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VARIATIONS ON VECTOR MEASURES

GIDEON SCHWARZ

Let /ί be a signed measure, and denote the total measure
of its positive and negative parts by P and N. Since the
total variation of such a measure is V= P + \N\, and the
maximum of the absolute value of the measure is M =
max(P, \N\), we have the inequality M ^ V ^ 2M. We con-
sider the following question.

What should replace the constant 2 in this inequality
when we pass to higher-dimensional vecstor-valued measures?

This question has been answered by Kaufman and Rickert [1].
In addition to their own result, they describe a geometric proof of
the two-dimensional case, due to Kakutani, and state that they know
of no geometric proof for n ^ 3. In this note we extend Kakutani's
proof to all dimensions. The crucial step in his proof is the obser-
vation that the total variation of a 2-dimensional vector measure is
proportional to the circumference of the convex hull of its range.
The "obvious" attempt to generalize to higher dimensions by replac-
ing "circumference" by "surface area" must fail, as a simple dimen-
sion analysis shows. The generalization succeeds, however, if we
first replace "circumference" in Kakutani's observation by "average
width".

For easy reference, we recall the definition of total variation:

The total variation of a vector measure μ is the supremum over
all partitions {Elf--',En} of the measure space of Σ?=i II M ̂ *) ll>
where || || is Euclidean length.

THEOREM. The total variation of an n-vector measure equals cn

times the average width of the range of the measure where c2n —
4rnn(2n)l π/(n\)2 and c2n+1 = An(n\)2/(2n)l.

Proof. If the measure space consists of a single atom, the range
of the measure consists of two vectors: the vector a assigned to the
whole space, and the zero vector. The total variation is in this case
just | | α | | , the length of α, and the average width of the two-point
set is seen to be \\a \\/cn by a simple calculation; therefore the theorem
holds for a trivial measure space. Since direct sum formation of
measure spaces gives rise to (group theoretic) addition of the ranges,
their support functions undergo addition as well (see [4]), and so do
their average widths. Clearly, total variation is additive as well, and
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the theorem follows for measure spaces with finitely many elements.
By continuity, of widths and variations, it follows for arbitrary n-
vector valued measures.

COROLLARY 1. (Kaufman and Richert). There exists a set in
the measure space, the length of whose measure is at least (2cn)~1

times the total variation F.

Proof. The maximal width M of the range is at most twice the
length L of the longest vector in the range, yet it cannot be less
than the average width A. Therefore Vc~x = A ^ M ̂  2L.

For n Ξ> 2 we also have

COROLLARY 2. // and only if there is no set the length of whose
measure exceeds (2cny

1V, the range of the measure is a ball centered
at the origin.

Proof. The "only if" is trivial. For the "if": When the maximal
width does not exceed the average width, the width must be con-
stant, and the closed convex hull of range is a ball. When the
longest vector does not exceed half the maximal width, the ball must
be centered at zero.

If the measure space is nonatomic, the range is closed and con-
vex by a well known theorem of Liapounoff [2], and is therefore itself
a ball centered at zero.

If, on the other hand, there is an atom in the measure space,
the convex closure of the range is the group theoretic sum of an
interval and a closed convex set. Hence its boundary contains an
interval, and in 2 or more dimensions it cannot be a ball.

REMARK 1. After applying a vector form of the Radon-Nikodym
theorem (see the preceding paper [5] in this journal), these results
can be translated from vector measures to probabilities and yield the
following: If U is an ^-dimensional unit vector valued random vari-
able on a probability space, there is at least one event B such that

REMARK 2. The numbers cn occur in a bound, calculated by
A. E. Mayer [3], for the diameter of a polyhedron with a one-dimen-
sional skeleton of given total length.
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