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CONVEX SETS AND THE BOUNDED
SLOPE CONDITION

PHILIP HARTMAN

Let Ω be a bounded open convex set in Rn with boundary
Γm This paper concerns the class B(Γ) of functions φ(x\ de-
fined on Γ, satisfying a bounded slope condition and its closure
B(Γ) in C°(Γ). The class B(Γ) is of interest because of its
occurrence in the theory of nonlinear, nonuniformly elliptic,
boundary value problems. It is shown that B(Γ) is the set
of continuous functions on Γ which, on flat pieces of Γ9 are
restrictions of linear functions of x. Thus B(Γ) = C\Γ) if
and only if there are no line segments on Γ.

l The set B(Γ). Let Ω be a bounded, open subset of Rn and
Γ — dΩ its boundary. A function φ(x) defined for x e Γ is said to
satisfy a hounded slope condition (BSC) with a constant K(^0) if,
for every point x0 e Γ, there exists a pair of linear functions 7r±(α;) of
xeRn satisfying

φ(x) ^ π+(x) for a? e Γ,

00 Σ
(1.0)

For example, any linear function 0(&) = a.x + 6, restricted to Γ,
satisfies a BSC with K2 = | α |2. On the other hand, if some function
^(aO,#e,Γ, is not the restriction of a linear function and satisfies a
BSC, then

(1.1) Ω is convex .

Below, we shall always assume (1.1).
The bounded slope (or an equivalent) condition occurs in the

calculus of variations and the theory of nonlinear elliptic boundary
value problems in papers of Hubert, Lebesgue, Bernstein, Haar, Rado,
von Neumann, etc., for recent references (e.g., to Nirenberg, Gilbarg,
Stampacchia, and others), see [1], [2], [4, pp. 98-105], [5], Since
there are existence theorems for certain nonlinear, (nonuniformly)
elliptic, Dirichlet boundary value problems on Ω with an arbitrary
given boundary function φ in B{Γ), where

(1.2) B(Γ) = {φ(x), xeΓ:φ satisfies a BSC} ,

it seems worthwhile to examine the set of functions B(Γ).
Two results along these lines are the following, given in [1, pp.
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504-505]:
( i ) ΓeCί=>B(Γ)czC1(Γ);
(ii) ΓeCιλ,0 < λ ^ l=^B(Γ)dC
The convex set Ω or its boundary Γ is called uniformly convex

if there exists a constant c > 0 such that through every x0 e Γ, there
passes a hyperplane π a Rn supporting Γ and having the property that

(1.3) d i s t (x, π) ^ c | x - x0 \
2 f o r x e Γ .

The class Ck>λ(Γ) will be defined as the set of functions φ(x),xeΓ,
which are restrictions to Γ of functions of class Cktλ(R*). (This
generalizes the usual definition of class Ck>λ{Γ) which requires that
ΓeCk'λ.) Several authors have used the fact that

(iii') Γ is uniformly convex => B(Γ) => Chl(Γ);
for a detailed proof, see [3, p. 242]. Actually, the converse of this
statement is also correct:

(iii) Γ is uniformly convex <=> B(Γ) =) C1}1(Γ).
As noted in [1], (ii) and (iii') give the following assertion:

(iv) ΓeC1*1 and Γ uniformly convex => B(Γ) = C M (Γ).

Proof of (iii). In view of (iii'), it is sufficient to verify the fol-
lowing converse of (iii'):

(iii") Γ is uniformly convex <= B(Γ) s φ(x) = | x |2, x e Γ.
Suppose, therefore, that φ(x) = \x\2, xeΓ, satisfies a BSC, so that
there exists a constant K and, for every xoe Γ, a linear function
π+(x) satisfying (1.0). Note that φ(x) = \x\2 = | x — x0 + xo\

2 satisfies

φ(x) = I x — xQ |2 + 2x0-(x - x,) 4- φ(x0) .

Thus, by (1.0),

(1.4) (a+ - 2xQ) (x - xQ) ^ I x - xQ |2 έ 0 for x e Γ .

