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ORDER-PRESERVING FUNCTIONS; APPLICATIONS
TO MAJORIZATION AND ORDER STATISTICS

A. W. MARSHALL, D. W. WALKUP AND R. J.-B. WETS

Let < be a partial ordering among the points of a set
D c Rn. A real-valued function / defined on D is said to
preserve ^ if x,yeD, x^y implies f(x) ^ f(y). The central
theorem of this paper gives necessary and sufficient conditions
for / to preserve ^ if ^ is a cone ordering, i.e. if there
exists a convex cone C such that x ;< y if and only if y — xeC.
Corollaries to the theorem consider the case when / is differ-
entiable and ;< is order isomorphic to a cone ordering under
a differentiate mapping. It is seen that the ordering of
majorization is a special case of a cone ordering and that a
straightforward application of a corollary yields the results
of Schur and Ostrowski on functions which preserve majori-
zation. The corollaries are also applied to a partial ordering of
positive semi-definite matrices and to certain partial orderings
arising in the theory of order statistics.

In order to prove and extend the determinant inequality of Hada-
mard, I. Schur [22] defined a relation that is equivalent to the ordering
of majorization [10, p. 49], A real w-vector y is said to majorize the
^-vector x (written x <y) if the components of x and y can be
reordered so that

1 ) *Ί ^= Λ^ = = Λ «> Ul = 02 ^= = Vn i

k k

(u) Y^ Ύ < Y^ 1/ h — 1 9 . . . ΎΪ 1
\ίl ) 2^/ "i = 2-*ί &i > /C — 1 , ώ , , A6 — 1 ,

(iϊi> Σ>< = J>;.
Schur showed that a real-valued differentiable function / preserves
the ordering -<, i.e. x < y implies f(x) ^ f(y), if and only if / is
symmetric and

(iv) * ψ L - ψ ^ - * 0, < = l , 2 f . . . , » - ! ,

for all x satisfying (i).1 With the choice of particular functions /
and the insight that the eigenvalues of a positive definite Hermitian
matrix majorize its diagonal elements, he was able to obtain the
determinant inequality of Hadamard as well as a number of related
inequalities.

The importance of Schur's approach to the Hadamard inequality lies
in the fact that his results and their refinements due to A. Ostrowski

1 Actually, Schur restricted his attention to the case that Xi > 0, y% > 0; this
restriction was removed by Ostrowski [19].
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[19] can be applied to obtain a variety of inequalities wherever
majorization arises. In matrix theory majorization also occurs in
the comparison of eigenvalues with singular values [24], [11] and in
the study of incidence matrices [21]. Majorization has also found
applications in other contexts, e.g. in obtaining certain probabilistic
inequalities [18], [20j. Other partial orderings occur in the study of
condition numbers for matrices [16], order statistics [17], and positive
definite matrices [14]. In each case the problem arises of determining
necessary and sufficient conditions for a real-valued function / to be
order preserving.

The purpose of this paper is to show how such conditions can be
derived in general. Our approach is illustrated by the following simple
interpretation of the ordering of majorization and Schur's condition.
Vectors x and y satisfy (ii) and (iii) if and only if y — x belongs to the
convex cone C contained in the hyperplane Σ?= 1 zi = 0 and determined
by the inequalities Σ?=i3i Ξ> 0, ft = 1, , w — 1. Then (iv), as we
shall see, is equivalent to the requirement that at each point x
satisfying (i), the directional derivative of f(x) is nonnegative in the
direction of the edges of the convex cone C.

Section 2 is devoted to obtaining general conditions for a real-
valued function to be order-preserving when the partial ordering is a
cone ordering or is order isomorphic to a cone ordering. Section 3,
by way of illustration, applies those results to the ordering of
majorization and partial orderings found in [3], [14], and [17].

2* Theory* A relation ^ on a set D is a partial ordering if

x ^ x for all x in D (reflexitivity)

x ^ y, y ^ z implies x 76 z (transitivity) .

