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OPERATOR VALUED ANALYTIC FUNCTIONS AND
GENERALIZATIONS OF SPECTRAL THEORY

LOTHROP MITTENTHAL

This paper is concerned with an analytic operator valued
function F'(1) acting upon a Banach space X, where F'(1) is
bounded and F(Q)F(x) = F(wF(2) for all 2, uc4d where 4 is
the domain of analyticity of F'(1). The singular set of F'(2)
is analogous to the spectrum of a single operator. In the
case of the single operator, employing the corresponding
resolvent operator, a number of interesting properties are
known to be associated with the spectral sets. These include
projections and homomorphisms between scalar valued analytic
functions and functions of the operator. This paper considers
a suitable generalization of the resolvent operator and which
properties of spectral sets carry over to open and closed
subsets of the singular set of the operator valued analytic
function.

It is shown that a suitable generalization of the resolvent operator
is F'"OOF(\) = F(\)"'F'(\), from our assumed commutativity, where
F'(\) = (d/dN)F (). In addition, it is shown that certain proper open
and closed subsets of the singular set, termed separating subsets,
have many of the properties of spectral sets. These properties include
a relation between ascent and descent of the operator and the order
of the pole of the generalized resolvent, projections analogous to
spectral projections, and an operational calculus. A sufficient condition
for a singular subset to be separating is derived. In addition, a new
operator is defined which in a sense represents the F'(A) on the subspace
corresponding to a given separating singular subset.

DEFINITION. The singular set of F(\), S(F(A)) or S(F'), is the
set of all A e &, the complex plane, such that F()\) is not continuously
invertible. The complement of S(F) will be called the regular set,
R(F(\)) or R(F).

In this paper, it will be assumed that S(F') is bounded and that
S(F)c 4. In particular, this will include polynomials with operator
coefficients, e.g. F(\) = NI + \"'A, + --- + A, where the A; are
all bounded commuting operators. It has been shown by A. Taylor
[3, p. 590] that on R(F) N 4, F(\)~* is also analytic. As in the case
of the spectrum of a single operator, it is easy to show that R(F') is
open and that S(F') is closed.

If, for example, we choose F(\) = NI + "4, + --- + A, and
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let D be a bounded Cauchy domain such that S(F') < D, then an easy
calculation gives

1
271

(1) f _FO)F()dn = nl

which is not a projection for n >1 and by analogy with analytic
function theory, » in a sense represents the number of “zeroes” of
F(\). For the above polynomial, Equation (1) holds even if the
coefficient operators A; do not commute.

Next we will consider a proper subset S, (F') of the singular set
S(F'), which is open and closed in the relative topology and thus is
analogous to a spectral set of a single operator. We will refer to
such subsets as singular subsets.

THEOREM 1. Let F'(\) be an operator valued function, analytic
on its domarn 4, and such that F(\NF (¢) = F(u)F(\) for all \, pe 4.
Let Si(F') be a bounded singular subset and let f(N) and g(\) be
complex wvalued functions, analytic on their domains Af and dg
respectively, open sets such that S(F)C AdfNdg. Let D, and D, be
bounded Cauchy domains such that D, N S(F) = S«(F), D,c D, and
D,c4fn 4g. Define the operators:

1 , -
Fr=—— § o T OVF OVF ()

QM\, 1) = F_’(_);)_:%’ﬂ for x # p
= F"(\) Jor X =p

and

K, ==& goF)FO)
2y J e,

1 4
X[%§ o, O — F (1) d—ﬂQ(x, y)d)u]dx )

The'n ng = Fng + ng.

Proof.
F()™ — F(\™ = (v — Q0 ) F (V) F ()™
so that
F'OMF(N = FFO)F ()™ — (v — QMO ) F (1) F' (V) F (M) .