Hence a+ — 2x0 Φ 0, and the hyperplane π: (a+ — 2xo) (x — x0) — 0
passes through α?0 and supports Ω. By (1.0), | a+ — 2x0 \ <, K + 2i2, if
Ω is contained in the sphere \x\ <. R. Since a Gfl implies t h a t

0 <; (α+ - 2&0) OB - »o) = I a+ — 2x0 \ dist (x, π) ,

(1.4) shows that the inequality (1.3) holds with c = l/(iί + 2R). This
proves (iii").

2* The set B(Γ). In [3], M. Miranda obtains generalized solu-
tions for the Dirichlet boundary value problem associated with the
minimal surface equation and a boundary function φ(x) in the set

(2.1) B(Γ) = the closure of B(Γ) in C°(Γ) .
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Actually, Miranda assumes that Γ is uniformly convex [so that B(Γ) =
C°(Γ) by (iii')] and deals with an arbitrary φ(x) e C°(Γ). His procedure
is valid, however, if it is not assumed that Γ is uniformly convex
but merely that φ(x) e B(Γ). Since his arguments apply equally well
for other boundary value problems (cf., e.g., [2]), it is of interest to
investigate the set of functions B(Γ) and, in particular, to see when
B(Γ) - C°(Γ).

The following terminology will be used below: A subset A of Γ,
which is neither empty nor a point, is called a flat piece of Γ if there
exists a hyperplane π supporting Ω and A = π Π Γ. A point xQ e Γ is
called an extreme point of Γ if it is not an interior point of a line
segment on Γ. Ω or Γ is called strictly convex if every point xoeΓ
is an extreme point (i.e., if there are no line segments on Γ). As
usual, φ IΣ denotes the restriction of the function φ(x) to the set
x e Σ. Let

A(Γ) = {φ(x), x e Γ:φ e C°(Ω); on every flat piece

Δ of Γ, Φ I Δ is the restriction of a linear function} ,

or, equivalently,

A(Γ) — {φ(x), x e Γ:φ e C\Γ); on every line segment

iczΓ, φ 11 is the restriction of a linear function} .

It is understood that A(Γ) — C°(Γ) if Γ is strictly convex. The main
result to be proved in this paper is

(I)

in particular,

(II) Γ is strictly convex <=>B(Γ) = C°(Γ) .

The proof will be given in § 5.

3* The functions φr and φr. It will be assumed that

(3.1) x = 0eΩ

Let (x, u) = (x\ , xn, u) denote coordinates in Rn+1. With a function
φ e C\Γ) and a number r satisfying

(3.2) I φ(χ) I < r for x e Γ ,

associate the following sets in Rn+1:

(3.3) Z(r, φ) = {x = tx0, u^r + t[φ(xQ) - r ] f o r x0 e Γ, t ^ 0} ,

(3.4) W(r, φ) = {x = tx0, u^ - r + t[Φ(x0) + r] for a ; 0 G Γ , ^ 0 } .
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The boundary G+(r, φ) of Z(r, ψ)[G~(r, φ) of W(r, φ)] is a cone with
vertex at (x, u) = (0, r)[(x, u) = (0, — r)] which opens downwards
[upwards]. These cones were introduced in [1], The convex hull of
Z(r, φ) is the set of points (x, u) satisfying

(3.5) x = Σ \tiXt, u^r + Σ λAfote) - r] ,

where λ< ̂  0, ΣXt = l , ί i ^ 0 , a ι i e Γ , m > 0 arbitrary. If Γ = 2%^ > 0
and μ{ = X^/T, then (3.5) can also be written as

(3.6) x = T± μixi9 u£r+T± μMXi) ~ r] ,

where μt ^ 0, Σμ{ = 1, T ^ 0, ̂  e Γ, m > 0 arbitrary.
On iϋ", define the function

(3.7) φ'(χ) = sup jr + T± μMXi) ~ r]\, xeRn ,
Six) I *=1 J

where the supremum is taken over the set

(3.8) S(x) = | (Γ, μ
l9

and, as in (3.6), T ^ 0, ̂  ^ 0, J?/^ — 1, α?4 e Γ, m > 0 arbitrary. It is
clear that

φr(x) = sup{u: (x,u) in (3.6), x fixed} ,

so that the closed convex hull of Z(r, φ) is the set

(3.9) co Z(r, φ) = {(a?, u): u ^ φr(x), x e Rn} .

