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A MAXIMUM PRINCIPLE AND GEOMETRIC
PROPERTIES OF LEVEL SETS

THOMAS A. COOTZ

There are many results in function theory which relate
the behavior of a function in the interior of a domain to its
behavior on the boundary. A well known result of this sort
is the theorem of study: if the map of the unit disc under a
univalent analytic function f(z) is convex, then the map of
every concentric disc contained therein is also convex. This
theorem has been generalized in many different directions in-
cluding more general properties of univalent functions, and
the convex and star-shaped properties for level surfaces of
harmonic functions in E*. The results for univalent functions
depend basically upon Schwarz's lemma, while the results for
level surfaces of harmonic functions have been shown previ-
ously by means of rather complicated forms of the maximum
principle.

In § 1, we give a simple and direct proof of a very gene-
ral theorem, depending upon a form of the maximum princi-
ple, which is then shown in § 2 to easily give the known results
as well as several new ones. Some related new problems are
discussed in §3.

1* Main result*

THEOREM 1. Let Coj and Cljyj = 0,1, •••,%, be closed subsets of
Euclidean m-space, Em, such that Coj Γi Cld = 0 , and define:

Aj = 3Coy, B, = dCld, Ds = E m - (Coy U C i y) ,

Co = C01 X X Con C1 = Cn X X Cln .

Suppose continuous functions / 5 (Py): Em—+E1 and T(p): Emn —>Em are

given such that the following conditions are satisfied for j = 1, , n:

( i ) The sets Coj and Cl3 are level sets of fd(Pd) such that

(0 for PjeCoj) j = 0,- -,n
f-(P ) =

J Λ 3) (KforPeC^ Ke(0,oo].

0<fs(Pj) <K for all PseDs,j - 0 ,1, - ,n
( i i ) Hj(p) = fj(Pj) — fb(T(p)) takes its maximum over all

peNj^ {p: Ps e Ds, T{p) e Do, /y(

in the set dMd Π dNjf where Md = {p: P3 e D3, T(p) e Do}.
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(iii) Define D(k) — interior {p: fj(Pj) ^ k, j = 1, , n)
D0(k) = interior {Po: /0(P0) ^ k}

for ke(0, K], We assume that T(p)eD0(0) whenever peD(0) and
T(p) e DQ(K) whenever p e D(K).

(iv) If K = oo we assume that Hj(p) approaches a nonpositive
limit at every point of dD(K).

Conclusion: T(p) e DQ(k) whenever p e D(k) for k e [0, K],

Proof. The conclusion is assumed to be true when k — 0 or k =
K in hypothesis (iii). If k e (0, K), suppose p e D(k). Let j be such
that fj(Pj) ^ fi(Pi) for i = 1, , n. We know that peD(k)=^
p e D(0) => T(p) e DQ(0). If T{p) e C10 then obviously Hά{p) ^ 0 because
0 < fj(Pj) < K. If P3 e Cu then by our choice of j we have f^) ^
fi(Ps) = K and so p e Cl9 therefore T(p) e Dϋ(K) = C10, and Hό(p) = 0.
Thus p e Nj is the only case left to consider and we argue as follows.
Hypothesis (ii) then says that Hό{p) <Ξ Hά(Q) for some Q e dM3 Π dJV,-.
The point Q must be such that either Q5 e A3 or Qo e B3 as we have
eliminated above the other possibilities. In the former case H3{Q) ^ 0
holds because fj(Qj) = 0 and /0(P0) ^ 0. In the latter case we know
that fi(Qi) ^ fj(Qj) = K, and thus Q e D(K). This implies that
T{Q)eDjK) and therefore H3(Q) ^ 0. When K= <*>, hypothesis (iv)
allows us to draw this conclusion. Thus H3(p) ^ 0, which means that
T(p) e DQ(k) as required.

THEOREM 2. Hypothesis (ii) in Theorem 1. is implied by the
following conditions:

( i i ) ' Let J = {1, •• , Λ } , S C J , / = J - S = {il, -- , Λ }

F o r ei βr?/ j eJ, S such that j £ S, and Q such that fs(Qs) = /j(Qy) /or

sGiS, i^β assume that there exists a function t(p) = (ίo(p), •••, ί«(p))

such that:

UP) = Pi for i el

t.(q) - Qs and f.(t,(p)) = fs(Ps) for seS

H3(t(p)) — fj(Pj) — f(T(t(p))) takes its maximum over all

p e N3(S) = {p: P3 e Dd, T(t(p)) e Do, f3(Pj) < MPJ, iel,i*j]

in the set dN3>(S).

Comment. This condition gives us a means of eliminating those
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boundary points of Nj for which fj(Pj) = fi(Pi) for some i Φ j. In our
applications the functions t(p) will be rotations of level surfaces of
the functions fά.