From Figure 1:
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FIGURE 1

— 1 ’ —1
Fy=—— § o TOWOIF CIF Q)

_ 1 1 S ' ~
= 2m aplg(k)[ 2ri § = JFroaray-an
_ 1 1 S

27 ablg 7\'){ 21 J oy pr — N

XIFMF ()™ = (v = 0RO MF () F'0F () dge

o gFF S Q0 F dp]in

271

The first integral on the right above is zero since p¢ D, and thus
(GOVF'(\)/ (¢t — N) is analytic on D,. Also

Qv 1) = F/(15) + (n — m% Q) so F,, =F,F,+ K, .

We are concerned with singular subsets such that K,, = 0 for
all such f(») and g(\), in which case we obtain an algebraic homo-
morphism between analytic functions and operators similar to the case
of spectral theory of a single operator.

DEFINITION. Let S,(F') be a proper bounded singular subset of
S(F(A\) and let @Q(\, 1) (as defined in Theorem 1.) be invertible for
all A, £e S(F'), Then S,(F) will be called separating.
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THEOREM 2. Let S(F) be a bounded separating singular subset
of S(F(\) and D,, D,, f(\), g(\), F; and K;, defined as in Theorem 1.
Then K;, = 0 for all such f(\) and g(\).

Proof. First of all, it is clear that Q(\, ¢) is continuous at any
Noy Mo for N, # pt, from the basic definition. If N\, = , then it is easy
to see that [|Q(\, ¢) — F'(\)||— 0 as N\, £— 2, so that @, p) is a
continuous map on the product space & x ¥ into B(X), the space
of bounded linear operators on X, where & is the complex plane.
Also if Q(\,p) is invertible and if A, g’ are chosen so that
QO 1) — Q(\, ) || < 1| @\, p)~|I7%, then Q(\, p¢') is also invertible.
So the set of Q(\, #)’s which are invertible is an open set in the
uniform topology of operators. Therefore the inverse image of the
set of invertible Q(\, ¢)’s in B(X), is an open set in & x <. Thus
S.(F) is contained in some open neighborhood U wupon which Q(\, £)
is invertible. Since & is a Euclidean space, D, can be chosen so that
oD, lies in U N R(F). Hence on D, we can write I = Q(\, L)Q(\, 1)~
As remarked above, Q(\, ¢)™' is analytic on D,.

J— 1 ’ —1
Kpo =5 §,, SOFGFO)

g [§7lr—z§ o, IO = QO QO #)“1F<#)‘1—d—0l;Q(x, p)d;z]dx

= 5mif, SF ROy
1 L L d
8 [z—rz_i§auzf(”){F(>”)F(1“) IR0, 1) EEQ(N, ;t)d/x]dn

_ 1 ! , d o
= gmid e, ) [%faDlg(x)F MR, 1) d#Q(N, ;,,)d,\]d;z

1 ’ —1 1 —1 d
“grif s Ee G reae, Qo g

=0

since in each of the interior integrals, the integrands are analytic.

REMARK. While the condition Q(\, ) invertible on S,(F) is suf-
ficient to insure that K,, = 0, examples can be easily constructed to
show that this is not a necessary condition in all cases.

If S(F') is a separating singular subset, let f(A)=1. Then
Ft = F\F, = F, by Theorem 2. So defining

1
P — _ ’ =1
F = f o FIOOF
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P is a projection. Let range P= M and null space P= N. It is
easy to give examples of a separating singular subset S,(F')c S(F')
and yet where M = X. In general we cannot break S(F') down into
complementary separating sets, the ranges of whose projections provide
a direct sum decomposition of X.

COROLLARY 3. M s closed and F, 1is completely reduced by
M & N.

Proof. Since P is a projection, X = M @ N. Since F'(M)F (M)
is bounded for n e oD, P is the integral of a bounded operator valued
function on a compact set, and hence P is a bounded projection. Since
domain P = X, M is closed, a well known property of bounded pro-
jections. Also F/P = F,F, = F; =FF; = PF;, so F, is completely
reduced by M S N.

Let N, e R(F), then F(\) = 3.2, A;(M — \) in some dise C around
Ny Where as usual A4; = (1/277) f (A — N) I (Mdh. The A)’s
commute with F(\) and F’(\) and hggce also with F'(x)~'. Thus the
A;’s also commute with sums of F'(A)F(\)* and finally with uniform
limits of such sums. So for each j, A,P = PA; and these operator
coefficients are also completely reduced by M @ N.

