOREM 7. Suppose Su S2, — ,Sn are subspaces respectively of

the complex Hilbert Spaces Xu X2, , Xn and f(s1Js2y « ,sΛ) is a
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multilinear functional defined on X£=1Sfc with norm K. Then there
exists a multilinear functional F on Xt=1Xk with norm K such that
F is f on Xl=1Sk.

Proof. First we show that / can be extended to a function de-
fined on Xϊ=1 (Sk U {xjc}) for xk e Xk, k = 1, 2, , n. In fact, let
Xjc -L Sk, and define

h(a1x1 + sl9 - ,anxn + sn) = K]J ak\\ xk | | + f(sl9 , sn)
k=l

where au α2, •••,<&« are scalars and K is the norm of /. It is im-
mediate that the extension is multilinear, and we now show that the
norm is the same.

First we show by induction that

( Π II a>kXk II + Π II β * l l ) ^ Π (II a h x h II 2 + II 8h I I T 2 f o r n ^ 2 .

For n = 2 this is Cauchy's inequality. Suppose it is true for n — I — 1,
then

Π II akxk || + Π || sk | | ) ^ ( Π II akxk \\ + Π || sk\\)(\\ aιxι ||2 + || Sι \\ψ2

,fc=l fc=l / \ / c = l fc = l /

Hence

Π llα^fcll + Π \\sk\

k=i fc=i

(II % II2 + II sk ||2)1/2 = rf II tt + β* II .
k l

The remainder of the proof follows from a straightforward appli-
cation of Zorn's Lemma similar to that in the Hahn-Banach Theorem.

3. Corollaries* We will suppose in this section that U and V
are Hubert Spaces and S and T are subspaces of U and V respectively.
From the proof of Theorem 7 we obtain the following

COROLLARY 4. Suppose S c U and B is a bilinear functional on
S x S such that:

(i) I I?(s, t) I ^ -Kill 8 | | || 11| for each s, t in S and

(ii) ! B(s, s)\ ^ JBΓall s | |2 / o r βαc/^ s m S,

Then B may be extended to U x U such that (i) and (ii) hold on
U x U.
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One also can easily see that a bounded symmetric bilinear func-
tional on S x S (B(u, v) = B(v, u)) can be extended to a symmetric
bilinear functional on U x U. Furthermore a bounded sesquilinear
functional on S x T can be extended to U x V. One simply uses the
fact that the sesquilinear form on S x T is a bilinear form on S x Tf

where Tf is the so called complex conjugate of T.
The proofs of the following corollaries follow from the extension

theorem and since they are similar to the proofs in the linear case,
they will be omitted.

COROLLARY 5. If u Φ 0 and v Φ 0 are in U and V respectively
then there exists a bilinear functional B on U x V such that
B(u, v) = \\u\\ \\v\\ and \\B\\ = 1.

COROLLARY 6. Suppose xoe U and distance from x0 to S is dλ > 0
and yoeV such that the distance from y0 to T is d2 > 0. Then there
exists a bilinear functional B of norm one on U x V such that
B(s, t) = 0 for (s,t)eS x T and B{xQ, y0) = dxd2m

COROLLARY 7. Let EaU,Fc:V. A necessary and sufficient
condition that (x0, y0) e U x V to belong to (closure span E) x (closure
span F) is that B(xQ, y0) = 0 for every bounded linear functional
which vanishes on E x F.

The next corollary follows from Theorem 1 and the extension
theorem and indicates when one can solve infinite systems of equations
in bilinear functionals.

COROLLARY 8. Let M and N be indexing sets. Let {(ua, vβ);
(a, β) e M x N} c U x V and {Caβ; (a, β) e M x Njacomplex numbers.
A necessary and sufficient condition for the existence of a bounded
bilinear functional B on U x V such that

(i) B(ua, vβ) = Caβ for each (a, β)e M x N and

(ϋ) \\B\\£K
is that

daeβCaβ I ̂  Ki| Σ daua \\ \\ Σ eβvβ \\

hold for every finite subset ofMxN and every choice of scalars da

and ββ.

We note that if F and G are bounded linear functionals on S and
T respectively then the bilinear functional defined by B(s, t) = F(s)G(t)
is bounded on S x T and can obviously be extended. On the other
hand a nondegenerate bilinear functional on U x V can not be re-



THE EXTENSION OF BILINEAR FUNCTIONALS 105

presented in a form with the variables separated. In fact we have
the following

THEOREM 8. Suppose X and Y are normed linear spaces and
B is a bounded bilinear functional on X x Y such that B(x, y) — 0
for all y e Y implies that x is zero. Then B can not be factored as
B{x, y) = Σ?=i Fi(x)Gi(y) where Ft e X*, G, e Γ* for l^i£ n, and
n < dim X.

Proof. Suppose the conclusion is false. Let Kx = Kernal Fi9

1 ^ i rg n. Since K% is a maximal closed subspace of X, hence
dim f|?=i Ki Φ 0. But for x e Π?=i Ki9 B(x, y) = 0 for all yeY.

It is known that if there exists a nondegenerate bilinear func-
tional on U x V where U and V are finite dimensional then dim U =
dim V.

THEOREM 9. Suppose X and Y are normed linear spaces and
B is a nondegenerate bounded bilinear functional on X x Y. Then
dim X ^ dim F* and dim Y ^ dim X*.

Proof. Again as in the proof of Theorem 3 we associate a linear
operator A from X into Y* with the bilinear functional B. Since B
is nondegenerate this implies that A is one to one and the result
follows.