Note that the condition

(1) x 76 y, y ^ x implies x = y (antisymmetry)

is not required.
A convex cone is a nonempty set CaRn such that p, qeC implies

λiP + X2q e C for all λ^ λ2 ^ 0. A convex cone C is said to be pointed
if xeC, —xeC implies x — 0. A cone ordering on DaRn (induced
by a convex cone C) is a relation 76 on D defined by:

( 2 ) x 76 y if and only if y — x e C .

Any cone ordering ^ on Rn is a partial ordering and satisfies

( 3) x 76 y implies x + z 76 y + z, for all x, y, z in Rn

(4) x ^ y implies Xx 76 Xy, for all x, y in Rn and X ^ 0 .
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Conversely, if ^ is a partial ordering on Rn satisfying (3) and (4),
then 76 is the cone ordering induced by the convex cone C — {x : x ^ 0}.
Moreover, C is pointed if and only if ^ satisfies (1).

A set S c C is said to span the convex cone C positively if
every point of C can be expressed as a positive linear combination of
a finite number of points in S. A set T c C is called a frame of C,
if T, but no proper subset of T, spans C positively. A convex cone
which possesses a finite frame is called a convex polyhedral cone.

It can be shown (though we shall not specifically require this
result) that every closed convex cone C in Rn possesses a frame, but
not necessarily a finite one. In particular, any frame for C can be
obtained by combining a (necessarily finite) frame for the maximal
linear subspace L contained in C (see McKinney [15]) and a frame
for the pointed cone C mod L. The existence of a frame for a pointed
closed convex cone in Rn follows from an application of the Krein-
Milman theorem to a bounded set obtained by intersecting the cone
with an appropriate linear variety. Results along this line have been
obtained by Klee [13].

A particularly simple but important cone ordering is the com-
ponentwise ordering ^ on Rn given by

x fj y if and only if xi ^ y{ for ί — 1, , n ,

where Rn is interpreted as the space of column w-tuples and xt

denotes the ith component of x. It is readily checked that ^ is the
cone ordering induced by the positive orthant R+ = {x: x Ξ> 0}, and that
the unit coordinate vectors e\ i = 1, , n, constitute a frame for iί+.

In applications the cone C is often given in terms of m simultaneous
linear inequalities, i.e. C = {x : Ax ^ 0} where A is an m x n matrix.
According to a theorem of Weyl [8], [9], C is a convex polyhedral
cone. In general, the task of computing a frame for C given the
mxn matrix A is not easy; it is equivalent to determining the
extreme points of a convex polytope given the equations of bounding
hyperplanes, or vice versa. See for example [2] and [23], However,
the matter is simple when A is nonsingular.

PROPOSITION 1. If the matrix A is nonsingular, the columns of
A"1 constitute a frame for the convex cone C = {x : Ax Ξ> 0}.

Proof. The cone C = {x : Ax = y, y ^ 0} can be rewritten as

C = {x : x = A~ιy, y ^ 0} .

Thus the columns of A~ι span C positively. But clearly no proper
subset spans C.
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Our fundamental result on cone orderings is contained in the
following

THEOREM 2. Suppose f is a real-valued function defined on a
convex set D aRn with interior, f is continuous at boundary points
of D and τ6 is a cone ordering on D induced by the convex cone
CaRn with frame T. Then f preserves 76 if and only if

fix + λί) - f(x) ^ 0, for all xeD
(5)

and all te T and λ > 0 such that x + XteD .

Proof. "Only if" is obvious. Suppose therefore that (5) holds.
Fix x,y eD such that xτ6y. We must show f(y) — fix) ^ 0. Since
v = y — xeC, there are tl9 , tk in T and positive scalars μl9 ,μk

such that

k

v = Σ μti.

If x, yeintD (the interior of D), then for suitable α > 0 the cylindri-
cal neighborhood (See Figure 1.)

