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ADDITION THEOREMS FOR SETS OF INTEGERS

CaLvIN T. LoNG

Let C be a set of integers. Two subsets A and B of C
are said to be complementing subsets of C in case every ccC
is uniquely represented in the sum

C=A+B={|lx=a+b,acA,beB}.

In this paper we characterize all pairs A, B of complementing
subsets of

N.=1{0,1,---,n—1}

for every positive integer n and show some interesting con-
nections between these pairs and pairs of complementing sub-
sets of the set N of all nonnegative integers and the set I of
all integers. We also show that the number C(n) of comple-
menting subsets of N, is the same as the number of ordered
nontrivial factorizations of n and that

2C(n) = d% cd).

The structure of complementing pairs A and B has been studied
by de Bruijn [1], [2], [3] for the cases C = I and C = N and by A. M.
Vaidya [7] who reproduced a fundamental result of de Bruijn for the
latter case. In case C = N it is easy to see that AN B = {0} and
that 1e A U B. Moreover, if we agree that 1¢ A, it follows from the
work of de Bruijn, that, except in the trivial case A = N, B = {0},
A and B are infinite complementing subsets of N if and only if there
exists an infinite sequence of integers {m,};»; with m; = 2 for all 1,
such that A and B are the sets of all finite sums of the form

a = 3, Ty My,

(1)
b= 2 xzi+1Mzi+1

respectively where 0 < x, < m;,, for ¢ =0 and where M,=1 and
M; = Tli-,m; for + = 1. In the remaining case, when just one of A
and B is infinite, the same result holds except that the sequence {m,}
is of finite length » and that x, = 0. Similar results can also be
obtained in the case of complementing k-tuples of subsets of N for
k> 2.

The case C = I is much more difficult and, while sufficient condi-
tions are easily given, necessary and sufficient conditions that a pair
A, B be complementing subsets of I are not known. As an example
of sufficient conditions, we note that if A and B are as in (1) above,
then A and —B form a pair of complementing subsets of I. This is
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an immediate consequence of the fact that every integer n can be
represented uniquely in the form

(2) n =3 (1w,

with z; and M; as in (1). Incidentally, if B is finite, it is not difficult
to see that there exists an integer r, < 0 such that A and —B form

a pair of complementing subsets of the set
R={r|rel,r = r}.

And if A is finite, there exists an integer s, > 0 such that A and
— B are complementing subsets of the set

S={s|sel,s <sy}.

2. Complementing sets of order n. We now investigate the
structure of pairs A, B of complementing subsets of the set

an{O,l,---,n—l}

for integral values of » = 1. Such a pair of sets will be called com-
plementing sets of order #» and we will write (4, B) ~ N,.

In case » = 1, we have only the trivial pair A = B = {0}. For
n>1, it is easy to see that AN B = {0} and that 1e AU B. We
choose our notation so that 1€ A and, if m is the least positive element
in B, then we also have that N, C A and that none of m + 1, m + 2,
«+.-,2m — 1 appear in either A or B. If B does not contain positive
elements, we have only the trivial pair A = N,, B = {0}.

For the remainder of the paper, we restrict our attention to the
case # >1 and we use the notation mS to denote the set of all
multiples of elements of a set S by an integer m.

LEmMMA 1. Let A, B,C, and D be subsets of N, such that, for a
fized integer m = 2,
A=mC+ N, and B=mD.
Then (A, B) ~ N,, if and only if (C, D) ~ N, where p = 1.
Proof. Suppose first that (C, D) ~ N,. Then, for any seN,,,

there exist integers qe N, and re N,, such that s = mq + r. Since

(C, D) ~ N, there exist ceC and deD such that ¢ =¢ + d. But
then

s=mlc+d)y+r=mec+7r)+md=a-+>b

with @ = me + re A and b = md e B. Moreover, if this representation
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is not unique, there exist a’e 4,0’ eB,c'€C,d’ € D, and 7’ € N,, such
that

s=a +b = (mc + 1)+ md.
But then » = ' and
c+d=q=¢+d
and this violates the condition that ¢ be uniquely represented in the

sum C + D.

Conversely, suppose that (4, B) ~ N,,. Then, for seN,, there
exist a€ A,beB,ceC,de D, and r<c N,, such that

sm=a+ b= (mec+ r)+ md.

But this implies that » = 0 and that s = ¢ + d. Also, if this repre-
sentation of s in C + D is not unique, there exist ¢’ C and d'e D
such that s = ¢’ + d’. But then

sm=cm+ dm =cm + d'm

and this violates the condition that sm be uniquely represented in
A+ B.

The next lemma is an adaptation of a key result of de Bruijn
[2, p. 16].

LemMmA 2. If (A, B) ~ N,, then there exist an integer m = 2 such
that m |n and a complementing pair A’', B' of order njm, with 1¢ A’
1f B # {0}, such that

(3) A=mB + N, and B=mA.

Proof. 1f B = {0}, then A = N, and the desired result follows
with A" = B’ = {0} and m = n. If B = {0}, let m be the least positive
integer in B, Since 1€ 4 and AN B = {0}, it follows that m = 2.
Determine the integer % such that

mm<n <+ 1)m.