There are many interesting properties associated with spectral
sets of a single operator. The next task is to see which of these
will carry over to the separating singular subsets of F'(\).

Lemma 4. Let X = NG R, a Banach space and B, Ac B(X).
Assume A is completely reduced by N and R and that A|N is
nilpotent and A|R is one-to-one onto. Then if AB = BA, B is also
completely reduced by N and R.

Proof. 0 is a pole of (A — A)™* and the projection

P =L f (M — A)ydn
2mid r

has range N and null space R, where [ is a contour in 0(4) enclosing

only 0 of o(A4). Since B commutes with A, B also commutes with

(I — A)™ and with uniform limits of sums of such operators, so that

BP, = P,B. Hence B is completely reduced by N and R.

LEMMA 5. Let A, be an isolated separating singular point such
that ascent F'(\,) = descent F(\) = v < co. Then F'(N)F(\)™ has a
pole at N, of order v.
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Proof. First of all, we recall that by definition v is the smallest
integer such that null space F(\,)* = null space F(\,)**' and range
F(\)* = range F'(\,)***, and as is well known (e.g. see A. Taylor
(4, p. 2T3))X = N(F(N)*) @ R(F(\,)*) where N means null space and
R means range. Also F'(\,) is completely reduced by this pair of
subspaces and F(\,) is continuously invertible on R(F(\,)*). In a
neighborhood of )\, we can write:

F(\N)=F\) + F' (M) — Ng) + - + F“"(M)O" ;'M)" o

so that
v = )R, Ng)
(2) =\ — xo)[F'(xo) e }M'(xo)<—k—_3“—")%—1 + ] .
n!
Since F(MF(\) = FO\WF(\), by Lemma 4, it is also true that F(\)

is completely reduced by the pair of subspaces N = N(F(\)*) and
R = R(F(\)*). So we can restrict F'(\) to N and write:

— (N = AR M) = F(N)” — (N — MRV, No)”
since F'(\,)*| N = 0, so that on N:

'—(/\'0 - X)VQ()‘H )\’0),, = [FO‘JO) - (Xo - N)Q(M /\0)] .
XE () + F ()2 (v — MR, M) + + o0+ (N — M) TR, X)) .

By definition FF(A) = F'(\) — (M — MQ(N, \,) so that on N:

“F()’)Rl(ko - X)”Q(?\;, Xo)y

( 3 ) F v—1 v—1 y—1
= F(\) oo v = )R, N .

Now since

__ _ n—1
QN M) = F'(\) + F"(xo)ﬁ‘_z_'}_f’_)- Loeee F(m()w)(x_n_)"’o_ 4oeen
and since F'(\,) | N is invertible because )\, is a separating singular
point, it is also true that there is some o > 0 such that |» — )\ | < o
implies that Q(\, \,) | N is also invertible. Therefore on N:

_poy- = FOTQ0 T L Q0
(o — N)* o — M

Since F'(A) = F'(A) + (M — N)Q(N, \,), we have:

F’()") = Q(R’a /\'o) - (?\;0 - X)Q'()\J, 7\0)
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which we apply to both sides of equation (3)
—F'MNF N = [Q(, M) — (v — MNQ'(N, M)

([P0 Q]
(4) (N — N)* N — A
i k[ QO M) F — (v — MR, M) IR (N, )

=S row| e ]

From equation (2)

QO = o T+ oy $ EE00 = M T

so for |A — )\, sufficiently small, Q(\, )~ has a Neumann expansion
in positive powers of (A, — \). Also from equation (2) Q'(\, 7, has
only nonnegative powers of (A, —\), so that in equation (4),
F'OVEF (M) N has v as the highest negative power of (A, — \).

