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COMMUTATIVE SEMIGROUPS WHICH ARE
ALMOST FINITE

BRUCE A. JENSEN AND DONALD W. MILLER

Semigroups satisfying certain finiteness conditions are
studied. It is shown that an infinite semigroup S every
proper subsemigroup of which is finite is a group; thus in
particular if S is commutative then it is isomorphic to the
group Z(p°°) for some prime p. An infinite commutative
semigroup every proper homomorph of which is finite is shown
to be imbeddable in an infinite cyclic group with zero element
adjoined and its structure is described.

In his monograph on infinite abelian groups Kaplansky [2] includes
the following two exercises concerning an infinite abelian group G:

(I) If every proper subgroup of G is finite then, for some prime
p, G is isomorphic to Z(p°°).

(II) If every proper homomorph of G is finite then G is an in-
finite cyclic group.

The converse of each of these implications is, of course, also true.
It is natural to ask what conclusions can be drawn for commuta-

tive semigroups under analogous hypotheses. In §1 it is shown that
if S is an infinite semigroup each of whose proper subsemigroups is
finite then S is a group. Thus in particular if S is commutative the
conclusion of (II) is obtained.

A semigroup S is said to be homomorphically finite, or, for brevity,
HF, if S is infinite while each proper homomorph of S is finite.
Section 2 is devoted to showing that an infinite commutative semi-
group S is HF if and only if S> is imbeddable in an infinite cyclic
group. A description of all such semigroups is given.

The notation and terminology used in this paper follow that of
Clifford and Preston [1].

I* Infinite semigroups whose proper subsemigroups are finite*
We begin with a lemma.

LEMMA 1. Let S be an infinite semigroup having no proper
infinite subsemigroups. Then:

( i ) S is periodic;
(ii) S2 = S;
(iii) S is not nil.

Proof. ( i ) If ae S then either <(α)>, the subsemigroup of S
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generated by α, is finite or S — <V> is cyclic. In the latter case,
however, S contains the proper infinite subsemigroup <V)>, contrary
to hypothesis.

(ii) If xeS\S2, the complement of S2 in S, then S\{x} is a pro-
per infinite subsemigroup of S. Hence S = S2.

(iii) If S contains no zero element, (iii) holds by default. Hence
suppose that 0 is a zero element of S and that S is nil. By (ii) we
can choose ae S such that aS Φ 0. Hence either aS is finite or
aS = S. If aS = S then S = anS for every positive integer n so, since
S is nil, S — akS = OS = 0 for some positive integer k, a contradiction.
Hence assume that aS = {x0, xu , xn}, where n > 0, x0 = 0 and
α?< ^ % for i Φ j . For i = 0,1, , n9 define

Si = {yeS\ay = x%)

and define a binary relation ^ on the set ^ of all Si by stipulating
that Si ^ Sj if and only if there exists s in S1 such that xά = x{s.
Clearly ^ is reflexive and transitive on £^. Moreover suppose Si ^ Sj
and Sj ^ Si, say xά — x{s and x{ = a;̂ , where s, £ e S1. Then

a;,. = Xjits)1*, k = 1, 2, 3, .

Since S is nil this implies that either xό = 0, whence also &< = 0, or
ts g S. In the latter case, s = t = 1 so again ^ = α?y. Thus ^ is a
partial ordering of S?.

Evidently S{ ^ So for i = 0,1, , w. Moreover there must exist
an integer N,l ^ N ^ n, such that

< 1) Si^SN implies i = N, all S< e S? .

Let ?/ e Sy. By (ii) y = uv for some n,v eS. Since ^ describes a
partition of S, ue Si for exactly one i, 0 ^ ί ^ ^. Therefore α?̂  =
ay = αi6^ = α̂ v so JS< ̂  SΛ, whence, by (1), i — N and xN — xNv.
Consequently xN = x̂ ^̂  for k — 1, 2, 3, so ^ — 0 = xQ, contrary
to N > 0. This establishes (iii).

THEOREM 1. If S is an infinite semigroup each of whose proper
subsemigroups is finite then S is a group.