Now the induction of de Bruijn’s proof holds for all nonnegative
integers less than % and shows that all elements of B less than hm
are multiples of m and that, for each & with 0 <k < h — 1, the set

{km,km + 1, <+, km + m — 1}

is either a subset of A or is disjoint from A. This implies that A’
and B’ exist such that (1) holds and 1€ A’ provided we are able to
show that Am + r¢ AU B for every integer r = 0. Contrariwise,
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suppose that hm + re A. Then hm +r + me A + B = N,, and this
is impossible since Am + r +m = hm + m >n. Similarly, if Am + r e B,
then (m — 1) + hm + re€ A + B and we have the same contradiction.
Thus (3) holds and it follows that m divides # and, by Lemma 1,
that (4’, B’) ~ N,n.

The following theorem, which characterizes all complementing
pairs of order » > 1, now follows by repeated application of Lemma, 2,

THEOREM 1. Sets A, and B, form a complementing pair of order
n =2 if and only if there exists a sequence {m;}i_, of integers mnot
less than two such that

.
n=3,m;
=

and such that A, and B, are the sets of all finite sums of the form

[(r—1)/2] [(r—2)/2]
a = 2_:5 T M,; and b = Z(.] @541 Mpi 14
respectively with M, =1, M;,, = [Ii5i = m; and 0 < ; < m;y, for 0 <
1< r. If r =1, we interpret the notation to mean that B, = {0}.

It follows from Theorem 1 that there exists a one to one corre-
spondence between the set &, of all pairs of complementing sets of
order n > 1 and the set of all ordered finite sequences {m,;} with m; > 2
such that T[ m; = n. Thus, if C(n) denotes the number of elements
of &,, then C(n) is equal to the number F'(n) of ordered nontrivial
factorizations of n. Curiously, as shown by P. A. MacMahon [4; p.
108], F'(n) is in turn equal to the number of perfect partitions of
n — 1. This last result is also listed by Riordan [6; pp. 123-4]. In
a second paper, MacMahon [5; pp. 843-4] shows that

Cn) = zq‘ :'Z—:(_l)i@) i(d;; +5—-1i- 1)

j=1i= h= a,

where ¢ = 37, a;, and n = [][%-, pi* is the canonical representation of
n. However, if one actually wants the values of C(n), they are much
more easily computed using the result of the following theorem:

THEOREM 2. If m > 1 is an integer, then
C(n) = = 3, C(d) = 2 5, ((d)Cln/d)

where tt denotes the Mobius function.
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Proof. It follows from Lemma 2 that to each of the C(n) distinct
complementing pairs A, B of order n there corresponds a unique com-
plementing pair A’, B’ of order d where d |n» and 1 < d < n. Hence,

C(n) é dl'ﬂuzd<n C(d) )

Moreover, from each of the C(d) distinct complementing pairs C, D of
order d, with 1 <d <mn and 1eD if d # 1, can be formed precisely
one pair A, B of complementing sets of order dg = n by the method
of Lemma 1. Since the new pairs formed in this way are clearly
distinct, it follows that

Cmz 3 Cd).

In,d<n

Thus, equality holds and this implies that
Cm) = 3 3 C(d)
dln

as claimed. The other equality is an immediate consequence of the
Mobius inversion formula.

Except for Theorem 2, the preceding theorems reveal a striking
parallel between the structure of complementing subsets of N and the
structure of complementing pairs of order #. The next theorem ex-
hibits an additional interesting connecting between these two classes
of pairs. Also, it is clear that a similar theorem holds giving sufficient
conditions that A and B form a pair of complementing subsets of I.

THEOREM 3. Let {m;};»; and {M;};s, be as defined in (1) above and
let (C;, D;) ~ Nmi " for 1 =0, If A and B are the sets of all finite
sums of the form

a = Z c,iM,,: and b = 2 d1M1,
respectively with c,e C; and d,€ D, for 1 = 0, then (A, B) ~ N.

Proof. Let m be any nonnegative integer. Then % can be re-
presented uniquely in the form

.
n =3 eM
=

with e;e N, for all <. Since (C;, D;) ~ N,,,, there exist ¢, e C; and
d; e D; such that ¢; = ¢; + d; uniquely. Therefore,

n = Z:a] (c; + d;)M;
= i c; M; + ZT‘: d; M;
im0

=0

=a+b
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with a€ A and be B. If this representation of n in A + B is not
unique, there exist '’ € A and b € B such that

n=a +0
where
8

o =3 M, and b =3 dM,

with ¢;e C; and d,e D, for each 7. But then
n =3 (¢ + d)M
=0
since (C;, D;) ~ N,,... for all ©. Since representa-

and ¢} + d} €N,,., i1
tions of % in this form are unique, it follows that » = s and that

C1+d,‘:c:+d:

for each ¢. And this violates the condition that (C;, D;) ~ N,,,,.
Thus, the representation is unique and (A, B) ~ N as claimed.

Note that if » is fixed and 0 < 7 < » in the sums defining A and
B in the preceding theorem, then we conclude in the same way that
(A, B) ~ N s

The author acknowledges his indebtedness to Professors Ivan
Niven and E. A. Maier who made several helpful suggestions con-
cerning the writing of this paper.
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