E = {z e Rn : || z — w || < a for some w on the line segment [x, y]}

is contained in D, where || || is the Euclidean norm on Rn. See
Figure 1. It is now easy to see that there exists an integer N and
a polyhedral path from x to y lying entirely in E and having Nk + 1
nodes, each of which is displaced from the preceding node by one of
the vectors (1/N)μiti9 i = 1, , k.

By (5), / is nondecreasing along each arc of the path, hence
fiv) — /(aθ ^ 0. Next suppose x and y are points of D on the
boundary. Let z e int J9, and for each δ e (0,1) define

xδ = (1 - δ)x + δz, y , = il- δ)y + δz .

Since / is continuous at x and y, for each ε > 0 there exists some δ
such that f(x5) ^ fix) - ε and f(yB) ^ f(y) + ε. Moreover, xs ^ y8

with xB,yBeintD. Hence by the argument above, fiy5) — f(x&) ̂  0.
It follows that f(y) - fix) ^ -2ε for all ε > 0, thus f(y) - fix) ^ 0.
If exactly one of the points x,y lies in intZ), essentially the same
proof applies if z is taken to be the one in the interior.

The following theorem shows that the hypotheses on D in Theorem
2 are essentially the weakest that can be imposed without involving C.

THEOREM 3. Suppose D is a nonempty closed subset of Rn such
that, for every convex cone C with frame T and every continuous
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FIGURE l.

function f on D, condition (5) is sufficient to insure that f preserves
the cone ordering on D induced by C. Then D is a point or D is
convex with nonempty interior.

Outline of proof. It suffices to show that a "counterexample"
to Theorem 2 can be constructed whenever D has at least two points
and is not convex with interior. We illustrate the construction for
n = 2 when D is not convex; the generalization to dimension n involves
no essential difficulties. Consider the closed subset D of R2 shown
shaded in Figure 2. Since D is not convex there exist points p and q
on the boundary of D such that the open interval (p, q) is contained
in the complement of D (which is open). Select p\ qf sufficiently close
to p and q respectively on the extension of the line segment [p, q],
and vectors tl912 sufficiently close to parallel to q — p. Let C be the
convex cone spanned by {tu t2} and let ^ be the cone ordering on R2

induced by C. If p', q',tu and t2 are properly chosen, there exist
distinct points p", q" in [p, q] such that p' ^ p" τ£ q" ^ qr and such
that x e D and p' ^ x τ6 qf implies pf 76 x ^ p" or q" 76 x ^ q', i.e. the
open set E in Figure 2 is disjoint from D. A continuous function /
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can be defined on the complement of E as follows: / is constant on
the unstriped regions in Figure 2, with value 0 or 1 as indicated,
and linearly interpolated on the striped regions. It can be verified
that the restriction of / to D satisfies (5), but / is not order preser-
ving since p ^ q and f(p) > f(q).

i l l

f = 0

f = 0

FIGURE 2.

It remains to be observed that if D is a convex set without interior,
then^ any function / will satisfy (5) trivially if the convex cone C
and its frame T are chosen so that no member of T is parallel to a
line segment in D.

In application, it is generally more convenient to use a differential
form of Theorem 2. For any function / defined on DcR\ we adopt
the convention that the gradient

at x e int D is a row vector, since it is a point of the dual of the
column vector space R\ This convention will make transposition of
vectors unnecessary when writing inner products, as in equation (6)
below, where Ff(x). t denotes the inner product of Ff(x) and t.

COROLLARY 4. Suppose f is a continuous real-valued function
defined on a convex set DaRn with gradient Ff(x) at each point in
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the nonempty interior of D, and 76 is a cone ordering on D induced
by the convex cone C dRn with frame T. Then f preserves 76 if
and only if

(6)

for all t in T and all x in the interior of D2

Proof. It is clear from the proof that Theorem 2 remains true
when condition (5) is modified to read "« for all $eint.D '\ To
say that Pf(x) exists at a e intD is to say that the directional
derivative limUo [f(x + Xt) — f(x)]/X can be expressed as the inner
product Pf(x) t (in fact, the convergence is uniform in t for ί in a
bounded neighborhood of the origin). The corollary now follows from
the relationship between the directional derivative and monotonicity
of / on line segments [x, x + Xt], t e T, x + Xt e D.