It is also clear that

(3.10) φr(tx) = r + £[>r(£) - r] for α? € Rn, t ^ 0

hence

(3.11) co Z(r, φ) = {x = txQ, u^r + t[φr(x0) - r] for x0eΓ,t^0} .

Similarly, the closed convex hull of W(r, Φ) is

(3.12) co W(r, φ) = {x = txQ, u^ -r + i[ r̂(a?0) + r] for a ; f l e Γ , ί ^ 0 } ,

where

i f j ΓΣ [ ^ ) ]}, a; e i2% ,(3.13) φr(x) = inf j - r + Γ Σ i "<[^) +

and S(a?) is given in (3.8). From (3.9) and its analogue, it Allows
that φr(x) is a concave and φr(x) is a convex function of x. In parti-
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cular, φ% φreC%Rn).

PROPOSITION 3.1. Necessary and sufficient in order that φeB(Γ)
is that Φ = φr\ Γ ΞΞ φr \Γ for large r.

This is merely a restatement of [1, Th. 2.1, p. 496],

PROPOSITION 3.2. (a) The functions ψ, φr, φr satisfy

(3.14) φr(x) ̂  φ(x) g φ'(x) for x e Γ .

(b) If φ,fe C°(Γ) and Φ ̂  ψ on Γ, then

(3.15) φr(x) g ψr(x), φr(x) g ψr(x) on Γ .

(c) Finally

(3.16) (φ' I ΓY = φr and (φr \ Γ)r = φr S

Proof. The choice (Γ, μ19 xλ) = (1,1, x) e S(x) for xeΓ implies
(3.14) by (3.7), (3.13). The other assertions are trivial.

PROPOSITION 3.3. Let | ψ(x) \ ̂  M on Γ and r > 2M + 1 be fixed.
Let x e Γ. Then there exists a T and a Borel probability measure μ
on /\ depending on x and r, such that

(3.17) x - T J ^ t f , φ'(x) = r +

(3.18) 1 ^ Γ ^ 1/[1 - (2M + l)/r] .

The arguments in the proof of this statement will also be used
in other proofs below. Of course, one can obtain analogously

(3.19) x - T^ydμ, φr(x) - - r + T^[φ(y) + r]dμ

for different T and μ.

Proof. For a given x e Γ, choose (T, μ19 , μn, xu , xm) 6 S(x)
such that the error rj defined by

(3.20) φ'(x) = (1- T)r + T± μiφ(Xi) + η

satisfies

(3.21) 0 ^ 7̂ ̂  1

cf. (3.7), (3.8). It is clear from (3.8) that T ^ l if xeΓ. Since
I φ(x) I ̂  Jf, (3.14) shows that Φr(x) ^ - M for x e Γ. Hence, by (3.20),
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-M ^ (1 - T)r + TM + 1 and, since T ^ 1, we have 0 ^ 1 -
(1 + 2M)/r. Consequencely, (3.18) holds.

For the choice (μu , μm1 xl9 , xm), write

(3.22) x = T Σ / ^ - T\ ydμ, Σ /^(®*)
ι=i jr ί=i

where μ is a probability (Borel) measure on Γ with support on the
finite set {xL, , xm}. For each fc = 1, 2, , choose Tk, μ\, , /^(fc,,
ίcf, , »m(fc) e S(a) so that 77 - 77* in (3.19) satisfies ηk-+0. If r > l + 2Λί,
it can be supposed that T = lim Tk exists and satisfies (3.18), and that
μ — lim μk exists weakly. Writing T — Tk and μ = μk and letting
k-+ co, we obtain (3.17) from (3.20) and (3.22).

PROPOSITION 3.4. We have

(3.23) φr(x) £ φs(x) ^ φs(x) ^ φr(x) for s ^ r, x £ Ω .

Furthermore

(3.24) φ~(χ) - lim φr(x), φ^(x) - lim φr(x)

exist for a; e Γ and

(3.25) ^^(.τ) ^ (̂α?) ̂  9°°(.τ) for xeΓ .