COROLLARY 9. // U and V are Hilbert Spaces and there exists
a nondegenerate bounded bilinear functional on U x V then dim U =
dim V where dim U and dim V may be either Hilbert Space dimen-
sion or Vector Space dimension.

4* An application* A variant of the F. Riesz representation,
the Lax-Milgram Theorem [4], is useful in proving the existence of
solutions of partial differential equations. Let ( , ) denote the inner
product in Hilbert Space.

THEOREM 10. (Lax-Milgram) Let U be a Hilbert Space and B a
bounded sesqui-linear functional on U x U such that there exists a
δ > 0 such that B(u, u) ̂  8\\ u ||2. Then there exists a unique bounded
linear operator T with a bounded inverse T~λ such that (u, v) —
B(u, Tv) when u,veU and \\ T\\ ̂  1/δ, \\ T~ι\\ ^ \\B\\.

LEMMA. If S is a subspace of a Hilbert Space U and B is a
bounded sesquilinear functional on S x S such that B(sys) Ξ> 3| |s | |2
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for some δ > 0, then B can be extended to U x U with the same
properties.

Proof. As in the proof of Theorem 5, let x ± S and define B on

(xU S) x (x U S) b y

B(ax + s,βx + t) = aβ\\B\\ \\x\\2 + B(s, t) .

As before we now observe that B is a sesqui-linear functional on

(xU S) x {x{J S) with norm | | J3 | | .

Now

B(ax + s, ax + s) = || B \\ \ a | 2 1 | x | |2 + B(s, s)

^δ(\\ax\\2+ \\s\\2)

An application of Zorn's Lemma completes the proof. We note that
no claim to the uniqueness of the extension is made.

This Lemma immediately gives us the following extension of the
Lax-Milgram Theorem.

THEOREM 11. Let S he a suhspace of the Hilhert Space U and
B a sesquilinear functional satisfying the hypothesis of the Lax-
Milgram Theorem. Then there is an extension of B to B on U x U
satisfying the hypothesis of Lax-Milgram Theorem and hence there
is an extension of the linear operator T to T from U onto U which
satisfies the conclusion of the Lax-Milgram Theorem.

We may also extend the Lax-Milgram Theorem in the following
direction.

THEOREM 12. Suppose U and V are Banach Spaces, V is re-
flexive, and that B is a bounded nondegenerate bilinear functional
on U x V. Then a necessary and sufficient condition that every
bounded linear functional F on V have a unique representation of
the form F(v) = B(uf v) for some fixed ue U is that there exists an
m > 0 such that for each ueU, sup|H,=11 B(u, v)\ Ξ> m\\u\\.

Proof. Suppose the representation holds, then B induces a linear
operator A from U into F * in the usual manner. Since B is nonde-
generate, A is one-to-one and | |A | | = | |£>||. Since every linear func-
tional in F * has this representation A must be onto. Hence A has
a bounded inverse A~ι. However, a necessary and sufficient condition
that A have a bounded inverse is that there exists an m > 0 such
t h a t \\A(u)\\ ^m\\u\\. But
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\\A(u) || = sup I <v, A(u)> | = sup | B{u, v) \ ,
IMI=i IM!=i

and it follows that the condition is necessary.
Now suppose that the condition is satisfied. Hence A is one-to-

one and onto R(A) which is closed in V*. If R(A) φV* let /* Φ
0$R(A). By the Hahn Banach Theorem there exists v** e F** such
that v**(/*) = 1 and v**(R(A)) = 0. Let ve V correspond to v**(V
is reflexive). Hence f*(v) = 1, and B(u, v) = A(u)(v) = 0 for all u
which implies that v = 0 since B is nondegenerate. This contradiction
shows R(A) =V*.

REMARKS. Note that || A~λ\\ <̂  1/m. Also if there exists an
m1 > 0 such that for each \\v\\ = 1, suplluli=11 B(u, v) | ^ mu then this
implies that the bilinear form is nondegenerate and hence the usual
Lax-Milgram Lemma is a special case.

There are some corollaries to the Lax-Milgram Theorem due to
Littman and Schechter [8, 568] which are useful in Elliptic Boundary
Value Problems. The above theorem gives the following generaliza-
tions.

COROLLARY. Suppose B is a bounded, nondegenerate, bilinear
functional on the Banach Spaces U and V, and that V is reflexive.
If there exists an m > 0 such that for each ue U, supiM|=i | B(u, v) \ >
m| |^ | | , then for each proper closed subspace K of V there exists a
ue U such that B(u, v) = 0 for each v in K.

COROLLARY. Suppose U and V are Banach Spaces, V is reflexive
and that B is a bounded bilinear functional on U x V. If there
exist closed subspaces S and T of U and V respectively such that B
satisfies the hypothesis of the preceding corollary on S x T, then
for each ue U, there is a unique u* in S such that B(u — u*, T) = 0.

Proof. For a fixed u, B(u, t) is a bounded linear functional t* on
T. Therefore there is a unique u* in S such that B(u*, t) = <jfc, £*)>
for all t in T. Hence B(u, t) = B{u*, t) for all t in T.

COROLLARY. Suppose the hypothesis of the preceding corollary
holds, then for each ue U there is a unique u* in S and a %** such
that B{u**, t) = 0 for all teT and u = u* + u*

The author appreciates the helpful suggestions of the referee and
in particular wishes to give credit to the referee for the brief proof
of Theorem 12.
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