Proof. When n — 1, there is only one fj(Pj) and the theorem is
clearly true; no functions t(p) are needed. For n > 1, the argument
proceeds by induction on n; the assumed existence of functions t(p)
is exactly what is needed at each step in the induction.

2* Applications* The first of the following two theorems is due
to Beckenbach and Graham [2], whose proof depends upon Schwarz's
lemma. The second is a doubly connected version of the first and is
closely allied with the Hadamard Three Circles Theorem.

THEOREM 3. Let the analytic function f(z) with /(0) = 0, regular
in the unit circle \ z | < 1, map \ z | < 1 in a one-to-one way on a plane
domain, and let the map of \z\ < r, 0 < r g 1, be denoted by D(r). Let
the constants rjf j = 0,1, , n, satisfy 0 < rά ^ 1, w denote the vector
(wu > , wn), Wj = f(Zj), and T(w) be a regular analytic function of
the n complex variables wly , wn with D(rj) as range of the variable
w3 , and T(0) — 0. Suppose that for each vector w with wύ in .£>(?%•),
the point T{w) = w0 is in D(r0). Then for each w with wά in D(rόr),
0 < r S 1, the point T(w) = w0 is in D(ror), whenever r0 satisfies
ro ^ Σ ? α i r ί j where α̂  is the coefficient of w{ in the expansion of T(w).

THEOREM 4. Let the analytic function f(z), regular in the
annulus p < | z \ < 1, map p < | z \ < 1 in a one-to-one way on a
plane domain bounded by two simple closed curves such that the inner
curve B is the map of \z\ = p, the outer curve A is the map of
| 2 | = 1, and the orientation is preserved. Let D(r) denote the
interior of the image of \ z \ — r, the constants rd, j — 0, 1, •••,%,
satisfy p rg rά ^ 1, and T(w) be a regular analytic function of the
n complex variables wu -*-,wni with D(r y) as range of the variable
Wj. Suppose that for each w with wό in D(rό), the point T(w) = w0

is in D(r0), and for each w with wό in D{p) the point T(w) is in
D(p). Then for each w with wά in Ώ(rά(p\r3)

a), 0 <̂  σ <£ 1, the point
T(w) = wQ is in D(rG(ρ/r0)

σ).

Proof of Theorem 3. We define the functions

fjiwj) = - log I f-\ws) I + log r i f j = 0, 1, , n

Aj = f{z: | * | = ry}, B, - {/(0)} - {0}, and K = oo .

Hypothesis (i) of Theorem 1 is clearly satisfied and (iii) is assumed to
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be true. We shall give explicitly a function t(p) satisfying (ii)' of
Theorem 2. Let p = (wl9 , wn)9 q = (w0l9 , w0A) and define the
constants as by zOs = exp(iae)20i. The function ί(p) = (ίi(Wy), , ίΛ(wy)),
where ts(wό) = f(f~\Wj) exp (iα:,)), satisfies the requirements in Theo-
rem 2 because the ίβ(wy) are analytic and thus T{t(wά)) satisfies the
principle of the maximum. It remains to show that hypothesis (iv)
holds. We observe that by the construction of the domain Nό we have

and thus r^1 \f"\w^ \ <£ rj1 {/^(Wj) |, from which

Hά(t{Wό)) = /y(Wy) ~ UT(t(Wά)))

< 0

whenever Wy is small enough and r0 ^ Xf a^r^ since T(0) = 0 and
t(0) - 0.

Proof of Theorem 4. Let

Λ(wy) = (log I f-\Wj) I - log ry)/(log p - log ry)

and jfiΓ = 1. Then hypothesis (iv) is unnecessary and the other hypoth-
eses follow just as in the proof of Theorem 3, with the same func-
tions t(Wj).

Theorem 3 contains a result of Ford [4] as a special case. A
domain is said to be star-shaped if it satisfies hypothesis (iii) with
7XP0 = XP19 and convex if T(PX, P2) - λP, + (1 - λ)P2 for 0 ^ λ ^ 1.
Beckenbach and Graham [2] derive many well known (and some not
well known) results from Theorem 3. These include the theorem of
Study [24] and Radό [16] for convex domains, and the similar results
of Takahashi [25], Seidel [22], and Nabetani [13] for star-shaped
domains. The analogous results for doubly connected domain were
given by Komatu [12], who used very precise estimates obtained from
the theory of elliptic functions in the proof. His theorems (Theorem
5) follow directly from Theorem 4.

THEOREM 5. // D(l) and D(ρ) are both star-shaped with respect
to a point inside the map of \z\ — p then D(r), p <Ξ r <Ξ 1 is also star-
shaped with respect to that point. If D(l) and D(p) are both convex,
then D(r) is convex.

A different approach has been used by Walsh [26, 27, 28] to study
the shape of level curves of the Green's function of a function of a
complex variable in terms of its curvature.