We remark that Corollary 4 remains true if, in the last line, T
is replaced by a dense subset of T or a dense subset of a frame 7"
obtained from T by normalization. A similar remark is valid for
Theorem 2 provided / is required to be continuous.

It may happen that a partial ordering ^ on a set D aRn is not
a cone ordering, but can be related to one. Specifically, suppose G
is a one-to-one mapping of D onto G(D)aRn and that ^ c is a cone
ordering on G(D) such that x 76 y if and only if G(x) τ6cG(y). Such
a G can be viewed as an order isomorphism between (Z), ̂ ) and
(G(D), T^G)- It is clear that a function / defined on D preserves 76
if and only if the composite function φ = fG~x preserves τ6c. Since
G maps into Rn, it can be described in terms of its n real-valued
coordinate functions gif where g^x) is the iih coordinate of G(x). We
give some conditions on these gi sufficient to insure that Corollary 4
and the chain rule of differentiation may be applied to fG~ι.

DEFINITION 5. Let g^ be the class of all mappings G such that
( i) the domain DcJ? w of G is contained in the closure of its

interior,
(ii) G is a homeomorphism of D onto G{D)cRn,
(iii) on intD, G is of class C1 and the derivative matrix

JQ{x) -

is nonsingular.

2 Although, in the interest of simplicity, we avoid introducing the concept of
the polar (dual) C* of a convex cone C, we cannot help remarking that equation (6)
is equivalent to the statement that Vf{%) belongs to C* = {z:z-y ^ 0, for all y£C}.
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PROPOSITION 6. If G e ^ w , then G(intD) = intG(D), G~ιe &n, and
JG-i(G(x)) = [MX)]"1 for all x e int D.

Proof. From the Invariance of Domain Theorem [12, p. 95; or 1,
p. 156] it follows that G(intD) = intG(D). The rest of the proposition
follows from the simpler results for the restrictions of G and G"1 to
the open sets intD and int G(D) respectively. See for example [6,
Sections 5.5, 5.7].

It is now obvious from Corollary 4 and Proposition 6 that:

COROLLARY 7. Suppose G e ̂ n has domain D and convex range
G(D), τ6c is a cone ordering on G(D) induced by the convex cone C
with frame Γ, and ^ is a partial ordering on D such that x 76 y if
and only if G(x) ̂ cG(v)- If f is a continuous real-valued function
defined on D with gradient Vf on the interior of D, then f preserves
^ if and only if

(7)

for all t in T and all x in the interior of D.

In Corollary 7, G may be interpreted as a reparametrization of
D which converts ^ into a cone ordering. A somewhat different
interpretation is possible when the coordinate functions g{ are used
to define the partial ordering ^ on ΰ as in

COROLLARY 8. Suppose ^ is a partial ordering on a set DaRn

given by

gt(x) ^ gi(y), 1 ̂  i ^ k
x <y %f and only if: .

9i(x) = 9i(v), k <ι^n ~ I .

Suppose further that the mapping G whose coordinate functions are
βu '"i9n belongs to ^n and has convex range G(D)czRn. If f is a
continuous real-valued function defined on D with gradient Vf on
the interior of D, then f preserves ^6 if and only if the first k
components of the vector Vf \JG{x)\~ι are nonnegative and the last I
components are zero for all x in the interior of D.

Proof. Corollary 7 applies with

C = {z : zt t: 0, 1 <i i ^ fc, and z{ = 0, k < i ^ n - 1} .

Thus it suffices to observe that the vectors
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e\ 1 ^ i ^ k ,

β% w — £ < i <̂  w ,

— e\ n — I < i <z n ,

constitute a frame for the cone C.