Proof. Let A, = {x e S \ xS is finite} and A2 = {x e S \ xS = S}. For
i = 1, 2, if Aί ^ 0 (the null set) then Λ̂  is a subsemigroup of S.
Thus, since Aι and A2 partition S, either A1 — S and A2 = 0 or vice
versa. An analogous argument on the principal left ideals of S leads
to the conclusion that S satisfies exactly one of the following:

( i ) xS and Sx are finite, all x e S;
(ii) α S is finite and Sx = S, all a eS;
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(iii) xS — S and Sx is finite, all x e S;
(iv) xS = Sx = S, all α e S.
Denote the set of idempotents of S by E; since S is periodic,

E Φ 0.
Case (i). If E is finite then S'ES1 is a finite ideal of S and the

Rees factor semigroup S/S1ES1 is an infinite semigroup having only
finite proper subsemigroups. However some power of each element
of S is idempotent so S/SΉS1 is nil. Since this contradicts Lemma
1, E must be infinite.

For each e e E define the subsemigroups Le and Re of S by

Le = {x e S\xe = e} , Re = {y e S\ey = e} .

If Le = Lf = Re = Rf = S for some e, fe E then e = ef = /. Hence,
since E is infinite, there must exist an e in E such that either Le Φ S or
i?e ^ S. Assume the former; then Le is finite. Therefore Ef ~ E\Le

is an infinite subset of S so Er generates S. Consequently there exist
elements flf f2, , fk of Ef such that f,f2 fk = e. Thus f,e = e
so /xeLβ, contradicting fλeE\ The assumption that Re Φ S leads to
a similar contradiction, so case (i) is eliminated.

Cases (ii) and (iii) are left-right duals so only one of them need
be considered. Suppose then that for each x in S, Sx is finite and
α S = S. Then e# — x for all β G E SO J? is a right zero subsemigroup
of S. Thus if ee E and J5" = E\{e} then J5" is either empty or a

proper subsemigroup of S. In either case we conclude that E is finite.
Suppose E — {e\. Then, since S is periodic, there corresponds to

each element x of S a positive integer n = n(x) such that xn = e.
Therefore xe — xnJrl — ex — x so Se — S, contradicting the finiteness
of Se. Hence E has order k > 1, say E = {e19 , e j . For each i,
l^i^k, define T{ - {x e S|β, e<»}. By the periodicity of S, the
set {Tu •••, Tk) is a partition of S. If α; e Γi, say xw = e4, then, as
above, it follows that xe{ = x, so that 2̂  S C7"< = {̂  e S\xβi = x},
i = 1, , k. Conversely let xe UΊ and suppose xn = ed for some n > 0
and i, 1 ^ i ^ A:. As above,

e5. = χn = χne{ — e^i — e< .

Thus i = i so Ui^Ti. Therefore Γ4 = C/̂  is a subsemigroup of S
for i = 1, , fe. But since S = U ί ^ a n d fe > 1 it follows that at least
one of the Γt is an infinite proper subsemigroup of S, a contradiction.

This leaves only case (iv). Thus S is a group.
Combining Theorem 1 with Kaplansky's Exercise (I) we then have

the following result.

THEOREM 2. If S is an infinite commutative semigroup each of
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whose proper subsemigroups is finite then S is isomorphίc to the
group Z(p°°) for some prime p.

2. Commutative HF semigroups. An HF (or homomorphically
finite) semigroup is defined to be an infinite semigroup each of whose
noninjective homomorphisms has finite image. An HF group is an
HF semigroup which is also a group, e.g., the infinite cyclic group
or any infinite simple group. The following two results are immediate
consequences of these definitions.

LEMMA 2. Every proper nonzero ideal of an HF semigroup S
has finite complement in S.

LEMMA 3. If S is an infinite semigroup then either all or none
of S, S\ S° and (S1)0 are HF semigroups.

L. Redei [3, Satz 82] has given essentially the following charac-
terization of the subsemigroups of the additive semigroup N of positive
integers.

LEMMA 4. (Redei). Let N be the additive semigroup of all
positive integers and let d, r e N. Define

( 2 ) / = {nd I n e N, nd ^ r}

and let A be any subset of dN\I such that A + A S A U L Then
S = S(d, r, A) is a subsemigroup of N, and every subsemigroup of
N is so obtainable. Furthermore, for suitable choice of rr and
A', S(d, r, A) s S(l, r', A>).

Redei's result can easily be extended to the additive group Z of
all integers.

LEMMA 5. If S is a nonzero subsemigroup of Z then either S
is isomorphic to Z or, for suitable r £ N and AQrN, S is isomorphic
to S(l, r, A) with or without an adjoined identity.