We now prove a theorem, concerned with functions which satisfy
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elliptic partial differential equations and the star-shaped and convex
properties in E\ which contain the previously known results in harmonic
functions.

THEOREM 6. Let f(P) be defined on a doubly connected domain
D c E3, and suppose that f{P) and /(λP) satisfy the same elliptic
partial differential equation there. Let A and B be the outer and
inner boundary surfaces of D and suppose

0 for PeA
/ < P > = v \ P p W h e r e ^ e ( ° » ° ° ] .K for PeB

We allow the case K = oo only when B — {0}, and assume that f is
sufficiently well behaved at 0 that /(λP) ^ /(P) for λ ^ 1 and | P
sufficiently small in this case.

Proof. We first observe that if K = co 9 then hypothesis (iv) of
Theorem 1 is satisfied because

I λP ] ̂  λ I PI ̂  I PI and | λPx + (1 - λ)P21 £ max (| Pι |, | P21) .

Hypotheses (i) and (iii) are satisfied by assumption so we turn our
attention to the verification of condition (ii)'. First of all, solutions
of elliptic partial differential equations satisfy the maximum and
minimum principles (see e.g., Hopf [9]) and H{P) = f(P) — /(λP)
satisfies an elliptic equation by hypothesis. Thus the proof is com-
pleted for the star-shaped case because no functions t(p) are needed.
It remains to be shown that, in the convex case, there is a function
t(p) satisfying (ii)'. But since D(0) and D(K) are convex, they are
also star-shaped with respect to any point ReD(K). We can define
t(Pj) as the unique point obtained by rotating Ez about R such that
Qj goes into Qs (here j — 1 or 2 and s Φ j) followed by a projection
along the ray through R upon the level surface determined by
Pj, because every level surface is star-shaped by the first part of
this theorem. We now note that the function HjitiPj)) satisfies the
maximum principle because the function t(Pό) is one-to-one in a neigh-
borhood of P3 and a maximum of HjitiPj)) at Pά would thus imply a
maximum of Hό{P) at P = ί(P, ), contradicting the theorem of Hopf.
Therefore (ii)' is satisfied and the proof is complete.

We list some special cases of Theorem 6 which have occurred in
the literature. For the Greens function of a star-shaped domain:
Gergen [7] and Warschawski [29]; for the Greens function of a convex
domain: Gabriel [5,6]; for convex logarithmic potential surfaces:
Nikliborc [14]; for harmonic functions and doubly connected domains
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when the two given level surfaces are star-shaped: Brunner [3]; and
for harmonic functions on doubly connected domains when the two
given level surfaces are convex: Stoddart [23].

Theorem 6 can be easily extended to many other classes of func-
tions. /i(P), β ,/«(P) could be subfunctions and fQ(P) could be a
superfunction of such a solution of an elliptic equation. Solutions of
certain parabolic equations also are known to satisfy a maximum
principle (see e.g., Nirenberg [15]), as well as various types of hyper-
bolic and mixed elliptic-hyperbolic equations (Germain and Bader [8];
Agmon, Nirenberg and Protter [l]), from which mutations of Theorem
6 may be formed. The condition that f(P) and /(λP) satisfy the
same equation can be relaxed; all that is needed is that H{P) =
f(P) — /(λP) be a solution of an elliptic partial differential equation
in the star-shaped case. A similar comment applies to the convex
case.

3* Some general problems* We have investigated the geometric
behavior of a real valued function f(P) in domains D(k) bounded by
level sets (curves, surfaces, etc.) on which f(P) has a constant value
k > 0. If D(K) and D(0) have a property, then what can be said about
D(k), 0 <Ξ k ^ KΊ In general, very little can be said about D(k), but
we have shown in Theorem 1, under certain conditions on the func-
tion and geometric property, that D(k) also has the same property.

We shall discuss the situation in the plane, where the level sets
are closed curves. The analogous problems for level sets in higher
dimensional space, in particular surfaces in E\ have been investigated
only to the extent given in this paper.

For certain geometric properties (those characterized by an analytic
function T(w)) Theorem 3 allows us to conclude that if D(l) has
property T, then D(r) has property T for 0 <; r <̂  1. We might ask
for the largest r, 0 ^ r < 1, such that D(r) has property S when D(l)
has property T, and call this r the radius of property S. There are
many results of this type in the theory of univalent functions; most
of them are concerned with the star-shaped and convex properties
(e.g., radius of convexity when D(l) is star-shaped) and variants of
them (typically real, close to star, close to convex, starlike of order
a, etc.). Recently Hummel [10,11] and Robertson [17, 18,19] have
used the variational techniques of Schiffer [20,21] to develop a
systematic approach to these problems, in terms of the variation of
functions of positive real part. Extensions of the results of this
paper (Theorems 1 and 3) to radius of property S have not as yet
been accomplished, and provide interesting future research possi-
bilities.
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