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A CHARACTERIZATION OF THE LINEAR SETS
SATISFYING HERZ’S CRITERION

HASKELL P. ROSENTHAL

Let E be a closed subset of T, the circle group, which we
identify with the real numbers modulo 1, F is said to satisfy
Herz’s criterion (briefly, E satisfies (H)), if there exists an
infinite set of positive integers N, such that

(%) for all integers j with 0 < j < N, each of the num-
bers j/N either belongs to E or is distant by at least 1/N from

E.

The main theorem proved here, is that E satisfies (H) if
and only if there exists a sequence of sets F, F}, --- with
E =Nz, F; and positive integers N; < N, < --- satisfying

the following properties for all 7:

(1) Nq; divides Ni+1 and F.L D Fi+1.

(2) F; is a finite union of disjoint closed intervals each of
whose end points is of the form j/N; for some integer j,

(3) If for some integer j, j/N;c F;, then j/N;c Fi.i.

The motivation for studying sets E satisfying (H) is the result
of Herz (c.f. [1]) that all such sets satisfy spectral synthesis, and of
course that the Cantor set is an example. (See also [2], Chapter IX).

Now suppose that E = N F;, with F; and N, satisfying (1)-(3)
for all 4. It is then evident that E satisfies (H), since the numbers
N; will satisfy (x) for all . Moreover, E is obtained by a sort of
disection procedure. Indeed, F’;., may be obtained from F’; by removing
from certain of the closed intervals [j/N;, (5 + 1)/N;] included in F7,
one or more open intervals of the form

()

where j/N; < I/N;;, < ¢/N;wy = (5 + 1)/N..

The “only if” part of our main result is demonstrated following
the proof of Theorem 4 below. The latter result is somewhat stronger
than our main theorem, and enables us to show that certain sets fail
to satisfy (H) (in particular, the symmetric sets of ratio &, where &
is a rational number with 1/& unequal to an integer. (C.f. [2], pp.
13-15 for the definition of these sets).

§1. Preliminaries. We identify the points of 7 with [0, 1),
where addition and subtraction are taken modulo 1. If x and y be-
long to T, then the distance between them, o(z, y), is defined to be
the distance from x—y to the closest integer on the real line. If E
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is a subset of 7, then p(x, E) is defined as inf,.; o(x, f).

Throughout this paper, E shall refer to a closed proper nonempty
subset of T and _1~ shall denote the set of all positive integers N
satisfying (). (Thus if E satisfies (H), .+~ is an infinite set (and con-
versly)). Every variable “N”, with or without sub or superscripts,
refers to a member of _#~, and every variable “;” refers to an integer.

If L and M are positive integers, we write L|M if there is an
integer ¢ with Lqg = M.

Given a set S, “~S” denotes its complement.

Let [x] be the greatest integer less than or equal to x. We remind
the reader that if U is a proper connected open subset of T, there
will exist unique real numbers a < b < a + 1, such that 0 < b < 1,
and such that U = {xr — [z]: e < 2 < b}. We then define the length
of U to be b—a, with the left and right end points of U being a — [a]
and b respectively.

DEFINITION. Let 2 be a member of E for which there exists a
J with 0 £ 7 < N, such that » = j/N.

x is called N-initial if (7 — 1)/N¢ E.

x is called N-terminal if (5 4+ 1)N ¢ E.

x is called an N-end if x is N-initial or N-terminal.

We note that if x is N-initial (N-terminal) then x is a right (left)
end point of a component of ~FE of length at least 2/N. Indeed, if
2 is N-initial, we may close a j so that x — (1/N) = j/N, and j/N ¢ E.
Hence the open interval ((j/N) — (1/N), (j/N) + (1/N)) cannot contain
any points of E, and of course x = (5 + 1)/N belongs to E.

2. Our first result shows that if E satisfies (H), then the bound-
ary points of components of ~FE must be rational numbers.

LEMMA 1. Let U be a component of ~E, of length l. Then if
N > 1)1, the end points of U are N-ends.

Proof. Let x be the left end point of U. Then x € E. Suppose
it were false that « = j/N for some j. There would then exist a
0 <7 < N such that e (j/N, (§ + 1)/N). Since (1/N) < I, we would
have that ((¢ + 1)/Ne U),so(j + 1)/Ne E. But

(5 B) () < &

a contradiction. Thus, there exists a 7,0 <7 < N, with z = j/N.
But then (j + 1)/N ¢ E, since the length of (j/N, (5 + 1)/N) is 1/N < I,
hence (j + 1)/Ne U. Thus, = is N-terminal. The proof that the
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right end point of U is N-initial is similar.