Proof. In view of the isomorphism between the subsemigroups N
and — N = (— 1)N of Z we need only consider those subsemigroups of
Z which contain both a positive and a negative integer. Let S be
such a semigroup and let Sλ = S Π N, S2 = S Π (~N). For i = 1, 2
it follows from Lemma 4 that S{ is isomorphic to S(di9 r%, A{) for
suitable d^ ri9 e N and A{STiN\Iif where I{ = {nd{\neN, nd{ >̂ r j .
Moreover ud^S^ and —vd2eS2, and hence udλ — vd2eS, for all suf-
ficiently large integers u and v. Therefore (dly d2) e S so dt — d2. It
then follows that S is the cyclic subgroup of Z generated by d.
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Commutative HF semigroups can now be characterized.

THEOREM 3. Let S be an infinite commutative semigroup. Then
S is homomorphically finite if and only if S is imbeddable in an
infinite cyclic group with adjoined zero. If this is the case then
either S is itself an infinite cyclic group or S is isomorphic to a
subsemigroup S of the additive semigroup of all nonnegative integers
with zero element co adjoined. In the latter event there exist positive
integers au , ak and r such that

S = {aua2, --,ak}U{n\n^r} ,

possibly with adjoined zero element oo.

Proof. Let S be a subsemigroup of the additive group of integers
with adjoined zero oo. By Lemma 3 there is no loss of generality in
assuming that oo g S. Hence by Lemma 5 either S is an infinite cyclic
group, and thus is homomorphically finite, or S is isomorphic to some
semigroup S(l, r, A), so that S — IU A, where I — {n\neN, n ^ r)
is an ideal of S. Assuming the latter, let σ be a nontrivial congruence
on S which is not one-to-one, so that a σ b for two distinct elements
α, 6 of S. Then (na) σ (nb) for all n > 0 so σ is not one-to-one on
/, whence we can assume that α, b e I, with a < b. Then (a + (r + k))
σ (b + (r + k)) for each k ^ 0.

Define m = b — a a n d l e t x,y el, w i t h x,y*za + r a n d x = y(moά m ) ,
s a y x — a + s,y = a + s + tm, w h e r e s,teN a n d s >̂ r. S ince a σ b
then (a + s) σ (b + s), i.e., (a + s) σ (a + s + m). Thus by induction
(a + s) σ (a + s + tm) so xσ y. It follows that the factor semigroup
I/σ is finite so by the finiteness of A, S/σ is also finite. Therefore
S is an ίfF-semigroup.

Conversely let S be a commutative HF semigroup. For each c in
S define the congruence σc on S by

α <7C 6 if and only if ac = 6c, all a,be S .

If there exists an element c in S such that S/σc is finite then the
ideal Sc of S would also be finite, which, in the light of Lemma 2,
would contradict the assumption that S is infinite unless Sc = 0.

Suppose Sc = 0 and let J = {££>S|S.τ = 0}. Then J is an ideal
of S so either J = 0 or S/J is finite. In the latter case, we conclude
that S2 is also finite; thus S2 = 0 since S2 and S/S2 cannot both be
finite. However it is evident that the condition S2 = 0 cannot hold
in an i ί F semigroup S, so J" = 0. Hence Sc = 0 only if c = 0.

Thus S/σc is infinite, and σc is one-to-one, for all c in S\0 so S
is a commutative cancellative semigroup, possibly with an adjoined
zero. In any event, S contains no proper zero divisors.
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Let T = S\0 or T = S according as S does or does not contain a
zero element. Let G denote the group of quotients of T and regard
T as a subsemigroup of Gy in the usual manner. Suppose σ is a
congruence on G which is not one-to-one, say (a/b) σ (c/d), where α,
δ, c, de S and ad Φ be. Then ((a/b)bd) a ((c/d)bd), i.e., (ad) σ (be). Con-
sequently σ', the restriction of σ to S, is not one-to-one on ϊ 1 so
Tjσ' is finite.

For x e T let [&*] and [x]f denote the σ-class of G and the <τ'-class
of T, respectively, containing x. Then the homomorphism of Tjσf into
G/σ defined by [#]'—•[#], all x e T, is injective. Thus T/σ' is cancel-
lative and hence is a finite abelian group. It is readily verified that
the mapping of Sjσ' defined by [x] —> [x]', all ίceS, is an isomorphism
of S/σ' onto Gjσ. Therefore Gjσ is also finite so G is an abelian
ΐfi^-group. Thus by Kaplansky's Exercise II, G is cyclic.

An application of Lemma 5 now completes the proof.
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