Note t h a t p r($), ^ r(^) are defined on iτ?%, while φ°°(x), φ^x) are de-
fined only on Γ.

Proof. Consider only φr, φ°°. The expression {•••} in (3.7) can
be wri t ten

{.-.} = r ( l - T) + T±μiφ(xί) .
i=i

The convexity of β implies that T ^ 1 in (3.8) if α g i2. Thus the
term r( l — T) is a nonincreasing function of r. This gives the last
inequality in (3.23) which, together with (3.14), implies the existence
of φ°°(x) and the inequality φ°°{x) ^ φ(x) for xe Γ.

PROPOSITION 3.5. The relation

(3.26) φ-(x) - φ(x) [or φ^x) = φ(x)]

holds for all xe Γ if and only if ψ(x) is a concave [or convex] func-
tion on every flat piece of Γ; in which case

(3.27) φr(x) — φ(x) [or φr(x) -* φ(x)] uniformly on Γ ,
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a s r__> oo# i n particular,

φ™ — φ — φ^ o n Γ <=> φ e Λ{Γ) .

The proof shows that both parts of (3.26) hold at an extreme
point x of Γ for every φ e C°(Γ).

Proof. Consider only φr and φ°°. Suppose that the first part of
(3.26) holds for all xeΓ. Let Δ be a flat piece of Γ. Then Δ is a
closed convex set and φr \ Δ is a concave function. Thus φ \ Δ is the
limit of a nonincreasing sequence of concave functions and hence is
concave.

Conversely, let φ e C°(Γ) and φ \ Δ be a concave function on every
flat piece Δ of Γ. Let σ(r) = max [φr(x) — £>($)] for xeΓ, so that
O"(r) >̂ 0 is a nonincreasing function of r for large r. Let

(0 ίg )c — lim σ(r) as r —> oo .

It will be shown that c = 0; i.e., that the first limit relation in (3.27)
holds uniformly on Γ. Choose a sequence of points x5 e Γ such that,
for large j , Φj(Xj) ̂  ό(Xj) + c. In Proposition 3.3, let r = j,x = Xj
and, correspondingly T = Rjy μ = μj9 Thus

By - Γyί »(Z/£if (̂ίCy) - i ( l - Γy) + Γy ( Φ(y)dμJ ,

where T — Ts satisfies (3.18) with r = j . Consequently

φ(Xά) + C ^ ^(fljy) ^

After a selection of a suitable subsequence (and a suitable renumber-
ing), it can be supposed that xQ = l i m ^ exists and μ = lim/iy exists
weakly. In particular, #oejΓ and μ is a (Borel) probability measure
on Γ. Letting j —* oo gives

(3.28) xQ =

since T3 —> 1.
If #0 is an extreme point of Γ, then the first part of (3.28) shows

that the support of μ is the point x0. The second part then gives
φ(x0) + c ^ φ{x0). Thus c = 0.

If #0 is not an extreme point of Γ, then #0 is an interior point
of the smallest flat piece Δ of Γ containing xQ. The set J is a closed
convex subset of Γ and, by the first part of (3.28), the support of μ
is contained in Δ. Thus the second part of (3.28) gives
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^ \.Φ{y)dμ ^ φ(xQ) ,

where the last inequality is a consequence of the first part of (3.28)
and the fact that φ \ A is a concave function. Again, we obtain
c — 0. This completes the proof.

4* jB(Γ)-aρproximations* As in the last section, let x = 0 e Ω
and Φ(x) e C°(Γ). Let r > 0 be fixed (and sufficiently large) and, in
terms of the operations φ—>φr,φ—>φr define two functions g,he C\Rn),
which depend on φ and r:

(4.1) g = (φ% and h = g'= [(φ%Y .

In (4.1) and below, if ^eC°(Rn)y the functions ψr, ψr mean (ψ\Γ)r,
(ψ I Γ)rj respectively.

PROPOSITION 4.1. The functions (4.1) satisfy

(4.2) φr ^ g £ h £ φr on Γ ,

(4.3) h = # r and g = hr on Γ .