3* Applications* We apply the results of §2 to four examples
of vector partial orderings, together with certain minor variations.
The first example is the ordering of majorization already investigated
by Schur [22], Ostrowski [19], and others. The second two examples
arise in the theory of order statistics and here some of the results
are new. The fourth example is the matrix ordering induced by the
cone of positive semi-definite matrices, which has been studied by
Loewner [14].

In all cases we confine ourselves to the characterization of order
preserving functions which are continuous on a set D and have a
gradient on the interior of D. This must be understood, although to
avoid repetitions we do not continue to mention it.

EXAMPLE 1. In the notation of §2, let

D = {xeRn:x1'^x2^ ^ xn} .

On D, define

Order la. x τ6lay if and only if

ΣAVi^ΣiVt, k = 1,2,---,n,x,yeD.

This is a cone ordering since xτ6lay if and only if y — xeC =
{z: Az ^> 0} where A = [α^ ] is an n x n lower triangular matrix with
aiό — 1 for i^j and aiS = 0 for i < j . By Proposition 1 and Corollary 4,
/ preserves 76 la if and only if Vf(x)A~1 ^ 0 for xemtD. Since
A-1 = [atij], where aiβ = 1 if ί = j , aid = —1 if ί = j + 1 and aid = 0
otherwise, we have

Condition la. / preserves ^ l α if and only if

^ df(x) ^ . . . ^ df(x) ^ Q

dx1 ~~ dx2 ~ ~ dxn ~

for all x in the interior of D.

In the literature more attention has been devoted to a modification
of ^ l α , defined on the same set D, namely:
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Order lb. x τ6lby if and only if

k k n n

y i x% == x i yii fc —- •*-> ̂ > * j n x, ana y, Xι — y k y^j x, y G U .

We apply Corollary 8 with k = n — 1, I = 0, and G(&) = Aα; where A
is the same as for order la. Since [Jgix)]"1 = A"1 it follows that

Condition lb. / preserves τ6lb if and only if

/ Q \ 3/(cc) > 3/(#) > > df(x)
dxλ ~ dx2 ~~ ~ dxn

for all x in the interior of D.

Any partial ordering ^ on D — {x : xλ ^ x2 ^ ^ xn) can be
extended to a partial ordering ^ on iϋ™ by defining x <} y if OJ1" •< y\
where ίc1" is the vector obtained from # by rearranging the components
in decreasing order. We note the obvious result:

PROPOSITION 9. If ^ is a partial ordering on

D — {x : χL : > χ2 ^> . . . ^ χ n )

then a function / preserves ^ f if and only if / is symmetric and
preserves ^ .

Thus, / preserves τ6\a (or τ6\b) if / is symmetric and satisfies
condition lα (or condition 16). This result was obtained by Ostrowski
[19]. The partial ordering τ6\a has also been considered by K. Fan [7]
who showed that φ(x) ^ φ(y) for all symmetric gauge functions φ if
and only if xτ6\ay. The ordering τ6\b (i.e., majorization) has been
discussed by Hardy, Littlewood and Pόlya [10, pp. 44-49, p. 89], and
by Beckenbach and Bellman [4, pp. 30-32]. The reader of [4] should
note that §29, p. 31 applies to the partial ordering τ6\b and §31, p. 32
applies to ^ 1 6 .

EXAMPLE 2. Let D+ = {x e Rn: xx ;> x2 :> ^ xn > 0}. We define

Order 2α. x τ62ay if and only if

- ^ - ^ - ^ - , i = 1, , n - 1, x, y e D+ .

A geometric interpretation of ;<2α can be given. If x, yeintD+, then
x τ62ay if and only if there exists a starshaped function φ such that
yi — ψ(xi). A function φ defined on (0, ©o) is starshaped if the line
segment joining a point on the graph of φ to the origin lies entirely
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on or above the graph.
The partial ordering ^ 2 α has arisen in the theory of reliability [17].