Next we consider the restriction to the complementary subspace
R. F(\)|R is invertible and FF(A) — F(N) = (A — MR\, X). So for
[N — N, | sufficiently small || F(A) — Fu) || £ || F(w)™ |7, Thus by a
well known theorem (e.g. see Dunford and Schwartz [1, p. 584])
F(\)| R is also invertible and restricted to R:

FOY™ = FOW™ 3 {F() — FOIE0))
= FO™ 3 {00 = MR MF ()

which has only nonnegative powers of (A — ;). Thus on X = N PR
we can write:

F'ONF (M)
L S PO AT I oo
—{ = k dx[(xo—x)k]+xo—x Q% M) Q(X’M)}

D {FF (I S 10 = 2)Q0 W F )T
and so F’'(M)F(\)"* has a pole of order v at \,.

LEMMA 6. Let ascent F(\,) = descent F'(\,) = v < <o and assume
F'(\) 1s tnvertible. Then \, is an isolated separating singular point.

Proof. The idea is based upon a proof of D. Lay [2] for a
similar proposition for a point in the spectrum of a single operator.
In the terminology of Lemma 5, F'(A,)|N is nilpotent and also as in
Lemma 5, Q(\, \,) is invertible for |A — )\, | sufficiently small. So



126 LOTHROP MITTENTHAL

F(XHN = FO‘*O)IN + (= No)Q(\, >"o)llv
is the sum of a nilpotent operator and an invertible operator.
(X - >"o)—lQ()\‘y Ko)_lFO\/) I N = I‘ N + (7‘4 - Ko)-lQ()‘w Xo)—lFo"o) ] N .

The second term on the right is also nilpotent and hence has
spectrum = {0}. Thus the right side of the above equation is invertible
and hence FF(\)| N is also invertible for 0 < |A — N, < & for some
e > 0. On the complementary subspace F(\,)|R is invertible and so
F(\)|R is also invertible for |x» — \,| sufficiently small. So on the
entire space X, F'(\) is invertible for 0 < [N — N, | < e. Therefore A,
is an isolated point of S(F') and is separating since F’(\,) is invertible.

THEOREM 7. If ascent F(\,) = descent F'(\) =y < oo and F'(\)
18 invertible, then F'(\WF (N~ has a pole of order v at \,.

Proof. Combine Lemmas 5 and 6.

Before proceeding further, we define a new operator which will
prove to be useful.

DEFINITION. Let S,(F') be a separating singular subset of F(\).
Define
_ 1 ’ -1
T = § AFO)F ()
where DN S(F) = S(F). T will be called the root operator associated
with F(\) and S,(F’). When it is not otherwise clear from the context,
we will use the notation T = T[F(\), Si(F)].

T is a bounded operator on X into M where M = range P and
P is the projection associated with S,(F'). The boundedness results
from the fact that |\| and ||F'(\)F(\)""|| are bounded on oD, a
compact set in R(F'). From the operational calculus:

T=PT=TP

so T is completely reduced by M and N where X = M P N and
T|N = 0. From the definition of f(\) and F, in Theorem 1, let
FO\) = kx". Then

T = L jf I E OVF ()
2rvd op

So for f(\) a polynomial, F; = f(T). More generally, for f(\) any
analytic function with domain as in Theorem 1, we may define
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F(T) = = § POV MF ()7
21 J °p

as is done for the case of a single bounded operator in reference [4]

and elsewhere. Also since F'(M)F(\)* is bounded on oD, if f,(\) —

F(\) uniformly on a compact set containing S,(F), fu.(T)— f(T) in

norm. We could also consider f(T) as the limit of f,(T'), polynomials

in 7.

Upon reviewing the proof of Theorem 1, we observe that the
complex valued analytic functions f(A) and g(\) could just as well
have been replaced by vector valued functions with appropriate domains
of analyticity, provided that these vector valued functions commute
with F(\).

DerFINITION. Let S,(F) be a separating singular subset for F(\)
and T = T[S\(F'), F(\)] be the associated root operator. If G(\) is

an operator valued function, analytic on D where D N S(F) = S,(F),
and such that GA)F(\) = F(\)G(\) for all M e D, we define:

(T) = 2_71{1: f _GOIFFO N .

THEOREM 8. Let S, (F) be a separating singular subset and T
the associated root operator. Then F(T) = 0.

Proof.