Proof. By (3.14), ^ r ^ ^ on Γ. By the analogue of (3.15), this
implies that g = (^r)r ^ ^ r on Γ. The analogue of the first part of
(3.14) with φ replaced by φr gives g = (φr)r ^ φr on Γ. Hence, by
(3.15) and (3.16), h = gr ^ (Φr)r = Φr on Γ. Thus (4.2) is proved.

In order to prove (4.3), note that h >̂ g on Γ implies that
hr ^ gr g on Γ. Also, from Λ- <̂  ̂ r, it follows that hr ^ (^r)r = βr
on Γ. Consequently hr = g on /\ In view of (4.1), this completes
the proof.

REMARK. If we could verify that h = g on Γ, then we could
complete the proof of (I) at this point; cf. Proposition 4.6 and § 5.
It will remain undecided whether "h = g on Γ" always holds, but it
will be shown that this relation is valid if, for example, the extreme
points of Γ are dense on Γ. This fact will be sufficient for the proof
of (I).

In the remainder of this section, we make the following assump-
tion:

(A) Let g,heC°(Rn) satisfy (4.3), hence

(4.4) g £ h on Γ .

For the sake of brevity, some statements and their proofs will
be given only for h. It will be clear that analogous statements hold
for g. These analogous statements will be utilized below.



CONVEX SETS AND THE BOUNDED SLOPE CONDITION 519

If μ is a Borel measure on Γ, supp μ will denote its support and
co (supp μ) will denote the closed convex hull of supp μ.

PROPOSITION 4.2. Let x0 e Γ. Then there exists a T ^ 1 and a
Borel probability measure μ on Γ such that

(4.5) xQ = T^ydμ, h(x0) = r + T^[h(y) - r]dμ ,

(4.6) g — h on supp μ

and h(x) is the restriction of a linear function of x on the set

(4.7) {x = ty,t^>Q,ye co (supp μ)} .

Proof. By Proposition 3.3 and h — gr, there exists a T >̂ 1 and
a Borel probability measure μ satisfying

(4.8) x0 = τ\ ydμ, h(x0) = r+ τ\[g(y) - r]dμ .
JΓ JΓ

Hence g g h on Γ gives

(4.9) h(x0) S r + ΓJ [λ(y) - r]dμ

and inequality holds unless (4.6) is valid. Using the fact that

h(ty) = r + t[h(y) - r] for t ^ 0 ,

we can write (4.9) as

(4.10) h(xo/T) - r ^

while

(4.11) a;0/Γ = 2\l\tydtdμ and 2J1f ίdίd^ - 1 .

Since r — h(x) is a convex function of x, (4.11) implies that

(4.12) 2[1\[h(ty) - r]dtdμ ^ h(xQ/T) - r

the inequality holds unless h(x) is the restriction of a linear function
of x on the set (4.7).

The sign of equality must hold in (4.10) and (4.12), hence in
(4.9). Thus we conclude that (4.6) is valid and that h(x) is a linear
function on the set (4.7).

PROPOSITION 4.3. Let n = 2, so that Γ is a curve. Then h(x) =
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g(x) on Γ. Furthermore, if ^ , x * e Γ , ί is the line segment [#*#*],
x — 0&1, and h(x) is a linear function of x on the sector S =
{x = ty,t^0,ye I}, then Z c Γ.

Proof. Suppose, if possible, that there is a point xoeΓ where
h > g. Then, in Proposition 4.2, supp μ Φ {x0}. Thus, by Proposition
4.2 and its analogue for g, there is an arc on Γ, say, with endpoints
x%, x*, containing xQ in its interior, g — h at x — x#, x*, and g, h are
linear functions of x on the sector S.

Clearly, by linearity, g = h on ϊ, since g = h at sc = x#, x*. As
#, h are linear on half-lines emanating from x — 0, it follows that
la Γ. For otherwise, there are points of the arc from x# to x*
where g(x) > A(&). Since this impossible iczΓ and g — h at a; = x0 e I.

PROPOSITION 4.4. Let n ^ 2 be arbitrary; α?0, a?i e Γ, and 2 the
line segment [x^]. Suppose that x = 0$l, g = hatx = x0 and x — xu

and h(x) is a linear function of x on the plane sector S = {x = ty,
t^0,yel}. Then i e Γ.