In [5] a justification is given for saying that a component "wears out"
if the distribution F of its time to failure is starshaped with respect
to the exponential distribution ίf, i.e. if ΉrγF is starshaped. Order
statistics Xx > X2 > > Xn > 0 and Yx > Y2 > > Yn > 0 from
such distributions F and H, respectively, have the property that
Xi/Xi+1 is stochastically less then Yi/Yi+1. The functions preserving
^ 2 α are of particular interest, since they are exactly those yielding
tests of the hypothesis of no wear-out which are unbiased at all
levels of significance. Moreover, it has been shown in [3] that
(EXlf EX2, . . . , EXn) ^2a (EYlt EY2, . . . , EY%).

In order to apply Corollary 8 to ^ 2 α , we take g{{x) = Xi/xi+1 for
i = l, ,w — 1. There is some latitude in choosing gn. A convenient
choice is gn(x) = xn. The map G whose coordinate functions are
Qu f 9» takes D+ homeomorphically onto the convex set

{z : zt :> 1, i = 1, , n ~ 1, zn > 0} ,

which has interior. The inverse of G is given by xk = Π*U Q%(x)
It is readily computed that [JG{x)Yι = JG-ι(G(x)) = [aiS], where a{j =
XiXj+JXj for 1 ^ i ^ j < n, ai5 = 0 for 1 <; j < i ^ n, and ain = xjxn

for 1 ^ i ^ ^. From Corollary 8 with k — n — 1, and i = 1 we have

Condition 2a. f preserves τ62a if and only if

( y ) 2 - ι χ i — = — ^ o , j — l , •••,% — l

(10) Σ &< ^ { ^ - = 0
i = l OXi

for all xeintD+.

Note that since gly , ̂ ^ are homogeneous, any function /
which preserves τ62a must satisfy f(x) = /(λa?) for all λ > 0, or
equivalently [df(\,x)/dx]x==1 = 0, which is just (10).

If we define

Order 26. x τ62by if and only if

x ^ 2 α V and xn <; yn, x,yeD+ ,

then by a minor variation of the application of Corollary 8 to ^ 2 α ,
we have

Condition 26. / preserves ^2b if and only if
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for all x e int D+.

This result can be obtained by an alternate method. Write
Ui = In x{ and v{ — In ̂  so that u and v range over

D = {uiu^ u2> ^ un} .

Then x ^2bV if and only if u ^ l c v, where

u <lcv if and only if

^ — ui+1 ^ Vi — vi+19 i = 1, , n — 1, and un tί vny u, v e D .

This is the cone ordering induced by the cone C* = {̂  : (A" 1 )^ ^ 0},
where A is the matrix used in defining the cone C which induces ^ l α .
Hence by Proposition 1 and Corollary 4, / preserves -<lc if and only
if Ff(u)-Aτ ^ 0, i.e.

for all u e iτitD. The change of variables yields Condition 2b. Observe
that the members of the frame of C (the columns of A"1) determine
the bounding inequalities for C*, and conversely, the members of the
frame of C* (the rows of A) determine the bounding inequalities for C.
These facts reflect a duality between ^ l β and ^ l β . A similar, though
not so obvious, duality exists between ^ 1 6 (majorization) and :<2a (the
ordering used in [17]) expressed as a cone ordering on the u's.

In [17] the following variant of ^ 2 α is also considered.

Order 2c. x -<2cy if and only if

X V n n

— — ^ — — , i = 1, , n - 1, and Σ χi = Σ V%> x> y £ D+ .

The map G whose coordinate functions are

n

g,{x) = Xi/xi+1, i - 1, , n - 1, gn(x) = Y,Xi
1

is again a homeomorphism of D+ onto the same convex set as in
Example 2a. With somewhat more labor than before we find

where aiS = a?<aji+1(Σ?+i «*)/% for 1 ̂  ΐ ^ i < w, α ί y = -»<a
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for 1 fg j < i ^ n, and ain = x€ for 1 <̂  i fg n.
From Corollary 8 with k = n — 1 and i = 0 we have

Condition 2c. f preserves τ62c if and only if

(ID

for all xe intD+.