F(T) = i—% f _FOFOF0) 7, = 2im § CFdn =0

since F’(\) is analytic on D,

THEOREM 9. Let S,(F) be a separating singular subset and T =
TIS(F), F(\)], the root operator, and M = range P where P is the
projection corresponding to S,(F'). Then o(T|M) = S,(F).

Proof. Suppose a¢ S(F) but aco(T|M). We can then choose
a contour /° around S,(F') so that a is outside of I". Then since a = \
on or inside of I", (¢ — A)~' is analytic on and inside of /'. Let
= 1 § (@ — N F'O)F () -dn .
2mJd r
Then since

_ 1 _ / o
@P - 1) =L § (@ — MF'O)F ()
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and making use of the operational calculus:
GaP — T)= (P — T)G=P

so that G=(@P — T)* on M, a contradiction since aco(T|M).
Therefore a¢ S,(F) implies acpo(T|M) or o(T|M) < S(F). Next
assume a € S)(F). As shown in the proof of Theorem 2, Q(x\, p) is
invertible on U, some open set such that S, (F)cU. Choose
reUN R(F). Then F(a) is not invertible but F(\) is, and

Qa,n) = L@ T
a— N\
is invertible also. So
[F(a) — F(M)]Q(a, M) = (e — VI .

Applying the integral operator to both sides with D — U and recalling

that Q(a, \)™* is analytic on U:

2_}[2 § | F@Q(a, VPP — § FV)Q(@, N F'O0)F (V)
D

e f (@ — NF'OVFO)-dn

The_second integral on the left is zero since the integrand in analytic
on D. So we obtain:

F(@)PQ(a, Ty = (@aP —T)

so that F(a) not invertible implies (aP — T) not invertible. Hence
S(F)ES o(T| M) and S,(F) = o(T | M).

REMARK. Since T|N = 0, we note that S(F) < o(T) and if
0 S,(F), then S,(F) = o(T).

Now M being a closed subspace of X may be considered as a
Banach space in its own right. So we may consider the usual
properties of the resolvent operator involving 7T |M. So since
o(T| M) = S,(F):

1M = _1_§ I — T)"'dn| M = P
2m1J ap

where P is the projection obtained from F’(N)F(\)~'. More generally,
for any polynomial f,(\):

1 N ’ -1
5§ FOIOP = T)dn = £(T) = —§  LOIFMFM) 0N
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Note that we can drop the restriction to M, since on N, both sides
will be zero. As before if f,(A) — f(\) uniformly on a compact set
containing S,(F'), then f,(T)— f(T) in norm, and the limit of the
operators defined by each integral must be the same.

COROLLARY 10. Let S.(F') be a separating singular subset and
f(\) analytic on an open set containing D, a bounded Cauchy domain
such that DN S(F) = Sy(F). Then o(F;| M) = f(S(F)).

Proof. From the properties of the root operator T associated
with F(\) and S,(F'):

F, = 2i §. FOFOIFO)dn = A(T) .
7T1J 9D

From the spectral mapping theorem off(T)] = f[o(T)] so that
o(F; | M) = olf(T|M)] = f(o(T| M)) = f(S(F)) .

Next we can use the root operator T to obtain a partial converse
to Theorem 7. First as a lemma, we use a well known theorem.

LEMMA 11. If B is a bounded linear operator on a Banach
space X, and if N, is a pole of (N — B)™* of order m, then ascent
(NI — B) = descent (M —B)=m and X = R[(MI —B)"|@ N[(AI—B)"].
Further N[(AI — B)"] is the range of the corresponding spectral
Projection.

Proof. See Taylor [4, p. 306].

LEMMA 12. Let )\, = 0 be an tsolated separating singular point
for F(\) and let M and N be respectively the range and null space
of the corresponding projection P. Then F(\)|M 1is not invertible
and F(\)|N is continuously invertible.