Our next task is to define certain sets that are finite unions of
digjoint closed intervals, that approximate E. First, we note that if
x is N-initial, then « is associated with a unique N-terminal number
(possibly equal to z), as follows: let k be the smallest integer I, with
0<I<N, such that x + (! + 1)/N¢ E. (Note that [ = N — 2 is such an
integer.) Then ¢ + k/N is the uniquely determined N-terminal number.

Wed efine I, = [¢,x + (k/N)] and E, = J{L.: © is N-initial}. If
there do not exist any N-ends, set Ey, = T. Let !, be the maximum
of the lengths of components of ~ E.

Then if N > 1/I,, there will exist N-ends by Lemma 1 and hence
E, will be a proper subset of 7. Of course, I, NI, = ¢ for = and
&’ different N-ends; so K is a disjoint union of intervals with end
points all of the form j/N.

LEMMA 2. For all N and N', N' < N implies EyC E,..

Proof. Let N'< N be fixed, and let « be a fixed N-initial
number. It follows directly from the definitions that E c E,.; thus
since x € E, there is a (unique) N'-end y, such that x e I], where I} =

[y, 2], with z the unique N’-terminal number associated with y.
Now choose an integer [ with 0 <! < N such that

e[ 50).

Then (I + 1)/Ne E, since (I + 1)/Ne(z,z+ 1/N). Thus we must

have that z = [/N, or else p(I/N, E) < o(l/N, z) < 1/N. Hence z is

N-terminal, and so it follows from the definition of 7, that I, < I..
Thus E, c U{I,: y is N'-initial} = E,..

Our last lemma enables us to obtain certain canonical members of
N crucial for the proof of Theorem 4 (whose proof also shows that the

number N/d below equals ¢;,, where [;,, < % < I; and q,, I, are defined
directly preceeding the statement of Theorem 4).
LEMMA 3. Let Sy ={0=<j < N:j/N is an N-end)}.

Let d be a positive integer such that d|N and d|j for all jeS,.
Then (N/d)e _y~.

Proof. We may and shall assume that d > 1. Put M = N/d,
and let ! be an integer with 0 < I < M, such that [/M¢ E. It remains
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for us to show that o(l/M, E) = 1/M. If this is not the case, then
either {(l — 1)/M, /M) or {l/M, (I + 1)/M) contains a point of E.
Suppose the first possibility; then

(5 - (R F)
contains an N-end.

Indeed there is, in the first place, an integer r, d(l — 1) < r < dl,
such that r/Ne E. For if

(2 4

belongs to E, we can certainly find such an » with o(x, r/N) < 1/N.
Then »/Ne FE since Ne 4~ is always assumed. Now let k& be the
least integer greater than or equal to » such that (k + 1)/N ¢ E.
Evidently & < dl — 1 since /M = dI/N¢ F, and k/N is an N-end.

Hence there is a je S, such that /N = j/N (mod 1). Since d|N
and d |7, it follows that d|k. But d(l — 1) < k < dl, hence

k
1< <1,
<<

a contradiction.
The argument for the case when (({/M), (Il + 1)/M) contains a
point of E, is practically identical to this.

The next result implies our main theorem, and is useful in de-
termining if a given set fails (H). We shall need the following as-
sumptions and notation:

Assume that ~FE has infinitely many components, all with rational
end points.

Let 1,1, --- be an enumeration of their lengths, with I, > ,,, > 0
for all 4. Evidently 32,0, <1, so l,— 0 as ¢ — oo,

Let U, be the union of all the components of ~F of lengths
greater than or equal to [;, K; the set of end points of these com-
ponents, and ¢; the least common multiple of the denominators of the
members of K, expressed in the lowest form.

THEOREM 4. If E satisfies (H), then for inmfinitely many in-
tegers 1, the following three conditions must hold simultaneously:

(@) Lo, <.

(®) 2., < L.
() For each integer j with 0 < j < q,, if j/q;¢ E, then j/g;c U,.
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REMARK. If E is a set for which condition (¢) holds for infinitely
many %, then E satisfies (H). Indeed, the boundary points of U, are
all of the form j/q;; thus if ¢ satisfies (c), N = g; satisfies (x). More-
over, {q;: 1 satisfies (¢)} will then be an infinite set. Indeed, (1/g;) < I,
for all 4. Thus fixing ¢, if we choose k > ¢ such that [, < (1/q.),
we have that (1/q,) < (1/q;), so there are at most finitely many j’s
such that ¢; = q,.