We remark that the use of gn(x) = Xf aj< in computing Condition 2a
would have led to the more involved set of conditions (11) and (10).
However, it is possible to reduce (11) to (9) with the use of (10).

Suppose two partial orderings τ6a and τ6b of the type considered
in this paper are defined on a set Z), and x^ay implies x^by.
Suppose further that comparatively simple conditions are known for
a function to preserve ^ 6 . Then any function which satisfies these
conditions preserves τ6a. This observation, coupled with the result
given in Proposition 10 below, was used in [17, Th. 2.4] to show that
a function satisfying (8) preserves ^ 2 c . We give here an alternate
proof of Proposition 10 which illustrates an interesting application of
Corollary 8.

PROPOSITION 10. If xfyeD+ and χ-^>2cy, then y majorizes x, i.e.

Proof. Since D+ is contained in the domain of definition of ^lbJ

it suffices to show that ^ 2 c is preserved by each of the functions

used in defining ^ 1 6 . It is easily verified that these functions satisfy
(11). In fact, fn and fn+1 satisfy (11) with equality. This is a direct
consequence of the fact fn(x) = fn(y) is required for both x ^ 2cy and

EXAMPLE 3. Let D% = {α;: x1 > x2 > . . > xn > 0} and define

O r d e r 3 . x τ 6 5 y if and only if x , y e D% and
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X% — X%+i < Vί — Vi+i— ^
•̂ i + 1 X% + 2 Vi-rl Vi +

and

Xn—l X n < Vn—1 /̂-w

, I — L, , 71 — Δ ,

Just as ^<2α arises from the study of distribution functions F which
are starshaped with respect to a distribution H, ^ 3 arises from distri-
butions F which are convex with respect to a distribution H, i.e. for
which ΉrγF is convex. Observe that x τ63y if and only if y{ = φ(xt)
for some nondecreasing convex function φ such that ^(0) = 0. Thus
x ^ 3 y implies x τ62ay. We define the map G by

ΰi(x)= x*-χ*« ,i = l,2, - ,n,

where we adopt the convention that xn+1 = 0 and xn^2 = — 1. G maps
D% homeomorphically onto {x : x{ > 0, i — 1, , n}. We have x{ =
Σfc=ί Π?=fc^ («) and [Jβία)]-1 = [αi5-], where

for y ^ ΐ and aiό — 0 for j < ί. By Corollary 8 we have

Condition 3. / preserves ;<3 if and only if

Σ (Xi ~ xj+ύ - ^ - ^ 0, i - 1, . . . , n - 1 ,

for all x in D%.

EXAMPLE 4. We identify D = R«ι»+»ιz with the set of all n x n
symmetric matrices, and on D define

Order 4. A 76 4B if and only if B — A is positive semi-definite.

This ordering, which was introduced by C. Loewner [14], is the cone
ordering induced by the convex cone of positive semi-definite matrices.
Though this cone does not have a finite frame, the set of all positive
semi-definite matrices M = [miά\ of rank one, normalized by the con-
dition trace M = 1, does constitute a frame. Such matrices can be
written in the form mmτ — [miπij] where m is a unit column vector,
and any positive semi-definite matrix A has the representation A =s
Σί=i aMι where r is the rank of A and a{ > 0.
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We apply Corollary 4, Note that (6) can be written as

i,j dai3 L dai3

Thus we obtain that

Condition 4. / preserves ^ 4 if and only if the gradient matrix
[df(A)/daίj] is positive semi-definite.

A related result has been obtained by Loewner [14], who considered
the case that / is orthogonally invariant, i.e., f(A) — f(ΓAΓτ) for all
orthogonal matrices Γ. He showed that such functions preserve ^ 4 if
and only if

where λ̂  are the eigenvalues of A.
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