Proof. From Corollary 3 and the remarks following, we know
that X = M @ N and F(\,) is completely reduced by this pair of
subspaces. If F(\,)| M were invertible, then F(\)|M would be
invertible in some open neighborhood of A, and in this neighborhood
F(\)™| M would be analytic. We would then have

p=_1 § F'OWFO)-'dn = 0
2m1J ap

a contradiction,
Now suppose F'(\,) | N is not invertible and write F'(\) = F'(\) ! N,
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Then X\, e S(F') and ), e R(F"’) since N € R(F'), and F’(\) is completely
reduced by M and N.

F-7IN=1 § AETOWF (V)N
2m1J oo

By the remark after the definition of tAhe root operator, T =0. Also
by the remark after Theorem 9, N, = S,(F') S ¢(T') = {0}, a contradiction.
So e R(F') and F'(\,) is continuously invertible.

THEOREM 13. Let A, # 0 be an isolated separating singular point
of F(\) and suppose N, is a pole of F'(NF(\)™" of order m. Then
ascent F(\,) = descent F(\,) = m and X = R[F(\)"] B N[F(n)"].

Proof. By Lemma 12, F(\,) | M is not invertible and F(A\)| N is
continuously invertible. So
NEFEM)SNEFN)S - S NEFNM) S-S M
and
RBFX) 2R(FN))2 -+ 2REFN)") 2 .- 2 N

In some neighborhood of A, i.e. [N — )| < p, o > 0, we can write:
F'VFM™ =3 0= 2B, + 3 (0= W) F,

and F,|N =0 for all n since F(\,)|N is invertible. Also since
N} = o(T| M), on M we have:

O = 1) =5 (0= 2)"Co + 3 0= 2D,
By the remarks after Theorem 9:
D, =L f (0 — A" — T)dn
2miJ oo

1

= s f (= WFMFM L = F,

So D, =0 for n > m and thus A\ — T)' also has a pole of order
m at N\, So by Lemma 11, ascent (\,J — T') = descent A\ — T) =m
and M = N[(AI — T)"]. We can write W — T) = AN — NI + 2 I —T)
and for N #= N[N =N > (N — T) = lim, o [|(Nd — TH* Y™ = 0
where 7#,(T) = SupP;e.ry | M| is the spectral radius of an operator T. So

o

M = T)" =23 = )™ (T = NI)"

n=1
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the Neumann expansion. This implies that C, = 0 for all #. So on
M we have:

(WP — Ty =3 (0= \)"D, = 33 (v = ),
so that:
(5) FO)FO)™ = 5 (v = M E, + (P — 1)

As was to be expected since F(x,)|N is invertible, F'(MF(\)|N
has a Taylor series expansion around ),. Taking advantage of com-
mutativity and rearranging terms:

(6) F'O)O\P — T) = F(x)[nio O = M) E, 0P — T) + P]

SO
F’O\'o)(l‘op -T)= F(No)[Eo(koP —~T)+ P] .

On M, (M P — T) is nilpotent. Hence E,(\P — T) + P is invertible.
F'(\,) i8 also invertible since A, is separating. Therefore (AP — T)" =0
implies that F(\)"|M =0 and N[F(\)"] = N[NP— T)"]= M.
Also on M: R[F(x)"] = R[(MP — T)"] = (0). On N: R(F(\)) = N =
R[F(\)"] for all n since F(A)|N is 1 to 1. So on X =
M @ N R[F(\)"] = R[F(\)"**] = (0)UN = N for all ¢ = 0. So ascent
F(\,) = descent FF(n;) = m and X = N[F(\)"] D R[F(\,)"].

COROLLARY 14. Let )\, % 0 be an isolated separating singular
point of F(\). Let P be the corresponding projection and M =
range P. Then M 1is characterized by M = {x ||| F(\)" || — 0}.

Proof. Equations (5) and (6) hold for )\, any isolated separating
singular point as no assumptions about ascent and descent were needed
to obtain them. So again F'(\)(\P — T) = F(\)ENP — T) + PJ].
Since o(T|M) = {\}, WP — T)| M is quasinilpotent.  Therefore
E,\P — T) + P is invertible on M. So

FQo) | M = F')NP — TEMNP — T) + PI | M

is also quasinilpotent, and as before F(\,)| N is invertible.
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