Proof. Let π2 be the 2-dimensional plane in cc-space containing
the segment I and the point x = 0. In the course of this proof, only
points x e π2 are considered.

Starting with the function ψ = h \ ΓQ( = Γ Π ττ2), apply the proce-
dure at the beginning of this section to obtain functions

ffio) = (Ψ{r))(r) a n d hl0) = g[r

0] on Γo = Γ Π π2 .

The superscripts and subscripts (r) indicate the operations ψ —> ψr

and ψ-*ψr, except that only points xte^ are involved in the an-
alogues of (3.7), (3.13).

It is clear that ψir) = h = &r on Γo and so, A ̂  ^(0) ̂  ^ on Γo,
but 0(O) = ^ = A at x = a?0, x,. The definition of the operation φ-*φr

implies that h{0) = flrfj/ = h on S, h{Q) = g = h at x = xQ, xt. Consequent-
ly, h{0) is the linear function h on the sector S. By the last proposi-
tion, h{0) — gw on Γo and lαΓoc:Γ. This completes the proof.

COROLLARY. In Proposition 4.2,

(4.13) co (supp μ)ciΓ .

In other words, either supp μ — {#0} or supp μ is contained in a
flat piece of Γ.

PROPOSITION 4.5. Let £0 be an extreme point of Γ. Then h(xQ) —
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Proof. If the assertion is false, then, in the last Corollary,
co (supp μ) is in a flat piece of Γ. Thus, in Proposition 4.2, T = 1
and x0 e co (supp μ), but #0£supp/i. This contradicts the assumption
that xQ is an extreme point of Γ.

COROLLARY. Suppose that the extreme points of Γ are dense on
Γ. Then h(x) = g(x) on Γ. In particular, h\ Γ — g \ Γ e B(Γ).

The last assertion follows from Proposition 3.1.

PROPOSITION 4.6. Assume that the extreme points of Γ are dense
on Γ. Then B(Γ) z> A(Γ).

Proof. Let φ e A(Γ) and ε > 0. By Propositions 3.4 and 3.5, we
have φ — ε<φr^φ^φr<φ + ε on Γ for large r . Also φr <^ g =

h ^ φr on Γ, by Propositions 4.1 and 4.5. Since h\ΓeB(Γ), the
proof is complete.

5. Proof of (I): B(Γ) = Λ(Γ). In order to see that B(Γ) c
let A be a maximal flat piece of JΓ. Then /I is a convex set, say, of
dimension k,0 < k < n. Let xQ be an interior point of A and let
φeB(Γ). Let TΓ^O?) be linear functions of x satisfying (1.0). Suppose
that Φ is not a linear function, then (a+ — a~)'(x — xQ) = 0 defines a
hyperplane in Rn supporting Ω at x — #0. This hyperplane contains
Λ and, therefore, (̂cc) = a± (a? - a?0) + ̂ (α?0) for α? e A. Thus ^ e B(Γ) =>
φ e A(Γ). Hence B(Γ) c ^ί(Γ) and, therefore, B(Γ) c ^ί(Γ).

In order to prove the opposite inclusion, let φ(x)eA(Γ). In the
Rn+1 space with coordinates (a?, xn+1) = (a?1, , a?n, a?%+1), let β0 be an
open, bounded convex set such that its boundary ΓQ = dΩ0 has the
properties that Γo Π {̂ %+1 = 0} = Γ and every point (a?, #u + 1) e Γo with
^% + 1 ^ 0 is an extreme point of Γo. Extend Φ(x) — Φ(x, 0) to a con-
tinuous function φo(x, xn+1) on ΓQ. Then ^0 e A(Γ0) since the only flat
pieces of Γo are contained in Γ.

Since the set of extreme points of Γo contains Γo — Γ, they are
dense on Γo. Hence, by Proposition 4.6, there exists, for every ε > 0,
a function h0 e B(Γ0) satisfying | φ0 — h0 \ < ε on Γo. Thus h = ho\Γ
satisfies h e B(Γ) and | Φ — h \ < ε on Γ. This completes the proof.
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