Proof of Theorem 4. Assume that E satisfies (H), and fix Ne ¢~
with N > 1/1,.

Then there is a unique ¢ such that [,,, < (1/N) < l,. By Lemma
1, each member of K; is an N-end. Letting #, be as defined before
the proof of Lemma 2, we thus have U,c ~E,. Moreover, every
component of ~FE, is a component of ~FE, of length greater than or
equal to 2/N, by the definition of FE,. Thus, every component of
~FE, is of length greater than [,,,, whence ~FE,c U;, and every N-
end is a member of K;, since it is an end point of a component of
~FE of length greater than or equal to I;, Thus Ey = ~U,; and the
set of N-ends equals K;,. So every element in K; is of the form
Jj/N, whence ¢;| N, so ¢; < N, and thus (a) follows. Since 2/N is less
than or equal to the lengths of all the components of ~FE, = U,, it
follows that 2/N < l;, whence (b) holds. Finally, it follows from the
definition of ¢;, that if d is the greatest common divisor of S, U {IN},
then ¢; = N/d (where Sy is defined in Lemma 3). Thus by Lemma 3,
q;€ .+, whence since ¢; < N, E,, D E; by Lemma 2. So suppose that
jlg;e E. Then

J e Eqi

by the latter’s definition, so j/q; ¢ £y, whence j/q; € U;, so (c) holds.
Finally since _s~ is infinite, there must be infinitely many 4’s for

which there exists an Ne_¢~ with [;;, < 1/N < l;,, and consequently

for which (a), (b), and (c) all hold.

Proof of the main theorem. Let E satisfy (H), and assume first
that ~FE has infinitely many components. Then by Lemma 1, the
end points of these components are all rational numbers, so Theorem
4 is applicable; thus condition (¢) of that result holds for infinitely
many integers 4. Now fixing ¢ for which (¢) holds, if N > ¢;, then
q:| N; indeed, since ¢; = 1/l;, we obtain by Lemma 1 that every
element of K; is an N-end, and thus expressable in the form j/N.
Moreover, since the boundary points of U, are all of the form j/g;,
we obtain that ¢;e_#".

Thus simply let 7, 7, -+- be an enumeration of a subset of the
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’s satisfying (c), such that ¢; < ¢, for all » <#'. Then if we put
F; = ~U;, and N; = g;, for all 7, E = N, F; and (1)~(3) are satisfied
for all 7. We have also established that when E satisfies (H) and
its complement, has infinitely many components then there exist
N, < N, < «-- such that for all © and N, 1f N = N, then N;|N.

Now if FE satisfies (H) and ~ E has only finitely many components,
then by Lemma 1, the boundary points of E are all rational numbers.
Let M be the least common multiple of the denominators of these num-
bers expressed in the lowest form; then setting N; = 2*'M and F; = K
for all 7, it is easily verified that (1)-(3) hold. We remark finally
that if ~FE has finitely many components with rational boundary
points, then E satisfies (H), and in fact letting M be as above, then
for all L= M, Le_+" if and only if M|L. (Thus the statement
ending the preceeding paragraph fails for E’s such that ~FE has
finitely many components.)

We wish finitely to give some examples of sets which fail to satisfy
(H). If ¢ is a real number with 0 < & < 1/2, S,, the symmetric set
of ratio &, consists of all numbers x in T such that

= (1-§3es

where ¢; = 0 or 1, all j. (See pages 13-15 of [2].)

Now ¢ is an end point of a component of ~S,, namely (£,1 — &).

Hence if ¢ is irrational, then S, fails (H) by Lemma 1. If & = 1/L
for some integer L, then it is well known that S, satisfies (H). We
shall show that if & = p/q, where p and q are relatively prime integers
with »p > 1, then S, fails (H).

Defining I, and ¢; for £ = S, we have that [, = (1 — 2£)&* and
q;=¢q for 1 =1,2, ..., (It follows from page 14 of [2] that all the
end points of components of U; are of the form l/q¢* for some integer
l; but p‘/¢* is such an end point, and p* and ¢* are relatively prime.)
Now if I, < 1/q;, then (1 — 2(p/q))(p/q)’ = 1/q;, or p* =< q/(q — 2p);
thus condition (a) of Theorem 4 will be violated for all ¢ sufficiently
large.
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